Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.736
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(5): 74, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733375

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), dust, and wax were measured in pine needles, and PAHs were also measured in surface soil. Pearson correlation analysis was performed between the analytical values. The main compounds responsible for the increase in total PAHs were non-carcinogenic phenanthrene and fluoranthene. Therefore, the % content of carcinogenic PAHs decreased with a slope = -0.037 (r = 0.47, p < 0.01), as the total PAH concentration in pine needles increased. Correlations between individual PAHs in pine needles and surface soil were very high when only low-number ring PAHs (2R- and 3R-PAHs) were statistically analyzed and significant when only high-number ring PAHs were statistically analyzed. Low-number ring PAH mainly moves in the gas phase and diffuses into the wax layer, so it was found to be statistically significant with the wax content of pine needles. High-number ring PAHs showed a high correlation with the amount of dust in pine needles because they mainly attached to dust particles and accumulated on the surface of pine needles. The ratios of fluoranthene/pyrene and methylphenanthrene/phenanthrene for predicting the origin of atmospheric PAHs have also been proven valid for pine needles.


Assuntos
Monitoramento Ambiental , Pinus , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pinus/química , República da Coreia , Folhas de Planta/química , Fenantrenos/análise , Poluentes do Solo/análise , Poluentes Atmosféricos/análise
2.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691504

RESUMO

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Assuntos
Benzeno , Benzeno/química , Compostos Orgânicos/química , Oxirredução , Aerossóis , Volatilização , Poluentes Atmosféricos , Modelos Teóricos
3.
Lancet Planet Health ; 8(5): e297-e308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723642

RESUMO

BACKGROUND: Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS: This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS: We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION: These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING: French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Metilação de DNA , Exposição Materna , Placenta , Humanos , Feminino , Gravidez , Placenta/efeitos dos fármacos , Placenta/metabolismo , Estudos Prospectivos , Exposição Materna/efeitos adversos , Adulto , Poluição do Ar/efeitos adversos , Masculino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , França , Efeitos Tardios da Exposição Pré-Natal/genética , Resultado da Gravidez , Recém-Nascido , Adulto Jovem
4.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775298

RESUMO

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Assuntos
Abietanos , Trombose , Emissões de Veículos , Animais , Abietanos/farmacologia , Camundongos , Masculino , Emissões de Veículos/toxicidade , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Trombose/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Antioxidantes/farmacologia , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Atmosféricos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
5.
Environ Monit Assess ; 196(6): 563, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771410

RESUMO

The greenhouse gas (GHG) emissions inventories in our context result from the production of electricity from fuel oil at the Mbalmayo thermal power plant between 2016 and 2020. Our study area is located in the Central Cameroon region. The empirical method of the second level of industrialisation was applied to estimate GHG emissions and the application of the genetic algorithm-Gaussian (GA-Gaussian) coupling method was used to optimise the estimation of GHG emissions. Our work is of an experimental nature and aims to estimate the quantities of GHG produced by the Mbalmayo thermal power plant during its operation. The search for the best objective function using genetic algorithms is designed to bring us closer to the best concentration, and the Gaussian model is used to estimate the concentration level. The results obtained show that the average monthly emissions in kilograms (kg) of GHGs from the Mbalmayo thermal power plant are: 526 kg for carbon dioxide (CO2), 971.41 kg for methane (CH4) and 309.41 kg for nitrous oxide (N2O), for an average monthly production of 6058.12 kWh of energy. Evaluation of the stack height shows that increasing the stack height helps to reduce local GHG concentrations. According to the Cameroonian standards published in 2021, the limit concentrations of GHGs remain below 30 mg/m3 for CO2 and 200 µg/m3 for N2O, while for CH4 we reach the limit value of 60 µg/m3. These results will enable the authorities to take appropriate measures to reduce GHG concentrations.


Assuntos
Poluentes Atmosféricos , Algoritmos , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Centrais Elétricas , Gases de Efeito Estufa/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Camarões , Metano/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , Poluição do Ar/estatística & dados numéricos , Distribuição Normal
6.
Environ Monit Assess ; 196(6): 553, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758240

RESUMO

Incidents involving chemical storage tanks in the petrochemical industry are significant events with severe consequences. Within the petrochemical industry, EDC is a sector that produces ethylene dichloride through the reaction of chlorine and ethylene. The present research was conducted to evaluate the consequences of chlorine gas released from the EDC reactor in a petrochemical industry in southern Iran. Data regarding reactor specifications were obtained from the factory's technical office, while climatic data was acquired from the Meteorological Organization. The consequences of chlorine gas release from the reactor were assessed in four predefined scenarios using numerical calculation methods and modeling with the ALOHA software. The numerical calculation method involved thermodynamic fluid path analysis, discharge coefficient calculations, and wind speed impact analysis. The hazard radius was determined based on the ERPG1-2-3 index. Results showed that in the scenario of chlorine gas release from EDC reactors, according to the ALOHA model, an increase in wind speed from 3 to 7 m/h led to an expanded dispersion radius. At a radius of 700 m from the reactor, the maximum outdoor concentration reached 3.12 ppm, decreasing to 2.27 ppm at 800 m and further to 1.53 ppm at 1000 m. The comparison of numerical calculations and modeling using the ALOHA software indicates the desirable conformity of the results with each other. The R2 coefficient for evaluating the conformity of the results was 0.9964, indicating the desired efficiency of the model in evaluating the consequences of the release of toxic gasses from the EDC tank. The results of this research can be useful in designing the site and emergency response plan.


Assuntos
Cloro , Monitoramento Ambiental , Cloro/análise , Cloro/química , Irã (Geográfico) , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Indústria de Petróleo e Gás , Modelos Químicos
7.
Environ Int ; 187: 108714, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718674

RESUMO

BACKGROUND: Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES: This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS: A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS: Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION: This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Material Particulado , Humanos , Estudos Longitudinais , China , Masculino , Adulto , Adulto Jovem , Feminino , Pressão Sanguínea , Biomarcadores/sangue , Exposição Ambiental/estatística & dados numéricos , Rigidez Vascular/efeitos dos fármacos , Proteômica
8.
Sci Total Environ ; 932: 173038, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719055

RESUMO

Despite global concerns about metal(loid)s in atmospheric particulate matter (PM), the presence of metal(loid) resistance genes (MRGs) in PM remains unknown. Therefore, we conducted a comprehensive investigation of the metal(loid)s and associated MRGs in PMs in two seasons (summer and winter) in Xiamen, China. According to the geoaccumulation index (Igeo), most metal(loid)s, except for V and Mn, exhibited enrichment in PM, suggesting potential anthropogenic sources. By employing Positive Matrix Factorization (PMF) model, utilizing a dataset encompassing both total and bioaccessible metal(loid)s, along with backward trajectory simulations, traffic emissions were determined to be the primary potential contributor of metal(loid)s in summer, whereas coal combustion was observed to have a dominant contribution in winter. The major contributor to the carcinogenic risk of metal(loid)s in both summer and winter was predominantly attributed to coal combustion, which serves as the main source of bioaccessible Cr. Bacterial communities within PMs showed lower diversity and network complexity in summer than in winter, with Pseudomonadales being the dominant order. Abundant MRGs, including the As(III) S-adenosylmethionine methyltransferase gene (arsM), Cu(I)-translocating P-type ATPase gene (copA), Zn(II)/Cd(II)/Pb(II)-translocating P-type ATPase gene (zntA), and Zn(II)-translocating P-type ATPase gene (ziaA), were detected within the PMs. Seasonal variations were observed for the metal(loid) concentration, bacterial community structure, and MRG abundance. The bacterial community composition and MRG abundance within PMs were primarily influenced by temperature, rather than metal(loid)s. This research offers novel perspectives on the occurrence of metal(loid)s and MRGs in PMs, thereby contributing to the control of air pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , China , Metais/análise , Estações do Ano , Atmosfera/química
9.
Chemosphere ; 358: 142198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697566

RESUMO

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Assuntos
Poluentes Atmosféricos , Paládio , Poluentes Atmosféricos/análise , Paládio/química , Adsorção , Água/química , Monitoramento Ambiental/métodos , Gases/análise , Umidade , Monóxido de Carbono/análise , Nitrilas/química , Nitrilas/análise
10.
J Environ Manage ; 359: 121004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710146

RESUMO

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Assuntos
Aerossóis , Dióxido de Carbono , Isótopos de Carbono , Material Particulado , Dióxido de Carbono/análise , China , Material Particulado/análise , Aerossóis/análise , Isótopos de Carbono/análise , Carvão Mineral , Poluentes Atmosféricos/análise , Carbono/análise , Humanos , Características da Família , População Rural , Monitoramento Ambiental
11.
Sci Total Environ ; 931: 172942, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38719032

RESUMO

Biochar is increasingly used in climate-smart agriculture, yet its impact on greenhouse gas (GHG) emissions and soil carbon (C) sequestration remains poorly understood. This study examined biochar-mediated changes in soil properties and their contribution to C stabilization and GHG mitigation by evaluating four types of biochar. Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions, soil chemical and biological properties, and soil organic carbon (SOC) mineralization kinetics were monitored using greenhouse, laboratory, and modeling experiments. Three pine wood biochars pyrolyzed at 460 °C (PB-460), 500 °C (PB-500), 700 °C (PB-700), and one pine bark biochar from gasification at 760 °C (GB-760) were added into soil at 1 % w/w basis. Soils amended with biochar were used to cultivate sorghum for three months in a greenhouse, followed by three months of laboratory incubation. Data obtained from laboratory incubation was modeled using various statistical approaches. The PB-500 and PB-700 reduced cumulative N2O-N emissions by 68.5 % and 73.9 % and CO2 equivalent C emissions by 66.9 % and 72.4 %, respectively, compared to unamended control. The N2O emissions were positively associated with soil nitrate N, available P, and biochar ash content while negatively associated with SOC. The CO2 emission was negatively related to biochar C:N ratio and volatile matter content. Biochar amended soils had 49.2 % (PB-500) to 87.7 % (PB-700) greater SOC and 22.9 % (PB-700) to 48.1 % (GB-760) greater sorghum yield than the control. While PB-700 had more saprophytes than the control, the GB-760 yielded a greater yield than biochars prepared by pyrolysis. Microbial biomass C was 7.23 to 23.3 % greater in biochar amended soils than in control. The double exponential decay model best explained the dynamics of C mineralization, which was associated with initial soil nitrate N and available P positively and total fungi and protozoa biomass negatively. Biochar amendment could be a climate smart agricultural strategy. Pyrolysis pine wood biochar showed the greatest potential to reduce GHG emissions and enhance SOC storage and stability, and gasification biochar contributed more to SOC storage and increased crop yield.


Assuntos
Carbono , Carvão Vegetal , Gases de Efeito Estufa , Solo , Carvão Vegetal/química , Solo/química , Gases de Efeito Estufa/análise , Carbono/análise , Florestas , Sequestro de Carbono , Óxido Nitroso/análise , Dióxido de Carbono/análise , Agricultura/métodos , Poluentes Atmosféricos/análise
12.
J Environ Manage ; 359: 121071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718608

RESUMO

Particulate matter with an aerodynamic diameter of less than 1 µm (PM1.0) can be extremely hazardous to human health, so it is imperative to accurately estimate the spatial and temporal distribution of PM1.0 and analyze the impact of related policies on it. In this study, a stacking generalization model was trained based on aerosol optical depth (AOD) data from satellite observations, combined with related data affecting aerosol concentration such as meteorological data and geographic data. Using this model, the PM1.0 concentration distribution in China during 2016-2019 was estimated, and verified by comparison with ground-based stations. The coefficient of determination (R2) of the model is 0.94, and the root-mean-square error (RMSE) is 8.49 µg/m3, mean absolute error (MAE) is 4.10 µg/m3, proving that the model has a very high performance. Based on the model, this study analyzed the PM1.0 concentration changes during the heating period (November and December) in the regions where the "coal-to-gas" policy was implemented in China, and found that the proposed "coal-to-gas" policy did reduce the PM1.0 concentration in the implemented regions. However, the lack of natural gas due to the unreasonable deployment of the policy in the early stage caused the increase of PM1.0 concentration. This study can provide a reference for the next step of urban air pollution policy development.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , China , Poluentes Atmosféricos/análise , Carvão Mineral , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise
13.
Sci Adv ; 10(18): eadm8680, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701214

RESUMO

Gas and propane stoves emit nitrogen dioxide (NO2) pollution indoors, but the exposures of different U.S. demographic groups are unknown. We estimate NO2 exposure and health consequences using emissions and concentration measurements from >100 homes, a room-specific indoor air quality model, epidemiological risk parameters, and statistical sampling of housing characteristics and occupant behavior. Gas and propane stoves increase long-term NO2 exposure 4.0 parts per billion volume on average across the United States, 75% of the World Health Organization's exposure guideline. This increased exposure likely causes ~50,000 cases of current pediatric asthma from long-term NO2 exposure alone. Short-term NO2 exposure from typical gas stove use frequently exceeds both World Health Organization and U.S. Environmental Protection Agency benchmarks. People living in residences <800 ft2 in size incur four times more long-term NO2 exposure than people in residences >3000 ft2 in size; American Indian/Alaska Native and Black and Hispanic/Latino households incur 60 and 20% more NO2 exposure, respectively, than the national average.


Assuntos
Poluição do Ar em Ambientes Fechados , Dióxido de Nitrogênio , Propano , Dióxido de Nitrogênio/análise , Humanos , Estados Unidos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Exposição Ambiental/efeitos adversos , Habitação , Culinária , Poluentes Atmosféricos/análise
14.
Environ Geochem Health ; 46(6): 186, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695998

RESUMO

Atmospheric distribution of polycyclic aromatic hydrocarbons and associated human health risks have been studied in India. However, a comprehensive overview is not available in India, this review highlights the possible sources, and associated cancer risks in people living in different zones of India. Different databases were searched for the scientific literature on polycyclic aromatic hydrocarbons in ambient air in India. Database searches have revealed a total of 55 studies conducted at 139 locations in India in the last 14 years between 1996 and 2018. Based on varying climatic conditions in India, the available data was analysed and distributed with four zone including north, east, west/central and south zones. Comparatively higher concentrations were reported for locations in north zone, than east, west/central and south zones. The average concentrations of ∑PAHs is lower in east zone, and concentrations in north, west/central and south zones are higher by 1.67, 1.47, and 1.12 folds respectively than those in east zone. Certain molecular diagnostic ratios and correlation receptor models were used for identification of possible sources, which aided to the conclusion that both pyrogenic and petrogenic activities are the mixed sources of PAH emissions to the Indian environment. Benzo(a)pyrene toxicity equivalency for different zones is estimated and presented. Estimated Chronic daily intake (CDI) due to inhalation of PAHs and subsequently, cancer risk (CR) is found to be ranging from extremely low to low in various geographical zones of India.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Índia/epidemiologia , Poluentes Atmosféricos/análise , Humanos , Medição de Risco , Monitoramento Ambiental , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente , Atmosfera/química , Exposição Ambiental , Poluição do Ar
15.
Environ Monit Assess ; 196(6): 519, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713313

RESUMO

Mercury cycling in coastal metropolitan areas on the west coast of India becomes complex due to the combined effects of both intensive domestic anthropogenic emissions and marine air masses. The present study is based on yearlong data of continuous measurements of gaseous elemental mercury (GEM) concentration concurrent with meteorological parameters and some air pollutants at a coastal urban site in Mumbai, on the west coast of India, for the first time. The concentration of GEM was found in a range between 2.2 and 12.3 ng/m3, with a mean of 3.1 ± 1.1 ng/m3, which was significantly higher than the continental background values in the Northern Hemisphere (~ 1.5 ng/m3). Unlike particulates, GEM starts increasing post-winter to peak during the monsoon and decrease towards winter. July had the highest concentration of GEM followed by October, and a minimum in January. GEM exhibited a distinct diurnal cycle, mainly with a broad peak in the early morning, a narrow one by nightfall, and a minimum in the afternoon. The peaks and their timing suggest the origin of urban mobility and the start of local activities. A positive correlation between SO2, PM2.5, temperature, relative humidity, and GEM indicates that emissions from local industrial plants in the Mumbai coastal area. Principal component analysis (PCA) and cluster analysis (CA) confirm this fact. Monthly back trajectory analysis showed that air mass flows are predominantly from the Arabian Sea and local human activities. Assessment of human health risks by USEPA model reveals that the hazardous quotient, HQ < 1, implies negligible carcinogenic risk. GEM observations in Mumbai during the study period are below the World Health Organization's (WHO) safe limit (200 ng/m3) for long-term inhalation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Mercúrio , Índia , Poluentes Atmosféricos/análise , Mercúrio/análise , Medição de Risco , Humanos , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Material Particulado/análise , Cidades
16.
Medicine (Baltimore) ; 103(18): e38050, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701275

RESUMO

There has been a consistent and notable increase in the global prevalence of skin cutaneous melanoma (SKCM). Although genetic factors are closely associated with the occurrence and development of melanoma, the potential influence of environmental factors cannot be overlooked. The existing literature lacks a definitive consensus on the correlation between air pollution and the incidence rate of SKCM. This study seeks to investigate the causal relationship between air pollution, specifically focusing on particulate matter (PM) 2.5, PM2.5-10, PM10, and nitrogen oxides, and the risk of SKCM. A 2-sample Mendelian randomization (MR) method was applied, utilizing extensive publicly accessible genome-wide association studies summary datasets within European populations. The primary analytical method employed was the inverse variance weighted method. Supplementary methods, including the weighted median model, MR-Egger, simple model, and weighted model, were chosen to ensure robust analysis. Heterogeneity assessment was conducted using Cochran's Q test. To identify potential pleiotropy, both MR-Egger regression and the MR-PRESSO global test were employed. Additionally, a sensitivity analysis was performed using the leave-one-out method. The analysis revealed no statistically significant association between air pollution and SKCM risk, with specific findings as follows: PM2.5 (P = .485), PM2.5-10 (P = .535), PM10 (P = .136), and nitrogen oxides (P = .745). While some results exhibited heterogeneity, all findings demonstrated an absence of pleiotropy. This study did not find substantive evidence supporting a causal relationship between air pollution and the risk of SKCM within European populations. The comprehensive MR analysis, encompassing various pollutants, suggests that environmental factors such as air pollution may not be significant contributors to the development of SKCM.


Assuntos
Poluição do Ar , Melanoma Maligno Cutâneo , Melanoma , Análise da Randomização Mendeliana , Material Particulado , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Análise da Randomização Mendeliana/métodos , Melanoma/genética , Melanoma/epidemiologia , Melanoma/etiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Estudo de Associação Genômica Ampla , Europa (Continente)/epidemiologia , Fatores de Risco , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/efeitos adversos
17.
Environ Health ; 23(1): 45, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702703

RESUMO

BACKGROUND: Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample. METHODS: We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin. RESULTS: In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers. CONCLUSIONS: Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.


Assuntos
Inquéritos Nutricionais , Doença Pulmonar Obstrutiva Crônica , Compostos Orgânicos Voláteis , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Compostos Orgânicos Voláteis/urina , Masculino , Pessoa de Meia-Idade , Feminino , Estados Unidos/epidemiologia , Adulto , Idoso , Análise de Mediação , Poluentes Atmosféricos/análise , Modelos Logísticos
18.
Chemosphere ; 358: 142225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705415

RESUMO

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Clorados , Parafina , Tamanho da Partícula , Material Particulado , Parafina/análise , Poluentes Atmosféricos/análise , Humanos , Material Particulado/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Pequim , Halogenação , Gases/análise
19.
J Environ Manage ; 357: 120730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574705

RESUMO

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Medição de Risco , Indústria Manufatureira , Alcenos , China
20.
Chemosphere ; 355: 141866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565375

RESUMO

Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 µm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Carvão Vegetal , Microalgas , Compostos Orgânicos Voláteis , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído , Poluentes Atmosféricos/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA