Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830089

RESUMO

This study concerns bio-based urethane prepolymers. The relationship between the chemical structure and the thermal and processing parameters of bio-based isocyanate-terminated ether and ester-urethane prepolymers was investigated. Bio-based prepolymers were obtained with the use of bio-monomers such as bio-based diisocyanate, bio-based polyether polyol or polyester polyols. In addition to their composition, the bio-based prepolymers were different in the content of iso-cyanate groups content (ca. 6 and 8%). The process of pre-polymerization and the obtained bio-based prepolymers were analyzed by determining the content of unreacted NCO groups, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, thermogravimetry, and rheological measurements. The research conducted facilitated the evaluation of the properties and processability of urethane prepolymers based on natural components. The results indicate that a significant impact on the processability has the origin the polyol ingredient as well as the NCO content. The thermal stability of all of the prepolymers is similar. A prepolymer based on a poly-ether polyol is characterized by a lower viscosity at a lower temperature than the prepolymer based on a polyester polyol. The viscosity value depends on the NCO content.


Assuntos
Poliésteres , Polímeros , Poliuretanos , Ésteres/química , Éter/química , Peso Molecular , Poliésteres/síntese química , Poliésteres/química , Polimerização , Polímeros/síntese química , Polímeros/química , Poliuretanos/síntese química , Poliuretanos/química , Propriedades de Superfície
2.
Molecules ; 26(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34577157

RESUMO

The development of organic polymer materials for disinfection and sterilization is thought of as one of the most promising avenues to solve the growth and spread of harmful microorganisms. Here, a series of linear polyisocyanide quaternary ammonium salts (L-PQASs) with different structures and chain lengths were designed and synthesized by polymerization of phenyl isocyanide monomer containing a 4-chloro-1-butyl side chain followed by quaternary amination salinization. The resultant compounds were characterized by 1H NMR and FT-IR. The antibacterial activity of L-PQASs with different structures and chain lengths against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by determining the minimum inhibitory concentrations (MICs). The L-POcQAS-M50 has the strongest antimicrobial activity with MICs of 27 µg/mL against E. coli and 32 µg/mL against S. aureus. When the L-PQASs had the same polymerization degree, the order of the antibacterial activity of the L-PQASs was L-POcQAS-Mn > L-PBuQAS-Mn > L-PBnQAS-Mn > L-PDBQAS-Mn (linear, polyisocyanide quaternary ammonium salt, monomer, n = 50,100). However, when L-PQASs had the same side chain, the antibacterial activity reduced with the increase of the molecular weight of the main chain. These results demonstrated that the antibacterial activity of L-PQASs was dependent on the structure of the main chain and the length of the side chain. In addition, we also found that the L-POcQAS-M50 had a significant killing effect on MK-28 gastric cancer cells.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Humanos , Isocianatos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Polimerização , Poliuretanos/síntese química , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade
3.
ACS Appl Mater Interfaces ; 13(6): 7567-7579, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33538168

RESUMO

Evidence has shown that hospital surfaces are one of the major vehicles of nosocomial infections caused by drug-resistant pathogens. Smart surface coatings presenting multiple antimicrobial activity mechanisms have emerged as an advanced approach to safely prevent this type of infection. In this work, industrial waterborne polyurethane varnish formulations containing for the first time cationic polymeric biocides (SPBs) combined with photosensitizer curcumin were developed to afford contact-active and light-responsive antimicrobial surfaces. SPBs were prepared by atom transfer radical polymerization, which allows control over the polymer features that influence antimicrobial efficiency (e.g., molecular weight), while natural curcumin was employed to impart photodynamic activity to the surface. Antibacterial testing against Gram-negative Escherichia coli revealed that glass surfaces coated with the new formulations displayed photokilling effect under white-light (42 mW/cm2) irradiation within only 15 min of exposure. In addition, it was observed a combined antimicrobial effect between the two biocides (cationic SPB and curcumin), with a higher reduction in the number of viable bacteria observed for the surfaces containing cationic SPB/curcumin mixtures in comparison with the one obtained for surfaces only with polymer or without biocides. The waterborne industrial varnish formulations allowed the formation of homogeneous films without the need for addition of a coalescing agent, which can be potentially applied in diverse surface substrates to reduce bacterial transmission infections in healthcare environments.


Assuntos
Antibacterianos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Luz , Poliuretanos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Composição de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Poliuretanos/síntese química , Poliuretanos/química , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 13(8): 9702-9713, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600161

RESUMO

Cryogels are matrices that are formed in moderately frozen solutions of monomeric or polymeric precursors. They have the advantages of interconnected macropores, structural stability, and compressibility. Meanwhile, thermally induced shape memory is an attractive feature of certain functional materials. Although there have been several studies concerning shape-memory cryogels, little work has been conducted on shape-memory cryogels with biodegradability. In this study, a water-based biodegradable difunctional polyurethane with a shape-memory property was synthesized and used as the nanoparticulate crosslinker to react with chitosan to form a shape-memory cryogel. The thermally induced shape-memory mechanism was clarified using in situ wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) during the shape-memory process. The in situ WAXS showed the changes of crystallinity in the crosslinker and the cryogel during the shape fixation and recovery processes. The in situ SAXS revealed the orientation of crystallinity of the crosslinker and the cryogel as the mechanism for shape memory. The strip-shape cryogel was deformed at 50 °C to U-shape and fixed at - 20 °C, which was squeezable at 25 °C and returned to the strip-shape at 50 °C in air. The shape recovery was further tested in water at two different temperatures. The injected cryogel recovered the U-shape in 4 °C water, representing elastic recovery, and transformed to a long strip in 37 °C water, representing the switchable shape memory. Moreover, the shape-memory cryogel sheet with a large dimension (10 mm × 10 mm × 1.1 mm cryogel sheet) or with complex structures (N, T, and U shapes) could be fixed as a rod, injected through a 16 G needle, and return to its original shape in 37 °C water, all of which could not be achieved by the conventional cryogel. Human mesenchymal stem cells grown in the shape-memory cryogel scaffolds displayed long-term proliferation and chondrogenic potential. Their unique injectability and cytocompatibility suggested potential applications of shape-memory cryogels as injectable and expandable templates for tissue engineering and minimally invasive surgery.


Assuntos
Quitosana/química , Criogéis/química , Poliuretanos/química , Materiais Inteligentes/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Quitosana/síntese química , Criogéis/síntese química , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Poliésteres/síntese química , Poliésteres/química , Poliuretanos/síntese química , Porosidade , Materiais Inteligentes/síntese química , Temperatura , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011280

RESUMO

Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.


Assuntos
Nanocompostos/química , Compostos de Organossilício/química , Poliuretanos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Biotecnologia , Desenvolvimento de Medicamentos , Estrutura Molecular , Compostos de Organossilício/síntese química , Polimerização , Poliuretanos/síntese química
6.
J Mater Chem B ; 8(46): 10650-10661, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33150923

RESUMO

Black phosphorus quantum dots (BPQDs) with excellent biocompatibility, outstanding photothermal and photodynamic efficacies have attracted significant attention in cancer therapy. However, the low environmental stability and poor dispersity of BPQDs limit their practical applications. In the present work, biocompatible anionic waterborne polyurethane (WPU) nanoparticles were synthesized from castor oil to encapsulate the BPQDs. The WPU-BPQDs with a BPQDs loading capacity of about 13.8% (w/w) exhibited significantly improved dispersion and environmental stability without affecting the photothermal efficiency of BPQDs. Intriguingly, it was found that WPU encapsulation led to significant enhancement in the reactive oxygen species (ROS) generation of BPQDs, which indicated the enhanced photodynamic efficacy of the encapsulated BPQDs as compared to the bare BPQDs. The effect of solution pH on the ROS generation efficiency of BPQDs and the pH variation caused by BPQDs degradation was then investigated to explore the possible mechanism. In acidic solution, ROS generation was suppressed, while BPQDs degradation led to the acidification of the solution. Fortunately, after being encapsulated inside the WPU nanoparticles, the degradation rate of BPQDs became slower, while the acidic environment around BPQDs was favorably regulated by WPU nanoparticles having a special electrochemical double layer consisting of interior COO- and exterior NH(Et3)+, thus endowing the WPU-BPQDs-boosted production of ROS as compared to the bare BPQDs. Considering the undesired acidic tumor environment, this unique pH regulation effect of WPU-BPQDs would be beneficial for in vivo photodynamic efficacy. Both in vitro and in vivo experiments showed that WPU-BPQDs could effectively improve photodynamic therapy (PDT) and maintain outstanding photothermal therapy (PTT) effects. Together with the excellent dispersity, biocompatibility, and easy biodegradability, WPU-BPQDs can be a promising agent for PDT/PTT cancer treatments.


Assuntos
Nanopartículas/química , Fósforo/química , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Ânions , Relação Dose-Resposta a Droga , Feminino , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fósforo/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/síntese química , Poliuretanos/administração & dosagem , Poliuretanos/síntese química , Pontos Quânticos/administração & dosagem , Distribuição Aleatória , Água
7.
J Mater Chem B ; 8(36): 8305-8314, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32785384

RESUMO

Polydimethylsiloxane (PDMS) is commonly used in medical devices because it is non-toxic and stable against oxidative stress. Relatively high blood platelet adhesion and the need for chemical crosslinking through curing, however, limit its utility. In this research, a biostable PDMS-based polyurethane-urea bearing zwitterion sulfobetaine (PDMS-SB-UU) was synthesized for potential use in the fabrication or coating of blood-contacting devices, such as a conduits, artificial lungs, and microfluidic devices. The chemical structure and physical properties of synthesized PDMS-SB-UU were confirmed by 1H-nuclear magnetic resonance (1H-NMR), X-ray diffraction (XRD), and uniaxial stress-strain curve. In vitro stability of PDMS-SB-UU was confirmed against lipase and 30% H2O2 for 8 weeks, and PDMS-SB-UU demonstrated significantly higher resistance to fibrinogen adsorption and platelet deposition compared to control PDMS. Moreover, PDMS-SB-UU showed a lack of hemolysis and cytotoxicity with whole ovine blood and rat vascular smooth muscle cells (rSMCs), respectively. The PDMS-SB-UU was successfully processed into small-diameter (0.80 ± 0.05 mm) conduits by electrospinning and coated onto PDMS- and polypropylene-based blood-contacting biomaterials due to its unique physicochemical characteristics from its soft- and hard- segments.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Ácidos Sulfônicos/química , Adsorção , Animais , Plaquetas/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/toxicidade , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/toxicidade , Fibrinogênio/química , Fibrinogênio/metabolismo , Hemólise/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos/síntese química , Poliuretanos/toxicidade , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/toxicidade , Ratos , Ovinos , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/toxicidade
8.
J Mater Chem B ; 8(20): 4434-4446, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32367107

RESUMO

Currently, implanting tissue engineering scaffolds is one of the treatment methods for the regeneration of damaged tissues. The matching of the degradation rate of the scaffolds with the regeneration rate of the damaged zone is a big challenge in tissue engineering. Here, we have synthesized a series of biodegradable waterborne polyurethane emulsions and fabricated three-dimensional (3D) connected porous polyurethane scaffolds by freeze-drying. The degradation rate of the scaffolds was controlled by adjusting the relative ratio of poly-ε-caprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA) in the soft segment. The degradation rate of the scaffolds gradually accelerated with the increase of the relative proportion of PLGA. By co-culture with BV2 microglia, the scaffolds promoted the differentiation of BV2 into an anti-inflammatory M2 phenotype rather than a pro-inflammatory M1 phenotype as the proportion of PLGA increases. When the BV2 cells were stimulated with lipopolysaccharide (LPS), the scaffolds with a higher PLGA ratio showed a much stronger anti-inflammatory effect. Then, we demonstrated that the scaffolds could promote the PC12 neurons to differentiate into neurites. Therefore, we believe that the polyurethane scaffolds have a promising potential application in neural tissue repair.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Materiais Biocompatíveis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Poliuretanos/farmacologia , Alicerces Teciduais/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Humanos , Teste de Materiais , Estrutura Molecular , Células PC12 , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Poliuretanos/síntese química , Poliuretanos/química , Ratos , Propriedades de Superfície
9.
Tissue Eng Part B Rev ; 26(3): 272-283, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32089089

RESUMO

Reconstructive surgery aims to restore tissue defects by replacing them with similar autologous tissue to achieve good clinical outcomes. However, often the defect is too large or the tissue available is limited, requiring synthetic materials to restore the anatomical shape and partial function. The utilization of three-dimensional (3D) printing allows for the manufacture of implants with complex geometries and internal architecture that more closely matches the required clinical needs. Synthetic polymers offer certain advantages over natural polymers as biomedical materials due to their ability to more closely mimic the mechanical and chemical properties of the native tissue. Synthetic polymer materials such as poly(lactic acid) and acrylonitrile butadiene styrene are easily 3D printed to generate 3D objects due to their flexibility in their chemical and mechanical properties and physical form. Polyurethanes (PUs) are widely used as short- and long-term, implantable medical devices due to their good mechanical properties, biocompatibility, and hemocompatibility. This article provides an overview on the advancement of 3D printable PU-based materials for biomedical applications. A summary of the chemical structure and synthesis of PUs is provided to explain how PUs may be processed into medical devices using additive manufacturing techniques. Currently, PUs are being explored by several 3D printing approaches, including fused filament fabrication, bioplotting, and stereolithography, to fabricate complex implants with precise patterns and shapes with fine resolution. PU scaffolds using 3D printing have shown good cell viability and tissue integration in vivo. The important limitations of PU printing are identified to stimulate future research. PUs offer a biocompatible, synthetic polymeric material that can be 3D printed to manufacture implants that are tailored to meet specific anatomical, mechanical, and biological requirements for biomedical applications.


Assuntos
Tecnologia Biomédica , Poliuretanos/química , Impressão Tridimensional , Animais , Líquidos Corporais/química , Humanos , Poliuretanos/síntese química , Temperatura
10.
Int J Biol Macromol ; 145: 28-41, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874274

RESUMO

Kraft lignin (KL) and castor oil (CO) were used as polyols in the synthesis of bio-based polyurethanes (PUs) in the absence of both solvents and catalysts at room temperature with simultaneous film formation. KL was purified (PKL), and both KL and PKL were fully characterized. CO was mixed with different percentages of PKL (0%, 10%, 30%, and 50%), as well as with polymeric methyl phenyl diisocyanate. After degassing, the reaction mixture was stirred; when the medium viscosity was suitable for spreading, it was poured onto a glass plate, and the thickness was adjusted using an extender. The storage modulus (E', 25 °C) and tensile strength of the lignopolyurethane films (LignoPUCOPKL) were higher than those of the control film (PUCO). LignoPUCOPKL30 and LignoPUCOPKL50 did not break under the conditions that the other films broke under. It was noted phase segregation (rigid and flexible domains) for LignoPUCOPKL30 and LignoPUCOPKL50, and the glass transition temperature (Tg) of the flexible domains (96.2 °C and 52.3 °C, respectively) was higher than that of PUCO (8.4 °C). The formed films were also characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, contact angles, and swelling tests. To our knowledge, the approach of this study is unprecedented.


Assuntos
Óleo de Rícino/química , Lignina/química , Poliuretanos/química , Poliuretanos/síntese química , Teste de Materiais/métodos , Polímeros/química , Solventes/química , Resistência à Tração , Temperatura de Transição , Viscosidade
11.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783536

RESUMO

Nowadays, polyols are basic chemicals for the synthesis of a large range of polymers, such as polyurethane foams (PUF), which are produced with several other compounds, such as polyisocyanates. During the last decades, the oleo-chemistry has developed several routes from glycerides to polyols for the polyurethanes (PU) industry to replace mainly conventional fossil-based polyols. A large range of biobased polyols can be now obtained by epoxidation of the double bonds and ring-opening (RO) of the subsequent epoxides with different chemical moieties. In preliminary studies, the RO kinetics of an epoxidized model molecule (methyl oleate) with ethanol and acetic acid were investigated. Subsequently, polyols that were derived from unsaturated triglycerides were explored in the frame of e.g., PUF formulations. Different associations were studied with different mono-alcohols derived from epoxidized and ring-opened methyl oleate while using several ring-openers to model such systems and for comparison purposes. Kinetic studies were realized with the pseudo-first-order principle, meaning that hydroxyls are in large excess when compared to the isocyanate groups. The rate of isocyanate consumption was found to be dependent on the moiety located in ß-position of the reactive hydroxyl, following this specific order: tertiary amine >> ether > ester. The tertiary amine in ß-position of the hydroxyl tremendously increases the reactivity toward isocyanate. Consequently, a biobased reactive polyurethane catalyst was synthesized from unsaturated glycerides. These approaches offer new insights regarding the replacement of current catalysts often harmful, pungent, and volatile used in PU and PUF industry, in order to revisit this chemistry.


Assuntos
Compostos de Epóxi/química , Óleos de Plantas/química , Poliuretanos/síntese química , Catálise , Ésteres/química , Etanol/química , Ácidos Graxos/química , Isocianatos/síntese química , Isocianatos/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Ácidos Oleicos/química , Polímeros/síntese química , Polímeros/química , Poliuretanos/química , Termodinâmica , Uretana/síntese química , Uretana/química
13.
Molecules ; 24(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995774

RESUMO

In this study, environmentally friendly, self-healing waterborne polyurethanes (WPUs) were prepared based on the disulfide metathesis reaction in cystamine. The cystamine acted as a chain extender in the WPU film, which showed a high mechanical strength of 19.1 MPa. The possibility of self-healing reaction was simultaneously modeled via liquid chromatography-mass spectrometry (LC-MS). WPU was confirmed to self-heal a surface crack thermally after a scratch test, and the efficiency was measured by comparing the mechanical properties before and after a cut-and-healing test. In addition, the disulfide-thiol exchange reaction was confirmed to occur in WPU with cystamine as a chain extender and 2-mercaptoethanol. Hot press tests confirmed the possibility of reprocessing the WPU. The WPU incorporating disulfide groups showed great potential as a smart self-healing material.


Assuntos
Cistamina/química , Poliuretanos/química , Cromatografia Líquida , Dissulfetos/química , Espectrometria de Massas , Fenômenos Mecânicos , Poliuretanos/síntese química , Temperatura
14.
Acta Biomater ; 88: 301-313, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825604

RESUMO

Three-dimensional (3D) printing technology has rapidly developed as a promising technology for manufacturing tissue engineering scaffolds. Cells used in tissue engineering are subjected to the quality management and risk of contamination, while cell-free scaffolds may not have sufficient therapeutic efficacy. In this study, water-based 3D printing ink containing biodegradable polyurethane (PU), chemokine SDF-1, and Y27632 drug-embedding PU microspheres was printed at low temperature (-40 °C) to fabricate tissue engineering scaffolds with sequential drug release function. The scaffolds containing 200 ng/ml SDF-1 and 22 wt% Y27632-encapsulated microspheres (55 µg/ml Y27632 in microspheres) (abbreviated PU/SDF-1/MS_Y scaffolds) had the optimal performance. The structural design of the scaffolds allowed each of SDF-1 and Y27632 to be released sequentially in vitro and reach the effective concentration (∼100 ng/ml and 3.38 µg/ml, respectively) after the appropriate time (24 h and 62 h, respectively). Human mesenchymal stem cells (hMSCs) seeded in the scaffolds showed significant GAG deposition in 7 days. Besides, the gradual release of SDF-1 from the PU/SDF-1/MS_Y scaffolds could induce the migration of hMSCs. Implantation of the cell-free PU/SDF-1/MS_Y scaffolds in rabbit articular cartilage defects supported the potential of the scaffolds to promote cartilage regeneration. The 3D printed scaffolds with sequential releases of SDF-1 and Y27632 may have potential in cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: The clinical success of tissue engineering depends highly on the quality of externally supplied cells, while cell-free scaffolds may not have sufficient therapeutic efficacy. In this manuscript, water-based 3D printing ink containing biodegradable polyurethane (PU), chemokine SDF-1, and Y27632 drug-embedding PU microspheres was printed at low temperature to fabricate tissue engineering scaffolds with sequential drug release function. The structural design of the scaffolds allowed each of SDF-1 and Y27632 to be released sequentially in vitro. SDF-1 was released earlier from the scaffolds to promote cell migration. The drug Y27632 was released later from the microspheres into the matrix of the scaffolds to induce the chondrogenic differentiation of the attracted cells. Implantation of the cell-free PU/SDF-1/MS_Y scaffolds in rabbit articular cartilage defects supported the potential of the scaffolds to promote cartilage regeneration. We hypothesized that the cell-free scaffolds may improve the clinical applicability and convenience without the use of exogenous cells or growth factor.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/fisiologia , Poliuretanos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Água/química , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiocinas/metabolismo , Condrogênese/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Poliuretanos/síntese química , Coelhos , Regeneração/efeitos dos fármacos
15.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634633

RESUMO

Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility.


Assuntos
Óleo de Rícino/química , Quitosana/química , Poliésteres/química , Poliuretanos/síntese química , Animais , Fenômenos Biomecânicos , Varredura Diferencial de Calorimetria , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Camundongos , Poliuretanos/química , Poliuretanos/farmacologia , Células THP-1/citologia , Células THP-1/efeitos dos fármacos , Termogravimetria
16.
Macromol Biosci ; 18(9): e1800099, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29943462

RESUMO

The polarization of macrophages M0 to M1 or M2 using molecules embedded in matrices and hydrogels is an active field of study. The design of biomaterials capable of promoting polarization has become a paramount need nowadays, since in the healing process macrophages M1 and M2 modulate the inflammatory response. In this work, several immunocytochemistry and ELISA tests strongly suggest the achievement of polarization using collagen-based membranes crosslinked with tri-functionalized oligourethanes and coated with silica. Measuring the amount of TGF-ß1 secreted to culture media by macrophages growth on these materials, and quantifying the macrophage morphology, it is proved that it is possible to stimulate the anti-inflammatory pathway toward M2, having measurements with p ≤ 0.05 of statistical significance between the control and the collagen-based membranes. Furthermore, some physicochemical characteristics of the hybrid materials are tested envisaging future applications: collagenase degradation resistance, water uptake, collagen fiber diameter, and deformation resistance are increased for all the crosslinked biomaterials. It is considered that the biological and physicochemical properties make the material suitable for the modulation of the inflammatory response in the chronic wounds and promising for in vivo studies.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Inflamação/patologia , Macrófagos/metabolismo , Membranas Artificiais , Animais , Polaridade Celular , Reagentes de Ligações Cruzadas/química , Citocinas/metabolismo , Isocianatos/química , Lisina/análogos & derivados , Lisina/química , Macrófagos/patologia , Camundongos , Poliuretanos/síntese química , Poliuretanos/química , Células RAW 264.7 , Ratos Wistar , Dióxido de Silício/química
17.
Biomed Res Int ; 2018: 3240571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862262

RESUMO

The aim of this research is to synthesize polycaprolactone-based polyurethanes (PCL-based PUs) that can be further used for the fabrication of guided bone regeneration (GBR) membranes with higher tensile strength and elongation at break than collagen and PTFE membranes. The PCL-based PUs were prepared by the polymerization of polycaprolactone (PCL) diol with 1,6-hexamethylene diisocyanate (HDI) at different ratios using either polyethylene glycol (PEG) or ethylenediamine (EDA) as chain extenders. The chemical, mechanical, and thermal properties of the synthesized polymers were determined using NMR, FTIR, GPC, DSC, and tensile tester. The PCL and polyurethanes were fabricated as nanofiber membranes by electrospinning, and their mechanical properties and SEM morphology were also investigated. In vitro tests, including WST-1 assay, SEM of cells, and phalloidin cytoskeleton staining, were also performed. It was shown that electrospun membranes made of PCL and PCL-HDI-PEG (2 : 3 : 1) possessed tensile strength of 19.84 MPa and 11.72 MPa and elongation at break of 627% and 362%, respectively. These numbers are equivalent or higher than most of the commercially available collagen and PTFE membrane. As a result, these membranes may have potential for future GBR applications.


Assuntos
Regeneração Óssea , Teste de Materiais , Membranas Artificiais , Poliésteres , Poliuretanos , Animais , Linhagem Celular Tumoral , Camundongos , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia , Poliuretanos/síntese química , Poliuretanos/química , Poliuretanos/farmacologia
18.
Biomater Sci ; 6(7): 1899-1907, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29873651

RESUMO

Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.


Assuntos
Portadores de Fármacos , Nanopartículas/química , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Animais , Transporte Biológico , Cátions , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Micelas , Nanopartículas/ultraestrutura , Poliuretanos/síntese química , Compostos de Amônio Quaternário/química , Células RAW 264.7 , Eletricidade Estática , Relação Estrutura-Atividade
19.
J Biomater Sci Polym Ed ; 29(10): 1095-1108, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29478369

RESUMO

Polyurethane (PU) is a class of polymers that have been applied for tissue-engineering scaffolds. Cross-linked poly(ester urethane) (CPU), synthesized with ferric catalyst in our laboratory, was modified by silk fibroin (SF) grafting using our aminolysis and glutaradehyde crosslinking method. The physical and chemical properties of the materials were investigated by scanning electron microscope (SEM), atomic force microscope (AFM) and tensile tester. The results showed that SF grafted CPU possessed good strain and strength (4.29 ± 0.18 MPa/382.38 ± 0.71%). Its surface chemistry and roughness were fine to well support the growth of bone marrow mesenchymal stem cells (BMSC). The cells were verified to maintain the pluripotency after they were cultured in vitro for 2 weeks, which supplied us a good technology to keep cell's stemness but proliferate cell's number. These results are valuable for us to further study esophageal tissue engineering with BMSC and polyurethane materials as the components.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Células-Tronco Mesenquimais/citologia , Poliuretanos/síntese química , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Catálise , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Fibroínas/química , Poliésteres/química , Polietilenoglicóis/química , Coelhos , Propriedades de Superfície , Engenharia Tecidual/métodos
20.
Mater Sci Eng C Mater Biol Appl ; 85: 79-87, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407160

RESUMO

Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1µm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.


Assuntos
Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Poliuretanos/farmacologia , Alicerces Teciduais/química , Titânio/farmacologia , Animais , Líquidos Corporais/química , Cálcio/análise , Proliferação de Células/efeitos dos fármacos , Hidroxiácidos/síntese química , Hidroxiácidos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/ultraestrutura , Fósforo/análise , Poliuretanos/síntese química , Poliuretanos/química , Propionatos/síntese química , Propionatos/química , Ratos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA