Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.497
Filtrar
1.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696018

RESUMO

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Assuntos
Bioacumulação , Sedimentos Geológicos , Tilápia , Oligoelementos , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Medição de Risco , Sedimentos Geológicos/química , Oligoelementos/análise , Oligoelementos/metabolismo , Índia , Monitoramento Ambiental , Metais Pesados/análise , Humanos , Água Doce
2.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643575

RESUMO

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Poluentes Químicos da Água , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Água Doce/microbiologia , Estuários
3.
J Hazard Mater ; 470: 134300, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631248

RESUMO

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Assuntos
Cádmio , Percepção de Quorum , Cádmio/química , Rhizobiaceae/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
4.
J Hazard Mater ; 470: 134235, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608585

RESUMO

The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.


Assuntos
Compostos de Anilina , Biodegradação Ambiental , Ferro , Poluentes Químicos da Água , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Ferro/química , Ferro/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Purificação da Água/métodos , Bactérias/metabolismo , Nanopartículas Metálicas/química
5.
J Toxicol Environ Health A ; 87(11): 480-495, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591921

RESUMO

The toxic effects of 2, 4-dichlorophenol (2, 4-DCP) on aquatic organisms are well-established; however, the details regarding the mechanisms underlying the toxicity, especially immunotoxicity are poorly understood. Consequently, the aim of this study was to investigate the histopathologic, oxidative stress and immunotoxic effects attributed to exposure to sublethal concentrations of 2,4-DCP in the African catfish, Clarias gariepinus. Juvenile C. gariepinus were exposed to 0.4, 0.8, or 1.6 mg/L 2, 4-DCP for 28 days after which blood and head kidney were extracted for the determination of various nonspecific innate immune parameters while the liver was excised for histopathology examination and measurement of oxidative stress biomarkers. Control fish were maintained in water spiked 10 µL/L ethanol, representing the solvent control. A significant increase was noted in the activities of lactate dehydrogenase and superoxide dismutase as well as in levels of lipid peroxidation and DNA fragmentation in a dose-dependent manner, with higher adverse effects observed at the highest concentration tested (1.6 mg/L). The total white blood cells (WBC) count was significantly elevated in fish exposed to 2,4-DCP compared to control. Myeloperoxidase content was decreased significantly in fish exposed to 2,4-DCP especially at the highest concentration (1.6 mg/L) compared to controls. The respiratory burst activity did not differ markedly amongst groups. Histopathological lesions noted included edema, leucocyte infiltration, and depletion of hemopoietic tissue in the head kidney of exposed fish. There was significant upregulation in the mRNA expression of tumor necrosis factor (TNF-α) and heat shock protein 70 (HSP 70) but downregulation of major histocompatibility complex 2 (MHC 2) in exposed fish. Data demonstrated that exposure to 2,4-DCP resulted in histopathological lesions, oxidative stress, and compromised immune system in C. gariepinus.


Assuntos
Peixes-Gato , Clorofenóis , Poluentes Químicos da Água , Animais , Peixes-Gato/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos , Imunidade Inata
6.
Water Res ; 256: 121577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593605

RESUMO

Nanoplastics (NPs) in wastewaters may present a potential threat to biological nitrogen removal in constructed wetlands (CWs). Iron ions are pivotal in microbially mediated nitrogen metabolism, however, explicit evidence demonstrating the impact of NPs on nitrogen removal regulated by iron utilization and metabolism remains unclear. Here, we investigated how NPs disturb intracellular iron homeostasis, consequently interfering with the coupling mechanism between iron utilization and nitrogen metabolism in CWs. Results indicated that microorganisms affected by NPs developed a siderophore-mediated iron acquisition mechanism to compensate for iron loss. This deficiency resulted from NPs internalization limited the activity of the electron transport system and key enzymes involved in nitrogen metabolism. Microbial network analysis further suggested that NPs exposure could potentially trigger destabilization in microbial networks and impair effective microbial communication, and ultimately inhibit nitrogen metabolism. These adverse effects, accompanied by the dominance of Fe3+ over certain electron acceptors engaged in nitrogen metabolism under NPs exposure, were potentially responsible for the observed significant deterioration in nitrogen removal (decreased by 30 %). This study sheds light on the potential impact of NPs on intracellular iron utilization and offers a substantial understanding of the iron-nitrogen coupling mechanisms in CWs.


Assuntos
Ferro , Nitrogênio , Áreas Alagadas , Ferro/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Water Res ; 256: 121558, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604065

RESUMO

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Assuntos
Biodegradação Ambiental , Cádmio , Grafite , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo
8.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38650065

RESUMO

The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual polycyclic aromatic hydrocarbon (PAH) concentrations returned to near preoiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 l of oil per 15 m2 of surface freshwater), physical oil recovery reduces polycyclic aromatic hydrocarbon concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ.


Assuntos
Ecossistema , Lagos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/metabolismo , Lagos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Canadá , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/classificação , Água Doce/microbiologia
9.
Environ Pollut ; 349: 123931, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582186

RESUMO

Wastewater Treatment Plants (WWTPs) are potential sources of microplastics (MPs) in the aquatic environment. This study aimed to investigate the potential of wastewater-native microalgae consortia to remove MPs from the effluent of two different types of WWTPs as a dual-purpose solution for MPs mitigation and biomass production. For that purpose, the occurrence of MPs from two types of WWTP effluents was analysed over one year. MPs were characterized in terms of morphology (microbead, foam, granule, irregular, filament and film), colour and size. The wastewater characterisation was followed by the removal of MP loads, using native microalgae consortia, pre-adapted to the wastewater effluent. Microalgae consortia evolved naturally through four mitigation assays, adapted to seasonal conditions, such as temperature, photoperiod, and wastewater composition. MPs were present in all the effluent samples, ranging from 52 to 233 MP L-1. The characterisation of MPs indicated a predominance of white and transparent particles, with irregular and filament shapes, mainly under 500 µm in size. The µFTIR analysis revealed that 43% of the selected particles were plastic, with a prevalence of polypropylene (PP) (34%) and polyethylene terephthalate (PET) (30 %). In the mitigation experiments, substantial biomass production was achieved (maximum of 2.6 g L-1 (d.w.)), with successful removal of MPs, ranging from 31 ± 25% to 82 ± 13%. These results show that microalgae growth in wastewater effluents efficiently promotes the removal of MPs, reducing this source of contamination in the aquatic environment, while generating valuable biomass. Additionally, the strategy employed, requires minimal control of culture conditions, simplifying the integration of these systems in real-world WWTP facilities for improved wastewater management.


Assuntos
Microalgas , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Biomassa
10.
Environ Pollut ; 349: 123930, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615838

RESUMO

Microplastics, pervasive pollutants in aquatic environments, have been primarily studied for their impact on marine ecosystems. However, their effects on freshwater systems, particularly in forested phytotelmata habitats, remain understudied in Subtropical systems. This research examines the influence of varying microplastic concentrations (0.0, 200, 2,000, 20,000, and 200,000 ppm) on leaf litter breakdown of Inga vera (in bags of 10 and 0.05 mm mesh) and the naturally associated invertebrate community occurring in forested phytotelmata. The study employs an experimental design with microplastic concentration treatments in artificial microcosms (buckets with 800 mL of rainwater) arranged in an area of Atlantic Rain Forest native vegetation of Subtropical systems. The results indicate that elevated concentrations of microplastics may enhance leaf litter breakdown (6-8%), irrespective of the bag mesh, attributed to heightened decomposer activity and biofilm formation. Consequently, this contributes to increased invertebrate richness (33-37%) and greater shredder abundance (21-37%). Indicator analysis revealed that Culicidae, Stratiomyidae, Chironomidae, Empididae, Planorbidae, and Ceratopogonidae were indicative of some microplastic concentrations. These findings underscore the significance of accounting for microplastics when evaluating the taxonomic and trophic characteristics of invertebrate communities, as well as the leaf breakdown process in Subtropical systems.


Assuntos
Invertebrados , Microplásticos , Folhas de Planta , Poluentes Químicos da Água , Folhas de Planta/metabolismo , Folhas de Planta/química , Microplásticos/toxicidade , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Invertebrados/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental/métodos , Biodegradação Ambiental
11.
Chemosphere ; 357: 141854, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556181

RESUMO

This study investigates the nitrogen removal efficacy and microbial community dynamics in seawater aquaculture effluent treatment using three different substrate combinations of microscale laboratory aerated filters (MFs) - MF1 (LECA), MF2 (LECA/Fe-C), and MF3 (LECA/Pyrite). The findings indicated that the COD removal exceeded 95% across all MFs, with higher removal efficiencies in MF2 and MF3. In terms of nitrogen removal performance, MF2 exhibited the highest average nitrogen removal of 93.17%, achieving a 12.35% and 3.56% increase compared to MF1 (80.82%) and MF3 (89.61%), respectively. High-throughput sequencing analysis revealed that the Fe-C substrate significantly enhanced the diversity of the microbial community. Notably, in MF2, the salinophilic denitrifying bacterium Halomonas was significantly enriched, accounting for 42.6% of the total microbial community, which was beneficial for nitrogen removal. Moreover, an in-depth analysis of nitrogen metabolic pathways and microbial enzymes indicated that MF2 and MF3 possessed a high abundance of nitrification and denitrification enzymes, related to the high removal rates of NH4+-N and NO3--N. Therefore, the combination of LECA with iron-based materials significantly enhances the nitrogen removal efficiency from mariculture wastewater.


Assuntos
Aquicultura , Desnitrificação , Ferro , Microbiota , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Águas Residuárias/microbiologia , Nitrogênio/metabolismo , Nitrogênio/análise , Ferro/metabolismo , Eliminação de Resíduos Líquidos/métodos , Água do Mar/microbiologia , Filtração/métodos , Nitrificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
12.
Environ Sci Pollut Res Int ; 31(18): 27452-27464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512576

RESUMO

Under the present investigation, the submerged plant Potamogeton pusillus has been tested for the removal of lead (Pb) and cadmium (Cd). P. pusillus removal efficiency and accumulation capacity were examined in separated Pb and Cd solutions, at 0.5, 1.0, and 2 mg L-1, and in solutions where both metals were present at the same concentration (0.5, 1.0, and 2 mg L-1), under laboratory conditions for 3, 7, and 10 days. Also, we examined the removal efficiency and accumulation capacity when a set of plants were exposed to 0.5 mg L-1 of Pb (or Cd) and increasing concentrations (0.5, 1, and 2 mg L-1) of Cd (or Pb) for 10 days. The effect of Cd and Pb was assessed by measuring changes in the chlorophylls, carotenoids, and malondialdehyde contents. Results showed that P. pusillus could accumulate Cd and Pb from individual solutions. Roots and leaves accumulated the highest amount of Cd and Pb followed by the stems. Some phytotoxic effects were observed, especially at individual Cd exposures, but these effects were not observed in the two-metal system. The removal and accumulation of Pb by P. pusillus were significantly enhanced in the presence of Cd under certain conditions, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Pb in the presence of Cd and bioaccumulation of these heavy metals by P. pusillus.


Assuntos
Bioacumulação , Biodegradação Ambiental , Cádmio , Chumbo , Potamogetonaceae , Cádmio/metabolismo , Chumbo/metabolismo , Potamogetonaceae/metabolismo , Poluentes Químicos da Água/metabolismo
13.
Chemosphere ; 353: 141644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442774

RESUMO

Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 µm group (C) and 750 (D) µm group, 75 nm + 7.5 µm+750 µm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.


Assuntos
Chlorella vulgaris , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Microplásticos/toxicidade , Plásticos , Chlorella vulgaris/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
14.
Sci Total Environ ; 927: 172023, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547982

RESUMO

A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.


Assuntos
Desnitrificação , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Modelos Teóricos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38437996

RESUMO

Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.


Assuntos
Carbanilidas , Neoplasias , Oryzias , Poluentes Químicos da Água , Animais , Osmorregulação , Oryzias/metabolismo , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
16.
Environ Toxicol Pharmacol ; 107: 104427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527598

RESUMO

Ifosfamide is an alkylating antineoplastic drug used in chemotherapy, but it is also detected in wastewater. Here, the objectives were to (1) determine teratogenic, cardiotoxic, and mitochondrial toxicity potential of ifosfamide exposure; (2) elucidate mechanisms of toxicity; (3) characterize exposure effects on larval behavior. Survival rate, hatch rate, and morphological deformity incidence were not different amongst treatments following exposure levels up to 1000 µg/L ifosfamide over 7 days. RNA-seq reveled 231 and 93 differentially expressed transcripts in larvae exposed to 1 µg/L and 100 µg/L ifosfamide, respectively. Several gene networks related to vascular resistance, cardiovascular response, and heart rate were affected, consistent with tachycardia observed in exposed embryonic fish. Hyperactivity in larval zebrafish was observed with ifosfamide exposure, potentially associated with dopamine-related gene networks. This study improves ecological risk assessment of antineoplastics by elucidating molecular mechanisms related to ifosfamide toxicity, and to alkylating agents in general.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Ifosfamida/toxicidade , Ifosfamida/metabolismo , Frequência Cardíaca , Metabolismo Energético , Antineoplásicos/farmacologia , Larva , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
17.
J Environ Sci Health B ; 59(5): 215-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459769

RESUMO

Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 µg/L, 200 µg/L, 2000 µg/L, 20000 µg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Animais , Herbicidas/metabolismo , Larva , Praguicidas/metabolismo , Rana catesbeiana/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436777

RESUMO

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Feminino , Cobre/toxicidade , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Hormônios/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38522711

RESUMO

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Assuntos
Benzimidazóis , Carbamatos , Escoliose , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , Escoliose/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Environ Pollut ; 348: 123822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522609

RESUMO

Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Acetaminofen , Antioxidantes/metabolismo , Artemia/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA