Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731895

RESUMO

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Assuntos
Agaricus , Proliferação de Células , Proteínas Filagrinas , Células HaCaT , Raios Ultravioleta , Agaricus/química , Humanos , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Citocinas/metabolismo
3.
Adv Clin Exp Med ; 33(5): 533-542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775333

RESUMO

BACKGROUND: Circulating cancer cells have characteristics of tumor self-targeting. Modified circulating tumor cells may serve as tumor-targeted cellular drugs. Tremella fuciformis-derived polysaccharide (TFP) is related to immune regulation and tumor inhibition, so could B16 cells reeducated by TFP be an effective anti-tumor drug? OBJECTIVES: To evaluate the intrinsic therapeutic potential of B16 cells exposed to TFP and clarify the therapeutic molecules or pathways altered by this process. MATERIAL AND METHODS: RNA-seq technology was used to study the effect of TFP-reeducated B16 cells on the immune and inflammatory system by placing the allograft subcutaneously in C57BL/6 mice. RESULTS: Tremella fuciformis-derived polysaccharide-reeducated B16 cells recruited leukocytes, neutrophils, dendritic cells (DCs), and mast cells into the subcutaneous region and promoted the infiltration of several cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and interleukin 1 (IL-1). Tumor necrosis factor alpha also activated Th17 lymphocytes to secrete interleukin 17 (IL-17) and interferon gamma (IFN-γ). The co-expression of IFN-γ and IL-17 was favorable for tumor immunity to shrink tumors. In short, TFP-reeducated B16 cells activated the innate and adaptive immune responses, especially Th17 cell differentiation and IFN-γ production, as well as the TNF-α signaling pathway, which re-regulated the inflammatory and immune systems. CONCLUSION: B16 cells subcutaneously exposed to TFP in mice induced an immune and inflammatory response to inhibit tumors. The study of the function of TFP-reeducated B16 cells to improve cancer immunotherapy may be of particular research interest. This approach could be an alternative and more efficient strategy to deliver cytokines and open up new possibilities for long-lasting, multi-level tumor control.


Assuntos
Melanoma Experimental , Camundongos Endogâmicos C57BL , Animais , Melanoma Experimental/imunologia , Melanoma Experimental/genética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Perfilação da Expressão Gênica/métodos , Citocinas/metabolismo , Basidiomycota/química , Linhagem Celular Tumoral , Polissacarídeos/farmacologia , Polissacarídeos Fúngicos/farmacologia , Inflamação/imunologia
4.
Int J Biol Macromol ; 267(Pt 1): 131467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599436

RESUMO

In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.


Assuntos
Flammulina , Flammulina/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569989

RESUMO

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Polissacarídeos Fúngicos , Peixe-Zebra , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Humanos , Coriolaceae/química , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Angiogênese
6.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582470

RESUMO

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Assuntos
Caspase 1 , Gasderminas , Produtos Finais de Glicação Avançada , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Micélio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Cogumelos Shiitake , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Caspase 1/metabolismo , Cogumelos Shiitake/química , Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Micélio/química , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química
7.
Int J Biol Macromol ; 268(Pt 2): 131891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677687

RESUMO

In this study, one water soluble polysaccharide (IOP1-1) with a weight average molecular weight of 6886 Da was obtained from the black crystal region of Inonotus obliquus by hot water extraction, DEAE-52 cellulose extraction and Sephadex-100 column chromatography purification. Structural analysis indicated that IOP1-1 was a glucan with a main chain composed of α-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 6)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 3)-ß-Glcp-(1→. The CCK-8 assay results showed that IOP1-1 inhibited AsPC-1 and SW1990 pancreatic cancer cell proliferation in a concentration-dependent manner. Flow cytometric analysis revealed that IOP1-1 induced cell cycle arrest in AsPC-1 and SW1990 cells. Hoechst 33342 staining and Annexin V-FITC/PI double staining analysis showed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 cells. Furthermore, western blot analysis confirmed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 pancreatic cancer cells through three pathways: the mitochondrial pathway, the death receptor pathway, and endoplasmic reticulum stress. According to these research data, IOP1-1 may be utilized as an adjuvant treatment to anticancer medications, opening up new application prospects and opportunities.


Assuntos
Apoptose , Proliferação de Células , Inonotus , Neoplasias Pancreáticas , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Inonotus/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química
8.
Int J Biol Macromol ; 266(Pt 1): 130893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493817

RESUMO

Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.


Assuntos
Polissacarídeos Fúngicos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Fungos/efeitos dos fármacos , Valor Nutritivo , Polissacarídeos/química , Polissacarídeos/farmacologia
9.
Int J Biol Macromol ; 261(Pt 2): 129878, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309394

RESUMO

In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-ß-D-Glc and 1,6-ß-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.


Assuntos
Polissacarídeos Fúngicos , Poria , Wolfiporia , Camundongos , Animais , Wolfiporia/química , Água , Polissacarídeos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Fator de Necrose Tumoral alfa , Poria/química
10.
Commun Biol ; 7(1): 222, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396285

RESUMO

Fungal polysaccharides can exert immunomodulating activity by triggering pattern recognition receptors (PRRs) on innate immune cells such as macrophages. Here, we evaluate six polysaccharides isolated from the medicinal fungus Inonotus obliquus for their ability to activate mouse and human macrophages. We identify two water-soluble polysaccharides, AcF1 and AcF3, being able to trigger several critical antitumor functions of macrophages. AcF1 and AcF3 activate macrophages to secrete nitric oxide and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Combined with interferon-γ, the fungal polysaccharides trigger high production of IL-12p70, a central cytokine for antitumor immunity, and induce macrophage-mediated inhibition of cancer cell growth in vitro and in vivo. AcF1 and AcF3 are strong agonists of the PRRs Toll-like receptor 2 (TLR2) and TLR4, and weak agonists of Dectin-1. In comparison, two prototypical particulate ß-glucans, one isolated from I. obliquus and one from Saccharomyces cerevisiae (zymosan), are agonists for Dectin-1 but not TLR2 or TLR4, and are unable to trigger anti-cancer functions of macrophages. We conclude that the water-soluble polysaccharides AcF1 and AcF3 from I. obliquus have a strong potential for cancer immunotherapy by triggering multiple PRRs and by inducing potent anti-cancer activity of macrophages.


Assuntos
Polissacarídeos Fúngicos , Inonotus , Camundongos , Humanos , Animais , Polissacarídeos Fúngicos/farmacologia , Receptor 4 Toll-Like , Lectinas Tipo C , Receptores Toll-Like , Macrófagos , Citocinas , Água
11.
Int J Biol Macromol ; 261(Pt 1): 129555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278384

RESUMO

Poria cocos is a popular medicinal food. Polysaccharides are the key component of Poria cocos, forming 70-90 % of the dry sclerotia mass. Recent studies indicate that Poria cocos polysaccharides (PCP-Cs) have multiple beneficial functions and applications. A literature search was conducted using the Web of Science Core Collection and PubMed databases. For this review, we provided an updated research progress in chemical structures, various extraction and analysis technologies, bioactivities of PCP-Cs, and insights into the directions for future research. The main polysaccharides identified in Poria cocos are water-soluble polysaccharides and acidic polysaccharides. Hot water, alkali, supercritical fluid, ultrasonic, enzyme, and deep eutectic solvent-based methods are the most common methods for PCP-Cs extraction. Technologies such as near-infrared spectroscopy, high-performance liquid chromatography, and ultraviolet-visible spectrophotometry, are commonly used to evaluate the qualities of PCP-Cs. In addition, PCP-Cs have antioxidant, immunomodulatory, neuroregulatory, anticancer, hepatoprotective, and gut microbiota regulatory properties. Future research is needed to focus on scaling up extraction, enhancing quality control, elucidating mechanisms of bioactivities, and the utilisation of PCP-Cs in food industries. Overall, Poria cocos is a good source of edible fungi polysaccharides, which can be developed into functional foods with potential health benefits.


Assuntos
Polissacarídeos Fúngicos , Poria , Wolfiporia , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Wolfiporia/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Água , Controle de Qualidade , Poria/química
12.
Int J Biol Macromol ; 257(Pt 2): 128699, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092106

RESUMO

Fungal sulfated polysaccharides (SPS) have been used in the pharmaceutical industry. In this study, sodium sulfate was employed as an elicitor to induce stress on the mycelia of Antrodia cinnamomea for the biosynthesis of SPS with high sulfate content. Sodium sulfate treatments increased the yield of SPS to 4.46 % and increased the sulfate content to 6.8 mmol/g of SPS. SPS were extracted from A. cinnamomea cultured with 500 mM sodium sulfate; these SPSs are denoted as Na500. Na500 exhibited the highest sulfate content and dose-dependent inhibitory activity against LPS-induced production of macrophage interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1ß (IL-1ß). Mechanistically, Na500 hindered the phosphorylation of transforming growth factor-ß receptor II (TGFRII), extracellular signal-regulated kinases (ERK), and protein kinase B (AKT) expression. A purified 7.79 kDa galactoglucan, Na500 F3, augmented the anti-inflammation activity by inhibiting LPS-induced TGFß release. Additionally, Na500 F3 restrained the LPS-induced phosphorylation of p-38, ERK, AKT, and TGFRII in RAW264.7 cells. Na500 F3 impeded the proliferation of lung cancer H1975 cells by inhibiting the phosphorylation of focal adhesion kinase, ERK, and Slug. The anti-inflammation and anticancer properties of Antrodia SPS contribute to its health benefits, suggesting its utility in functional foods.


Assuntos
Antrodia , Polissacarídeos Fúngicos , Polyporales , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos , Polissacarídeos/farmacologia , Sulfatos/farmacologia , Polissacarídeos Fúngicos/farmacologia , Antrodia/metabolismo
13.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630373

RESUMO

Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).


Assuntos
Polissacarídeos Fúngicos , Polyporales , Polissacarídeos Fúngicos/farmacologia , Madeira , Biotecnologia , Fungos , Peptídeo Hidrolases
14.
Front Immunol ; 13: 1091210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569950

RESUMO

Since ancient times, Tremella aurantialba has been proposed to have medicinal and food benefits. Modern phytochemistry and pharmacological studies have demonstrated that polysaccharides, the main components from T. aurantialba appear to be an all-round talent resisting a variety of chronic inflammatory diseases and protecting against different types of tumors, diabetes and cardiovascular diseases. These health and pharmacological benefits have gained much attention from scholars around the world. Further, more and more methods for polysaccharides extraction, purification, structure identification have been proposed. Significantly, the bioactivity of fungus polysaccharides is affected by many factors such as extraction and purification conditions and chemical structure. This paper provides an overview of recent advances in the isolation, structural features and biological effects of polysaccharides derived from T. aurantialba, covers recent advances in the field and outlines future research and applications of these polysaccharides.


Assuntos
Basidiomycota , Polissacarídeos Fúngicos , Basidiomycota/química , Polissacarídeos/química , Polissacarídeos Fúngicos/farmacologia , Alimentos
15.
Carbohydr Polym ; 295: 119794, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988992

RESUMO

In our ongoing process of discovering bioactive macromolecules, a homogeneous polysaccharide (FOP80-1) was first purified from Fomes officinalis. FOP80-1 with molecular weight of 4560 Da was mainly composed of →3)-d-Galp-(1→, →4)-ß-d-Manp-(1→, →6)-α-d-Glcp-(1→, →3,6)-d-Glcp-(1→, and t--d-Glcp. Besides the structure features, the anti-tumor activity and potential mechanism of FOP80-1 were also investigated. The cellular and zebrafish experiments revealed that FOP80-1 inhibited tumor proliferation, invasion, and metastasis by increasing ROS, arresting cell cycle, inducing apoptosis, and suppressing angiogenesis. Corresponding to the inhibition of angiogenesis, the surface plasmon resonance (SPR) experiments revealed that FOP80-1 had good affinity with VEGF, a crucial protein to regulate angiogenesis. Molecular docking indicated that FOP80-1 could interact with the protein VEGF.


Assuntos
Coriolaceae , Polissacarídeos Fúngicos , Animais , Polissacarídeos Fúngicos/farmacologia , Simulação de Acoplamento Molecular , Polissacarídeos/química , Polissacarídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra
16.
Carbohydr Polym ; 278: 118960, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973775

RESUMO

In our continuous exploration for bioactive polysaccharides, a novel polysaccharide FMP-2 was isolated and purified from the fruiting bodies of Morchella esculenta by alkali-assisted extraction. FMP-2 had an average molecular weight of 1.09 × 106 Da and contained mannose, glucuronic acid, glucose, galactose, and arabinose in a molar ratio of 4.10:0.22:1.00:5.75:0.44. The backbone of FMP-2 mainly consisted of 1,2-α-D-Galp, 1,6-α-D-Galp, and 1,4-α-D-Manp, with branches of 1,4,6-α-D-Manp and 1,2,6-α-D-Galp. FMP-2 can stimulate phagocytosis and promote the secretion of NO, ROS, and cytokines like IL-6, IL-1ß, and TNF-α in RAW264.7 cells ranging from 25 to 400 µg/mL. FMP-2 had great repairing effect on the immune injury of zebrafish induced by chloramphenicol. The phagocytosis ability of zebrafish macrophages and the proliferation of neutrophils can be greatly enhanced by polysaccharide FMP-2 with concentrations from 50 to 200 µg/mL. These findings suggest that FMP-2 might be used as a potential immunomodulator in the food and pharmaceutical industries.


Assuntos
Álcalis/química , Ascomicetos/química , Carpóforos/química , Polissacarídeos Fúngicos/farmacologia , Galactose/análogos & derivados , Fatores Imunológicos/farmacologia , Mananas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/química , Galactose/isolamento & purificação , Galactose/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Mananas/química , Mananas/isolamento & purificação , Camundongos , Neutrófilos/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Peixe-Zebra
17.
Carbohydr Polym ; 276: 118798, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823804

RESUMO

The medicinal fungus Sanghuangporus vaninii can be cultivated in large scale and has outstanding antitumour activity. In this study, water-soluble S. vaninii polysaccharides (SVPs) were extracted from fruiting bodies. Four polysaccharide sub-fractions (SVP-W, SVP-1, SVP-2 and SVP-3) were isolated, with molecular weights from 90.50 kDa to 261.70 kDa, and all inhibited the proliferation of non-small cell lung cancer cell lines A549, 95-D and NCI-H460, especially the acidic SVP-1. SVP-1 affected cell morphology and colony formation in NCI-H460 cells. It also promoted cell apoptosis following nuclear fluorescence staining and flow cytometry. Methylation and nuclear magnetic resonance analyses revealed that SVP-1 is a heteroglycan with the main chain →4)-ß-D-Glcp-(1 â†’ 6)-ß-D-Glcp-(1 â†’ 6)-α-D-Galp-(1 â†’ 6)-ß-D-Glcp-(1→, and the branched chain α-D-Manp-(1 â†’ 2)-α-D-Manp-(1 â†’ 3)-ß-D-Glcp-(1 â†’ 3,6)-ß-D-Glcp-(1→. The findings indicate that this natural acidic polysaccharide has potential for non-small cell lung cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Polissacarídeos Fúngicos/farmacologia , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polissacarídeos Fúngicos/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metilação , Estrutura Molecular , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884845

RESUMO

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.


Assuntos
Meios de Cultura/química , Polissacarídeos Fúngicos/análise , Selênio/química , Cogumelos Shiitake/metabolismo , Aminoácidos/análise , Sequência de Carboidratos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Humanos , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Cogumelos Shiitake/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
19.
Biomolecules ; 11(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944419

RESUMO

A common edible mushroom Lentinula edodes, is an important source of numerous biologically active substances, including polysaccharides, with immunomodulatory and antitumor properties. In the present work, the biological activity of the crude, homogenous (Se)-enriched fraction (named Se-Le-30), which has been isolated from L. edodes mycelium by a modified Chihara method towards human peripheral blood mononuclear cells (PBMCs) and peripheral granulocytes, was investigated. The Se-Le-30 fraction, an analog of lentinan, significantly inhibited the proliferation of human PBMCs stimulated with anti-CD3 antibodies or allostimulated, and down-regulated the production of tumor necrosis factor (TNF)-α by CD3+ T cells. Moreover, it was found that Se-Le-30 significantly reduced the cytotoxic activity of human natural killer (NK) cells. The results suggested the selective immunosuppressive activity of this fraction, which is non-typical for mushroom derived polysaccharides.


Assuntos
Polissacarídeos Fúngicos/farmacologia , Leucócitos Mononucleares/citologia , Selênio/química , Cogumelos Shiitake/química , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Micélio/química , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 193(Pt B): 1201-1208, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742847

RESUMO

Tongue cancer, a kind of oral cancer, is common in Southeast Asian countries because of dietary habits. However, there is no specific targeted drug that could effectively inhibit oral cancer. WSG, as a water soluble glucose-enriched polysaccharide from Ganoderma lucidum, exerts excellent pharmacological efficacy of anti-lung cancer. However, its anticancer functions and mechanisms in human tongue cancer need to be further explored. Herein, we showed that WSG dramatically reduced cell viability and colony formation of tongue cancer cells. WSG increased subG1 and G2/M populations as well as induced apoptotic responses. In parallel, WSG enhanced apoptosis-related Bax/Bcl2 ratio. Mechanistic studies showed that WSG reduced phosphorylation of EGFR and AKT. In addition, we found a synergistic effect of WSG with cisplatin in inhibition of cell viability and induction of apoptosis. WSG significantly reduced the inhibition concentration 50% (IC50) of cisplatin. More importantly, WSG ameliorated cisplatin-induced cytotoxicity in normal human oral epithelial SG cells. In conclusion, our findings provided important insights into the anti-tongue cancer effects of WSG via inhibition of EGFR/AKT axis and induction of apoptosis, which indicated that WSG could be a promising supplement for tongue cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Polissacarídeos Fúngicos , Proteínas de Neoplasias/metabolismo , Reishi/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Humanos , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA