Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Oecologia ; 205(1): 215-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801540

RESUMO

Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.


Assuntos
Ficus , Polinização , Simbiose , Vespas , Vespas/fisiologia , Animais , Tumores de Planta , Sementes , Feminino , Biomassa
2.
Am J Bot ; 111(6): e16351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812263

RESUMO

PREMISE: The ability to self-fertilize is predicted to provide an advantage in colonization because a single individual can reproduce and establish a next generation in a new location regardless of the density of mates. While there is theoretical and correlative support for this idea, the strength of mate limitation as a selective agent has not yet been delineated from other factors that can also select for self-fertilization in colonization of new habitats. We used known mating-system variation in the American bellflower (Campanula americana) to explore how plants' ability to self-fertilize can mitigate density-dependent reproduction and impact colonization success. METHODS: We created experimental populations of single individuals or a small number of plants to emulate isolated colonization events. These populations were composed of plants that differed in their ability to self-fertilize. We compared pollen limitation of the single individuals to that of small populations. RESULTS: Experimental populations of plants that readily self-fertilize produced consistent seed numbers regardless of population size, whereas plants with lower ability to self-fertilize had density-dependent reproduction with greater seed production in small populations than in populations composed of a single individual. CONCLUSIONS: We experimentally isolated the effect of mate limitation in colonization and found that it can select for increased self-fertilization. We show the benefit of self-fertilization in colonization, which helps to explain geographic patterns of self-fertilization and shows support for Baker's law, a long-held hypothesis in the field of mating-system evolution.


Assuntos
Pólen , Autofertilização , Pólen/fisiologia , Campanulaceae/fisiologia , Polinização , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Reprodução , Densidade Demográfica
3.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569959

RESUMO

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Polinização , Animais , Abelhas/fisiologia , Praguicidas/análise , Pólen , Malus , Exposição Ambiental/estatística & dados numéricos
4.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632532

RESUMO

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Assuntos
Anisóis , Cucurbita , Metiltransferases , Metiltransferases/genética , Melhoramento Vegetal , Polinização , Plantas/metabolismo , Flores/metabolismo , Catálise
5.
New Phytol ; 242(6): 2832-2844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581189

RESUMO

Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenótipo , Pólen , Ribonucleases , Pólen/genética , Pólen/fisiologia , Ribonucleases/genética , Ribonucleases/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Estudo de Associação Genômica Ampla , Zigoto/metabolismo , Genótipo , Endogamia
6.
Science ; 383(6683): 607-611, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330103

RESUMO

There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3 eliminate flower visitation by moths, and the reaction of NO3 with a subset of monoterpenes is what reduces the scent's attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal's olfactory ability and indicate that such pollutants may be critical regulators of global pollination.


Assuntos
Poluentes Ambientais , Mariposas , Nitratos , Odorantes , Oenothera , Polinização , Espécies Reativas de Nitrogênio , Olfato , Animais , Flores/fisiologia , Mariposas/fisiologia , Feromônios , Polinização/fisiologia , Oenothera/fisiologia , Manduca/fisiologia , Poluição Ambiental
7.
BMC Plant Biol ; 24(1): 102, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331761

RESUMO

Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.


Assuntos
Nicotiana , Polinização , Nicotiana/genética , Polinização/genética , Tubo Polínico , Flores , Flavonoides/metabolismo , Purinas/metabolismo
8.
Science ; 383(6686): eadh0755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422152

RESUMO

Genome duplication (generating polyploids) is an engine of novelty in eukaryotic evolution and a promising crop improvement tool. Yet newly formed polyploids often have low fertility. Here we report that a severe fertility-compromising defect in pollen tube tip growth arises in new polyploids of Arabidopsis arenosa. Pollen tubes of newly polyploid A. arenosa grow slowly, have aberrant anatomy and disrupted physiology, often burst prematurely, and have altered gene expression. These phenotypes recover in evolved polyploids. We also show that gametophytic (pollen tube) genotypes of two tip-growth genes under selection in natural tetraploid A. arenosa are strongly associated with pollen tube performance in the tetraploid. Our work establishes pollen tube tip growth as an important fertility challenge for neo-polyploid plants and provides insights into a naturally evolved multigenic solution.


Assuntos
Arabidopsis , Tubo Polínico , Polinização , Poliploidia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tetraploidia , Duplicação Gênica , Polinização/genética , Polinização/fisiologia
9.
PeerJ ; 12: e16996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406283

RESUMO

Background: Urban gardens, despite their transformed nature, serve as invaluable microcosms for a quantitative examination of floral resource provision to urban pollinators, considering the plant's origin. Thus, knowledge has increased, emphasizing the importance of these green areas for hosting and conserving pollinator communities. However, there is a significant knowledge gap concerning the changing availability of these native and exotic floral resources over time and their impact on structuring interaction networks with specific pollinators. Methods: Over a year-long period, monthly surveys were conducted to record both native and exotic plant species visited by hummingbirds in an urban garden at Tlaxcala, Mexico. Flower visits were recorded, and the total flowers on each plant visited were tallied. Additionally, all observed hummingbirds were recorded during the transect walks, regardless of plant visits, to determine hummingbird abundance. The interactions were summarized using matrices, and network descriptors like connectance, specializacion, nestedness, and modularity were computed. Plant and hummingbird species in the core and periphery of the network were also identified. Lastly, simulations were performed to assess the network's resilience to the extinction of highly connected native and exotic plant species, including those previously situated in the network's core. Results: We recorded 4,674 interactions between 28 plant species, and eight hummingbird species. The majority of plants showed an ornithophilic syndrome, with 20 species considered exotic. Despite asynchronous flowering, there was overlap observed across different plant species throughout the year. Exotic plants like Jacaranda mimosifolia and Nicotiana glauca produced more flowers annually than native species. The abundance of hummingbirds varied throughout the study, with Saucerottia berillyna being the most abundant species. The plant-hummingbird network displayed high connectance, indicating generalization in their interaction. Significant nestedness was observed, mainly influenced by exotic plant species. The core of the network was enriched with exotic plants, while Basilinna leucotis and Cynanthus latirostris played central roles among hummingbirds. Network resilience to species extinction remained generally high. Conclusions: Our findings provide valuable insights into the dynamics and structure of plant-hummingbird interactions in urban gardens, emphasizing the influence of exotic plant species and the network's resilience to perturbations. Understanding and managing the impact of exotic plants on such networks is crucial for the conservation and sustainable functioning of urban ecosystems.


Assuntos
Ecossistema , Polinização , Animais , Parques Recreativos , Flores , Plantas , Aves
10.
Phytochemistry ; 218: 113937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035972

RESUMO

The evolution of flowers that offer oils as rewards and are pollinated by specialized bees represents a distinctive theme in plant-pollinator co-diversification. Some plants that offer acetylated glycerols as floral oils emit diacetin, a volatile by-product of oil metabolism, which is utilized by oil-collecting bees as an index signal for the presence of floral oil. However, floral oils in the genus Krameria (Krameriaceae) contain ß-acetoxy-substituted fatty acids instead of acetylated glycerols, making them unlikely to emit diacetin as an oil-bee attractant. We analyzed floral headspace composition from K. bicolor and K. erecta, native to the Sonoran Desert of southwestern North America, in search of alternative candidates for volatile index signals. Using solid-phase microextraction, combined with gas chromatography-mass spectrometry, we identified 26 and 45 floral volatiles, respectively, from whole flowers and dissected flower parts of these two Krameria species. As expected, diacetin was not detected. Instead, ß-ionone emerged as a strong candidate for an index signal, as it was uniquely present in dissected oil-producing floral tissues (elaiophores) of K. bicolor, as well as the larval cells and provisions from its oil-bee pollinator, Centris cockerelli. This finding suggests that the floral oil of K. bicolor is perfused with ß-ionone in its tissue of origin and retains the distinctive raspberry-like scent of this volatile after being harvested by C. cockerelli bees. In contrast, the elaiophores of K. erecta, which are not thought to be pollinated by C. cockerelli, produced a blend of anise-related oxygenated aromatics not found in the elaiophores of K. bicolor. Our findings suggest that ß-ionone has the potential to impact oil-foraging by C. cockerelli bees through several potential mechanisms, including larval imprinting on scented provisions or innate or learned preferences by foraging adults.


Assuntos
Flores , Krameriaceae , Abelhas , Animais , Flores/química , Norisoprenoides/análise , Norisoprenoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Polinização
11.
Sci Rep ; 13(1): 19081, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925539

RESUMO

'Shuijingmiyou' pummelo (SJ), one of the most popular fruits in Yunnan province of China, is of relatively low fruit shape (FS) quality. In this study, we compared the FS promoting effects of cross pollinations using pollens from seven pummelo varieties, and found that 'Guanximiyou' pummelo (GX) cross-pollination showed the best FS promoting effects on SJ fruits by shortening its fruit neck. To explore the underlying mechanism, physiochemical and transcriptomic differences between self- and cross-pollinated SJ ovaries (SJO and GXO) were investigated. Higher salicylic acid, gibberellin and indole acetic acid contents and superoxide dismutase, peroxidase and catalase activities, and lower polyphenol oxidase activity were determined in GXO compared with SJO. Enrichment analysis of the identified 578 differentially expressed genes (123 up-regulated and 455 down-regulated) in GXO showed that genes involved in solute transport, RNA biosynthesis, phytohormone action and cell wall organization were significantly enriched. The results obtained in this study will be helpful in understanding the influences of cross-pollination on pummelo ovary and fruit development, and can provide the basis for clarifying the underlying mechanism of cross-pollination improved fruit quality.


Assuntos
Citrus , Citrus/genética , Citrus/química , Polinização/genética , Transcriptoma , Frutas/química , Ovário , China
12.
PLoS One ; 18(7): e0288923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498904

RESUMO

As a natural gas pipeline approaches the end of its service life, the integrity of the pipeline starts failing because of corrosion or cracks. These and other defects affect the normal production and operation of the pipeline. Therefore, the identification of pipeline defects is critical to ensure the normal, safe, and efficient operation of these pipelines. In this study, a combination of adaptive adjustment based on conversion probability and Gaussian mutation strategy was used to improve the flower pollination algorithm (FPA) and enhance the search ability of traditional flower pollination. The adaptive adjustment of the transition probability effectively balances the development and exploration abilities of the algorithm. The improved flower pollination algorithm (IFPA) outperformed six classical benchmark functions that were used to verify the superiority of the improved algorithm. A Gaussian mutation strategy was integrated with IFPA to optimise the initial input weights and thresholds of the extreme learning machine (ELM), improve the balance and exploration ability of the algorithm, and increase the efficiency and accuracy for identifying pipeline defects. The proposed IFPA-ELM model for pipeline defect identification effectively overcomes the tendency of FPA to converge to local optima and that of ELM to engage in overfitting, which cause poor recognition accuracy. The identification rates of various pipeline defects by the IFPA-ELM algorithm are 97% and 96%, which are 34% and 13% higher, respectively, than those of FPA and FPA-ELM. The IFPA-ELM model may be used in the intelligent diagnosis of pipeline defects to solve practical engineering problems. Additionally, IFPA could be further optimised with respect to the time dimension, parameter settings, and general adaptation for application to complex engineering optimisation problems in various fields.


Assuntos
Gás Natural , Polinização , Algoritmos , Flores
13.
Am J Bot ; 110(6): e16199, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37318759

RESUMO

PREMISE: Many tropical plants are bat-pollinated, but these mammals often carry copious, multispecific pollen loads making bat-pollinated plants susceptible to heterospecific pollen deposition and reproductive interference. We investigated pollen transfer between sympatric bat-pollinated Burmeistera species and their response to heterospecific pollen deposition from each other. METHODS: We quantified conspecific and heterospecific pollen deposition for two populations of B. ceratocarpa, a recipient species in heterospecific pollen transfer interactions, that co-occur with different donor relatives (B. borjensis and B. glabrata). We then used a cross-pollination scheme using pollen mixtures to assess the species' responses to heterospecific pollen deposition in terms of fruit abortion and seed production. RESULTS: Burmeistera ceratocarpa received significantly more heterospecific pollen from its relatives at both sites than its own pollen was deposited on its relatives. However, heterospecific pollen deposition only affected seed production by B. borjensis and B. glabrata, but not by B. ceratocarpa, suggesting that early acting post-pollination barriers buffer the latter against reproductive interference. Crosses between sympatric and allopatric populations suggest that the study species are fully isolated in sympatry, while isolation between allopatric populations is strong but incomplete. CONCLUSIONS: We did not observe evidence of reproductive interference among our study species, because either heterospecific pollen deposition did not affect their seed production (B. ceratocarpa) or they receive heterospecific pollen only rarely (B. borjensis and B. glabrata). Frequent heterospecific pollen deposition might favor the evolution of barriers against foreign pollen (as in B. ceratocarpa) that alleviate the competitive costs of sharing low fidelity pollinators with co-occurring species.


Assuntos
Campanulaceae , Quirópteros , Animais , Quirópteros/fisiologia , Flores/fisiologia , Reprodução/fisiologia , Polinização/fisiologia , Pólen/fisiologia
14.
Viruses ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243295

RESUMO

Healthy agroecosystems are dependent on a complex web of factors and inter-species interactions. Flowers are hubs for pathogen transmission, including the horizontal or vertical transmission of plant-viruses and the horizontal transmission of bee-viruses. Pollination by the European honey bee (Apis mellifera) is critical for industrial fruit production, but bees can also vector viruses and other pathogens between individuals. Here, we utilized commercial honey bee pollination services in blueberry (Vaccinium corymbosum) farms for a metagenomics-based bee and plant virus monitoring system. Following RNA sequencing, viruses were identified by mapping reads to a reference sequence database through the bioinformatics portal Virtool. In total, 29 unique plant viral species were found at two blueberry farms in British Columbia (BC). Nine viruses were identified at one site in Ontario (ON), five of which were not identified in BC. Ilarviruses blueberry shock virus (BlShV) and prune dwarf virus (PDV) were the most frequently detected viruses in BC but absent in ON, while nepoviruses tomato ringspot virus and tobacco ringspot virus were common in ON but absent in BC. BlShV coat protein (CP) nucleotide sequences were nearly identical in all samples, while PDV CP sequences were more diverse, suggesting multiple strains of PDV circulating at this site. Ten bee-infecting viruses were identified, with black queen cell virus frequently detected in ON and BC. Area-wide bee-mediated pathogen monitoring can provide new insights into the diversity of viruses present in, and the health of, bee-pollination ecosystems. This approach can be limited by a short sampling season, biased towards pollen-transmitted viruses, and the plant material collected by bees can be very diverse. This can obscure the origin of some viruses, but bee-mediated virus monitoring can be an effective preliminary monitoring approach.


Assuntos
Mirtilos Azuis (Planta) , Animais , Abelhas , Polinização , Ecossistema , Plantas , Pólen
15.
Sci Adv ; 9(19): eadh1455, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172085

RESUMO

We assessed the effect that electromagnetic field (EMF) exerts on honeybees' pollination efficiency using field and laboratory experiments. First, we measured levels of gene and protein expression in metabolic pathways involved in stress and behavioral responses elicited by EMF. Second, we assessed the effect of EMF on honeybee behavior and seed production by the honeybee-pollinated California poppy and, lastly, by measuring the consequences of pollination failure on plants' community richness and abundance. EMF exposure exerted strong physiological stress on honeybees as shown by the enhanced expression of heat-shock proteins and genes involved in antioxidant activity and affected the expression levels of behavior-related genes. Moreover, California poppy individuals growing near EMF received fewer honeybee visits and produced fewer seeds than plants growing far from EMF. Last, we found a hump-shaped relationship between EMF and plant species richness and plant abundance. Our study provides conclusive evidence of detrimental impacts of EMF on honeybee's pollination behavior, leading to negative effects on plant community.


Assuntos
Campos Eletromagnéticos , Polinização , Humanos , Abelhas , Animais , Polinização/fisiologia , Campos Eletromagnéticos/efeitos adversos , Sementes/fisiologia , Antioxidantes , Proteínas de Choque Térmico
16.
J Sci Food Agric ; 103(11): 5578-5587, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37063086

RESUMO

BACKGROUND: The importance of pollination is recognized worldwide. This study investigates the influence of biotic pollination on the chemical composition of coffee (Coffea arabica L.) cultivated in the municipalities of Araguari and Monte Carmelo, in Minas Gerais state, Brazil. Twenty samples were analyzed, of which 10 were biotically pollinated (P) and 10 non-biotically pollinated (NP). Analyses of bioactive compounds, antioxidant capacity and centesimal composition of coffees were performed. RESULTS: The results revealed chemical differences between the P and NP samples, with significantly higher levels of the bioactive compounds caffeine, trigonelline, and chlorogenic acids in the P samples. The findings indicated that pollination of the coffee plants assisted germination and made the beans less susceptible to attack by external agents. CONCLUSION: The results demonstrated that pollination services are important mechanisms affecting the chemical composition of coffee beans. Considering that the compounds evaluated are precursors of volatile compounds in coffee, this directly affects the quality of the beans. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Coffea , Antioxidantes/química , Coffea/química , Polinização , Sementes/química , Cafeína/análise
17.
Ecol Appl ; 33(5): e2862, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096419

RESUMO

As the extent of oil palm (Elaeis guineensis) cultivation has expanded at the expense of tropical rainforests, enriching conventional large-scale oil palm plantations with native trees has been proposed as a strategy for restoring biodiversity and ecosystem function. However, how tree enrichment affects insect-mediated ecosystem functions is unknown. We investigated impacts on insect herbivory and pollination in the fourth year of a plantation-scale, long-term oil palm biodiversity enrichment experiment in Jambi, Sumatra, Indonesia. Within 48 plots systematically varying in size (25-1600 m2 ) and planted tree species richness (one to six species), we collected response data on vegetation structure, understory insect abundances, and pollinator and herbivore activity on chili plants (Capsicum annuum), which served as indicators of insect-mediated ecosystem functions. We examined the independent effects of plot size, tree species richness, and tree identity on these response variables, using the linear model for random partitions design. The experimental treatments were most associated with vegetation structure: tree identity mattered, as the species Peronema canescens strongly decreased (by approximately one standard deviation) both canopy openness and understory vegetation cover; whereas tree richness only decreased understory flower density. Further, the smallest plots had the lowest understory flower density and richness, presumably because of lower light availability and colonization rates, respectively. Enrichment influenced herbivorous insects and natural enemies in the understory to a lesser extent: both groups had higher abundances in plots with two enrichment species planted, possibly because higher associated tree mortality created more habitat, while herbivores decreased with increasing tree species richness, in line with the resource concentration hypothesis. Linking relationships in structural equation models showed that the negative association between P. canescens and understory vegetation cover was mediated through canopy openness. Likewise, canopy openness mediated increases in herbivore and pollinator insect abundances. Higher pollinator visitation increased phytometer yield, while impacts of insect herbivores on yield were not apparent. Our results demonstrate that even at an early stage, different levels of ecological restoration influence insect-mediated ecosystem functions, mainly through canopy openness. These findings suggest that maintaining some canopy gaps while enrichment plots develop may be beneficial for increasing habitat heterogeneity and insect-mediated ecosystem functions.


Assuntos
Ecossistema , Árvores , Animais , Árvores/fisiologia , Herbivoria , Polinização , Biodiversidade , Insetos/fisiologia , Plantas , Florestas
18.
New Phytol ; 239(5): 2026-2040, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36880409

RESUMO

The black nectar produced by Melianthus flowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown. A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that gives Melianthus nectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration. High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid. In vitro reactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower. Melianthus nectar contains a natural analog of iron-gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid-Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.


Assuntos
Magnoliopsida , Néctar de Plantas , Humanos , Ácido Elágico , Compostos Férricos , Tinta , Flores , Peroxidases , Polinização
19.
Plant Biol (Stuttg) ; 25(3): 403-410, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36744723

RESUMO

Invasive plants displaying disparate pollination environments and abiotic conditions in native and non-native ranges provide ideal systems to test the role of different ecological factors driving flower colour variation. We quantified corolla reflectance of the ornithophilous South American Nicotiana glauca in native populations, where plants are pollinated by hummingbirds, and in populations from two invaded regions: South Africa, where plants are pollinated by sunbirds, and the Balearic island of Mallorca, where plants reproduce by selfing. Using visual modelling we examined how corolla reflectance could be perceived by floral visitors present in each region. Through Mantel tests we assessed a possible association between flower colour and different abiotic factors. Corolla reflectance variation (mainly along medium to long wavelengths, i.e. human green-yellow to red colours) was greater among studied regions than within them. Flower colour was more similar between South America and South Africa, which share birds as pollinators. Within invaded regions, corolla reflectance variation was lower in South Africa, where populations could not be distinguished from each other by sunbirds, than in Spain, where populations could be distinguished from each other by their occasional visitors. Differences in corolla colour among populations were partially associated with differences in temperature. Our findings suggest that shifts in flower colour of N. glauca across native and invaded ranges could be shaped by changes in both pollination environment and climatic factors. This is the first study on plant invasions considering visual perception of different pollinators and abiotic drivers of flower colour variation.


Assuntos
Nicotiana , Polinização , Animais , Humanos , Cor , Plantas , Flores , Aves , Percepção
20.
Sci Rep ; 13(1): 2159, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750598

RESUMO

Three pollination methods are commonly used in the greenhouse cultivation of tomato. These are pollination using insects, artificial pollination (by manually vibrating flowers), and plant growth regulators. Insect pollination is the preferred natural technique. We propose a new pollination method, using flower classification technology with Artificial Intelligence (AI) administered by drones or robots. To pollinate tomato flowers, drones or robots must recognize and classify flowers that are ready to be pollinated. Therefore, we created an AI image classification system using a machine learning convolutional neural network (CNN). A challenge is to successfully classify flowers while the drone or robot is constantly moving. For example, when the plant is shaking due to wind or vibration caused by the drones or robots. The AI classifier was based on an image analysis algorithm for pollination flower shape. The experiment was performed in a tomato greenhouse and aimed for an accuracy rate of at least 70% for sufficient pollination. The most suitable flower shape was confirmed by the fruiting rate. Tomato fruit with the best shape were formed by this method. Although we targeted tomatoes, the AI image classification technology is adaptable for cultivating other species for a smart agricultural future.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Solanum lycopersicum , Animais , Inteligência Artificial , Insetos , Tecnologia , Flores , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA