Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.108
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776134

RESUMO

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Assuntos
Polissacarídeos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Glicosilação , Animais , Suínos , Polissacarídeos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Receptores de Superfície Celular/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Envelope Viral/metabolismo
2.
Food Res Int ; 187: 114428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763678

RESUMO

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Assuntos
Glucose , Metabolismo dos Lipídeos , Nanopartículas , Polissacarídeos , Rubus , Selênio , Humanos , Selênio/química , Células Hep G2 , Polissacarídeos/farmacologia , Polissacarídeos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Glucose/metabolismo , Nanopartículas/química , Rubus/química , Tamanho da Partícula , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731484

RESUMO

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Assuntos
Antioxidantes , Emulsificantes , Emulsões , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Emulsões/química , Emulsificantes/química , Emulsificantes/farmacologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Química Verde , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Fabaceae/química , Masculino , Tamanho da Partícula , Movimento Celular/efeitos dos fármacos
4.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731534

RESUMO

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Assuntos
Proliferação de Células , Polissacarídeos , Neoplasias Gástricas , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Peso Molecular , Caryophyllaceae/química
5.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
6.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732552

RESUMO

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Echinacea , Microbioma Gastrointestinal , NF-kappa B , Polissacarídeos , Receptor 4 Toll-Like , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Echinacea/química , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico
7.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732614

RESUMO

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Estresse Oxidativo , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Polissacarídeos/farmacologia , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células HT29 , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico
8.
Biomacromolecules ; 25(5): 3122-3130, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696355

RESUMO

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Assuntos
Dextranos , Peptídeos , Polimerização , Dextranos/química , Peptídeos/química , Peptídeos/síntese química , Polímeros/química , Polímeros/síntese química , Óxidos N-Cíclicos/química , Anidridos/química , Polissacarídeos/química , Micelas
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731895

RESUMO

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Assuntos
Agaricus , Proliferação de Células , Proteínas Filagrinas , Células HaCaT , Raios Ultravioleta , Agaricus/química , Humanos , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Citocinas/metabolismo
10.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
11.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
12.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691832

RESUMO

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Assuntos
Colite , Sulfato de Dextrana , Fator 2 Relacionado a NF-E2 , NF-kappa B , Polissacarídeos , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Sulfato de Dextrana/efeitos adversos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Células RAW 264.7 , NF-kappa B/metabolismo , NF-kappa B/genética , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Estresse Oxidativo/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mucina-2/genética , Mucina-2/metabolismo
13.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703140

RESUMO

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Assuntos
Colite Ulcerativa , Curcumina , Estruturas Metalorgânicas , Peptídeos , Curcumina/química , Curcumina/administração & dosagem , Estruturas Metalorgânicas/química , Animais , Humanos , Peptídeos/química , Peptídeos/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Camundongos , Quitosana/química , Clara de Ovo/química , Polissacarídeos/química , Masculino , Administração Oral , Sinergismo Farmacológico , gama-Ciclodextrinas/química , Portadores de Fármacos/química , Proteínas do Ovo/química
14.
Phys Chem Chem Phys ; 26(19): 14160-14170, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712976

RESUMO

Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis. Structurally unconstrained search reveals that none of the parent ions constitute a thermodynamic global minimum. In contrast, predicted collision cross sections and anharmonic IR spectra provide a good match to available experimental data which allowed us to conclude that fucose migration does not occur in these antigens. By comparing the predicted structures with those obtained for Lewis x and blood group type H2 epitopes, we demonstrate that the availability of the mobile proton and a large difference in the relative stability of the parent ions and rearrangement products constitute the prerequisites for the rearrangement reaction.


Assuntos
Antígenos do Grupo Sanguíneo de Lewis , Antígenos do Grupo Sanguíneo de Lewis/química , Epitopos/química , Termodinâmica , Polissacarídeos/química , Teoria da Densidade Funcional , Antígenos de Grupos Sanguíneos/química , Espectrofotometria Infravermelho , Oligossacarídeos/química , Trissacarídeos/química
15.
Front Immunol ; 15: 1372927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742105

RESUMO

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Assuntos
Antígenos de Helmintos , Células Dendríticas , Dinoprostona , Lectinas Tipo C , Manose , Polissacarídeos , Schistosoma mansoni , Células Th2 , Animais , Schistosoma mansoni/imunologia , Dinoprostona/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Manose/metabolismo , Manose/imunologia , Camundongos , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Óvulo/imunologia , Óvulo/metabolismo , Camundongos Endogâmicos C57BL , Ligante OX40/metabolismo
16.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695061

RESUMO

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Micro-Ondas , Polissacarídeos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Células Vero , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/síntese química , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/síntese química , Sulfatos/química , Sulfatos/farmacologia , Sulfatos/síntese química , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade
17.
Methods Mol Biol ; 2804: 117-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753144

RESUMO

Several glycoproteins are validated biomarkers of various diseases such as cancer, cardiovascular diseases, chronic alcohol abuse, or congenital disorders of glycosylation (CDG). In particular, CDG represent a group of more than 150 inherited diseases with varied symptoms affecting multiple organs. The distribution of glycans from target glycoprotein(s) can be used to extract information to help the diagnosis and possibly differentiate subtypes of CDG. Indeed, depending on the glycans and the proteins to which they are attached, glycans can play a very broad range of roles in both physical and biological properties of glycoproteins. For glycans in general, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) has become a staple. Analysis of glycans with CE-LIF requires several sample preparation steps, including release of glycans from the target glycoprotein, fluorescent labeling of glycans, and purification of labeled glycans. Here, we describe the protocol for glycan sample treatment in a microfluidic droplet system prior to CE-LIF of labeled glycans. The microfluidic droplet approach offers full automation, sample, and reagent volume reduction and elimination of contamination from external environment.


Assuntos
Biomarcadores , Eletroforese Capilar , Polissacarídeos , Eletroforese Capilar/métodos , Biomarcadores/análise , Polissacarídeos/análise , Humanos , Glicoproteínas/análise , Glicoproteínas/metabolismo , Microfluídica/métodos , Microfluídica/instrumentação , Glicosilação
18.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724195

RESUMO

Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 µg NP/0.3 µg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.


Assuntos
Antígenos de Protozoários , Interferon gama , Ativação Linfocitária , Nanopartículas , Polissacarídeos , Toxoplasma , Toxoplasmose , Humanos , Nanopartículas/química , Polissacarídeos/imunologia , Toxoplasma/imunologia , Antígenos de Protozoários/imunologia , Toxoplasmose/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Feminino , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Pessoa de Meia-Idade
19.
Life Sci ; 348: 122689, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710281

RESUMO

Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.


Assuntos
Glicoconjugados , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicosilação , Animais , Vacinas
20.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704038

RESUMO

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Assuntos
Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos Bacterianos , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polissacarídeos Bacterianos/metabolismo , Glicosídeos/metabolismo , Metilação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA