Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.294
Filtrar
1.
Environ Geochem Health ; 46(7): 230, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849623

RESUMO

Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 µm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 µm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 µm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.


Assuntos
Chumbo , Poluentes do Solo , Medição de Risco , Humanos , Poluentes do Solo/análise , Chumbo/análise , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Disponibilidade Biológica , Tamanho da Partícula , Indústrias , Metais Pesados/análise , Criança , Adulto , Urbanização , Solo/química , Cidades
2.
Environ Geochem Health ; 46(7): 234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849608

RESUMO

The disturbance of ecological stability may take place in tropical regions due to the elevated biomass density resulting from heavy metal and other contaminant pollution. In this study, 62 valid soil samples were collected from Sanya. Source analysis of heavy metals in the area was carried out using absolute principal component-multiple linear regression receptor modelling (APCS-MLR); the comprehensive ecological risk of the study area was assessed based on pollution sources; the Monte-Carlo model was used to accurately predict the health risk of pollution sources in the study area. The results showed that: The average contents of soil heavy metals Cu, Ni and Cd in Sanya were 5.53, 6.56 and 11.66 times higher than the background values of heavy metals. The results of soil geo-accumulation index (Igeo) showed that Cr, Mo, Mn and Zn were unpolluted to moderately polluted, Cu and Ni were moderately polluted, and Cd was moderately polluted to strongly polluted. The main sources of heavy metal pollution were natural sources (57.99%), agricultural sources (38.44%) and traffic sources (3.57%). Natural and agricultural sources were jointly identified as priority control pollution sources and Cd was the priority control pollution element for soil ecological risk. Heavy metal content in Sanya did not pose a non-carcinogenic risk to the population, but there was a carcinogenic risk to children. The element Zn had a high carcinogenic risk to children, and was a priority controlling pollutant element for the risk of human health, with agricultural sources as the priority controlling pollutant source.


Assuntos
Metais Pesados , Método de Monte Carlo , Poluentes do Solo , Metais Pesados/análise , Poluentes do Solo/análise , China , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , Clima Tropical , Criança , Solo/química
3.
Environ Geochem Health ; 46(7): 227, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849675

RESUMO

Leakage accidents of buried pipelines have become increasingly common due to the prolonged service of some pipelines which have been in use for more than 150 years. Therefore, there is an urgent need for accurate prediction of pollution scope to aid in the development of emergency remediation strategies. This study investigated the distribution of a light non-aqueous phase liquid in soils containing gas and water through numerical simulations and laboratory experiments. Firstly, a three-dimensional porous medium model was established using ANSYS FLUENT, and for the first time, the distribution of gas and groundwater in soil environments was simulated in the model. Subsequently, the distribution of the three phases of diesel, gas, and water in soil was studied with different leakage velocities and it was found that the leakage velocity played a significant role in the distribution. The areas of diesel in soils at 60 min were 0.112 m2, 0.194 m2, 0.217 m2, and 0.252 m2, with corresponding volumes of 0.028 m3, 0.070 m3, 0.086 m3, and 0.106 m3, respectively, for leakage velocities of 1.3 m/s, 3.4 m/s, 4.6 m/s, and 4.9 m/s. Calculation formulas for distribution areas and volumes were also developed to aid in future prevention and control strategies under different leakage velocities. The study also compared the distribution areas and volumes of diesel in soils with and without groundwater, and it was found that distribution scopes were larger in soils containing groundwater due to capillary force. In order to validate the accuracy of the numerical simulation, laboratory experiments were conducted to study the diffusion of oil, gas, and water under different leakage velocities. The results showed good agreement between the experiments and the simulations. The research findings are of great significance for preventing soil pollution and provide a theoretical basis for developing scientifically sound soil remediation strategies.


Assuntos
Água Subterrânea , Poluentes do Solo , Solo , Água Subterrânea/química , Poluentes do Solo/análise , Solo/química , Simulação por Computador , Poluentes Químicos da Água/análise , Modelos Teóricos , Gases , Porosidade
4.
Water Environ Res ; 96(6): e11054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828755

RESUMO

The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.


Assuntos
Microplásticos , Esgotos , Poluentes do Solo , Solo , Esgotos/química , Microplásticos/análise , Poluentes do Solo/análise , Solo/química , Bibliometria , Monitoramento Ambiental
5.
Environ Monit Assess ; 196(7): 593, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829441

RESUMO

Coal power activities could cause regional fluctuations of trace elements, but the distribution information of these trace elements in arid and semi-arid areas is insufficient. In this study, the soil trace elements (As, B, Be, Cd, Co, Cr, Cu, Fe, Ga, Ge, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, and Zn) of Ningdong Coal Power Production Base in China were monitored. Results showed that the concentrations of B, Tl, Mn, Pb, Cr, K, Cu, and Co exceeded background values. The maximum risk index reached 265.66, while the trace elements posed a cancer risk to children. Combining correlation analyses (CA), principal component analysis (PCA), and positive matrix factorization (PMF) techniques, it indicated that trace elements were mainly coming from coal combustion (34.15%), livestock farming (17.44%), traffic emissions (12.42%), and natural factors (35.99%). This study reveals the sources and potential ecological risks of soil trace elements in the Ningdong Coal and Power Production Base. It provides a scientific basis for developing targeted environmental management measures and reducing human health risks.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Poluentes do Solo , Solo , Oligoelementos , China , Oligoelementos/análise , Poluentes do Solo/análise , Solo/química , Centrais Elétricas , Humanos
6.
Sci Total Environ ; 940: 173667, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823699

RESUMO

The retention and mobilization of phosphate in soils are closely associated with the adsorption of iron (hydr)oxides and root exudation of low-molecular-weight organic acids (LMWOAs). This study investigated the role of LMWOAs in phosphate mobilization under incubation and field conditions. LMWOAs-mediated iron (hydr)oxide transformation and phosphate adsorption experiments revealed that the presence of LMWOAs decreased the phosphate adsorption capacity of iron (hydr)oxides by up to ~74 % due to the competition effect, while LMWOAs-induced iron mineral transformation resulted in an approximately six-fold increase in phosphate retention by decreasing the crystallinity and increasing the surface reactivity. Root simulation in rhizobox experiments demonstrated that LMWOAs can alter the contents of different extractable phosphate species and iron components, leading to 10 % ~ 30 % decreases in available phosphate in the near root region of two tested soils. Field experiments showed that crop covering between mango tree rows promoted the exudation of LMWOAs from mango roots. In addition, crop covering increased the contents of total phosphate and available phosphate by 9.08 % ~ 61.20 % and 34.33 % ~ 147.33 % in the rhizosphere soils of mango trees, respectively. These findings bridge the microscale and field scale to understand the delicate LMWOAs-mediated balance between the retention and mobilization of phosphate on iron (hydr)oxide surface, thereby providing important implications for mitigating the low utilization efficiency of phosphate in iron-rich soils.


Assuntos
Compostos Férricos , Fosfatos , Solo , Compostos Férricos/química , Solo/química , Poluentes do Solo/análise , Adsorção , Peso Molecular
7.
Front Public Health ; 12: 1400921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873303

RESUMO

Rapid urbanization a major factor affecting heavy metal contamination on suburban agricultural soils. In order to assess the dynamic contamination of heavy metals in soil from agricultural land bordering a rapidly urbanizing area and the transfer of human health risks from contaminants in this process, 186 and 293 soil samples from agricultural land in suburban Chengdu were collected in September 2008 and September 2017, respectively. Several indicators, such as the integrated pollution index (PI) and the potential ecological risk index (RI), were employed for analyzing the heavy metal contamination levels, and the APCS-MLR receptor model were applied for analyzing the heavy metal sources. As a result, mean concentrations for five elements did not exceed the national soil pollution risk screening values in the two periods mentioned above. Nemerow's composite contamination index revealed an increase in soil contamination of arable land after 10 years of urbanization, with 3.75 and 1.02% of light and moderate sample plots, respectively, by 2017. The assessment for potential ecological risk indicated an increased level of eco-risk to high for most of the sample plots. Based on the APCS-MLR model, the origin and contribution to the five elements varied considerably between the two periods mentioned above. Among them, soil Pb changed from "industrial source" to "transportation source," soil Cr changed from "natural source" to "transportation source," and As and Hg changed from "industrial source" to "transportation source." As and Hg were associated with agricultural activities in both periods, and Cd was derived from industrial activities in both periods. The study suggests that inhalation has become a major contributor to non-cancer health risks in urbanization, unlike intake routes in previous periods, and that the increase in cancer risk is mainly due to children's consumption of agricultural products with As residues. The change in the main source of As to "transportation" also indicates a decrease in air quality during urbanization and the development of the transportation industry. This study provides a reference for the governments of rapidly urbanizing cities to formulate relevant highway and agricultural policies to safeguard the health of the people based on the current situation.


Assuntos
Agricultura , Arsênio , Cádmio , Monitoramento Ambiental , Chumbo , Mercúrio , Poluentes do Solo , Urbanização , Poluentes do Solo/análise , China , Mercúrio/análise , Humanos , Cádmio/análise , Arsênio/análise , Chumbo/análise , Medição de Risco , Metais Pesados/análise , Cromo/análise , Solo/química
8.
Environ Sci Pollut Res Int ; 31(28): 40958-40975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839739

RESUMO

Elevated metal(loid) concentrations in soil and foodstuffs is a significant global issue for many densely populated countries like Bangladesh, necessitating reliable estimation for sustainable management. Therefore, a comprehensive data synthesis from the published literature might help to provide a wholistic view of metal(loid) contamination in different areas in Bangladesh. This study provided a clearer view of metal(loid) contamination status and their associated ecological and health risks in different land use and ecosystems in Bangladesh. Comprehensive analyses were performed on data gathered from 143 published articles using multiple statistical techniques including meta-analysis. Considering the potential loading of metal(loid), the data were summarized under various groups, including coastal, rural, urban and industrial regions. Also, the concentrations of seven metal(loid)s, e.g., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), and arsenic (As) in soil, sediment, cereal, vegetable, fruit, surface water and groundwater were included. Results showed that the relative concentrations of metal(loid)s in comparison to the maximum permissible limit (MPL) were mostly less than one, although they varied significantly for locations and individual metal(loid). However, the normalized cumulative relative concentrations over the MPL for all seven metal(loid)s across different environmental samples were 4.75, 2.97, 1.51 and 2.79 for coastal, industrial, rural and urban areas, respectively, which was due to the higher concentration of Cd, Cr and Cu. Similar to the metal(loid) concentrations, the average of cumulative median non-cancer risks for all metal(loid)s was in the order of industrial (6.46) > urban (4.05) > rural (3.83) > coastal (2.41). This research outcome will provide a foundation for future research on metal(loid)s and will help in pertinent policy-making by the relevant authorities in Bangladesh.


Assuntos
Monitoramento Ambiental , Metais , Poluentes do Solo , Bangladesh , Poluentes do Solo/análise , Metais/análise , Solo/química , Metais Pesados/análise , Humanos
9.
Environ Sci Pollut Res Int ; 31(28): 41013-41024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842776

RESUMO

Severe pollution threatens the ecosystem and human health in the Yangtze River Delta (YRD) in China because of the rapid development of industry in this area. This study examines the types, distribution, concentration, and origin of fourteen typical organophosphate flame retardants (OPFRs) in agricultural soils within the YRD region to offer insights for pollutant control and policy-making. The total concentration of OPFRs (ΣOPFRs) varied between 79.19 and 699.58 µg/kg dry weight (dw), averaging at 209.61 µg/kg dw. Among the OPFRs detected, tributoxyethyl phosphate (TBEP) was identified as the main congener, followed by tri-n-butyl phosphate (TnBP), tris(2-chloroisopropyl) phosphate (TCPP), and trimethyl phosphate (TMP). Source analysis, conducted through correlation coefficients and PCA, indicated that OPFRs in agricultural soils within the YRD region mainly originate from emissions related to plastic products and transportation. The health risk exposure to ΣOPFRs in agricultural soil was considered negligible for farmers, with values below 1.24 × 10-2 and 1.76 × 10-9 for noncarcinogenic and carcinogenic risks, respectively. However, the ecological risk of ΣOPFRs in all the samples ranged from 0.08-1.08, indicating a medium to high risk level. The results offer a comprehensive understanding of OPFR pollution in agricultural soils in the YRD region and can be useful for pollution control that mitigates ecological and health risks in this region.


Assuntos
Agricultura , Monitoramento Ambiental , Retardadores de Chama , Organofosfatos , Poluentes do Solo , Solo , Retardadores de Chama/análise , China , Medição de Risco , Poluentes do Solo/análise , Organofosfatos/análise , Solo/química , Rios/química , Humanos
10.
Ecotoxicol Environ Saf ; 280: 116555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870735

RESUMO

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.


Assuntos
Cádmio , Carvão Vegetal , Helianthus , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/análise , Cádmio/toxicidade , Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Egito , Álcalis/química , Biodegradação Ambiental , Raízes de Plantas , Microbiologia do Solo
11.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878333

RESUMO

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Assuntos
Chuva Ácida , Cádmio , Nitrogênio , Populus , Rizosfera , Plântula , Microbiologia do Solo , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Populus/efeitos dos fármacos , Populus/microbiologia , Populus/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Nitrogênio/análise , Solo/química , Microbiota/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos
12.
Sci Total Environ ; 944: 173983, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876341

RESUMO

Integrated health risk assessment strategies for emerging organic pollutants and heavy metals that coexist in water/soil media are lacking. Contents of perfluoroalkyl compounds and potentially toxic elements in multiple media were determined by investigating a county where a landfill and a tungsten mine coexist. The spatial characteristics and sources of contaminants were predicted by Geostatistics-based and multivariate statistical analysis, and their comprehensive health risks were assessed. The average contents of perfluorooctane acid, perfluorooctanesulfonic acid, arsenic, and cadmium in groundwater were 3.21, 0.77, 1.69, and 0.14 µg L-1, respectively; the maximum content of cadmium in soils and rice highly reached 2.12 and 1.52 mg kg-1, respectively. In soils, the contribution of mine lag to cadmium was 99 %, and fertilizer and pesticide to arsenic was 59.4 %. While in groundwater, arsenic, cadmium and perfluoroalkyl compounds near the landfill mainly came from leachate leakage. Significant correlations were found between arsenic in groundwater and arsenic and cadmium in soils, as well as perfluoroalkyl compounds in groundwater and pH and sulfate. Based on these correlations, the geographically optimal similarity model predicted high-level arsenic in groundwater near the tungsten mine and cadmium/perfluoroalkyl compounds around the landfill. The combination of analytic network process, entropy weighting method and game theory-based trade-off method with risk assessment model can assess the comprehensive risks of multiple pollutants. Using this approach, a high health-risk zone located around the landfill, which was mainly attributed to the presence of arsenic, cadmium and perfluorooctanesulfonic acid, was found. Overall, perfluoroalkyl compounds in groundwater altered the spatial pattern of health risks in an arsenic­cadmium contaminated area.


Assuntos
Arsênio , Cádmio , Monitoramento Ambiental , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Arsênio/análise , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Ácidos Alcanossulfônicos/análise , Mineração , China
13.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844320

RESUMO

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Assuntos
Arsênio , Cádmio , Poluentes do Solo , Solo , Cádmio/química , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Arsênio/análise , Arsênio/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Temperatura Alta
14.
J Environ Sci (China) ; 145: 88-96, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844326

RESUMO

Conventionally, soil cadmium (Cd) measurements in the laboratory are expensive and time-consuming, involving complex processes of sample preparation and chemical analysis. This study aimed to identify the feasibility of using sensor data of visible near-infrared reflectance (Vis-NIR) spectroscopy and portable X-ray fluorescence spectrometry (PXRF) to estimate regional soil Cd concentration in a time- and cost-saving manner. The sensor data of Vis-NIR and PXRF, and Cd concentrations of 128 surface soils from Yunnan Province, China, were measured. Outer-product analysis (OPA) was used for synthesizing the sensor data and Granger-Ramanathan averaging (GRA) was applied to fuse the model results. Artificial neural network (ANN) models were built using Vis-NIR data, PXRF data, and OPA data, respectively. Results showed that: (1) ANN model based on PXRF data performed better than that based on Vis-NIR data for soil Cd estimation; (2) Fusion methods of both OPA and GRA had higher predictive power (R2) = 0.89, ratios of performance to interquartile range (RPIQ) = 4.14, and lower root mean squared error (RMSE) = 0.06, in ANN model based on OPA fusion; R2 = 0.88, RMSE = 0.06, and RPIQ = 3.53 in GRA model) than those based on either Vis-NIR data or PXRF data. In conclusion, there exists a great potential for the combination of OPA fusion and ANN to estimate soil Cd concentration rapidly and accurately.


Assuntos
Cádmio , Monitoramento Ambiental , Poluentes do Solo , Solo , Espectroscopia de Luz Próxima ao Infravermelho , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , China , Monitoramento Ambiental/métodos , Espectrometria por Raios X/métodos , Redes Neurais de Computação , Estudos de Viabilidade
15.
Asian Pac J Cancer Prev ; 25(6): 1987-1995, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918660

RESUMO

OBJECTIVE: The purpose of this study was to investigate the relationship of soil pollution factors such as heavy metal ions with the incidence of cancer in the Kyzylorda region of Kazakhstan. METHODS: Concentrations of heavy metal ions in the soils of different sites of Kyzylorda region, Kazakhstan, were sampled and correlated with incidence of cancer in 2021. RESULTS: Chromium content in the soil exceeded maximum permissible concentration (MPC) in the samples for all sites except Kazaly and Shieli, and the highest excess of 2.8 MPC was found in Terenozek. Content of copper, lead, and cobalt ions was also increased and varied in the range 1.9-15.4, 1.2-4, and 1.2-2.44 MPC, respectively. In addition, lung cancer incidence was statistically significantly correlated with soil concentration to MPC ratio of copper, cobalt, and lead; colorectal cancer was correlated with soil concentration of chromium. Cases of invasive cancer and mutations were recorded Terenozek and Kyzylorda areas. CONCLUSION: The higher the soil concentration correlate with higher cancer incidence in Kyzylorda region, Kazakhstan.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cazaquistão/epidemiologia , Metais Pesados/análise , Incidência , Poluentes do Solo/análise , Neoplasias/epidemiologia , Solo/química , Masculino , Feminino , Prognóstico , Seguimentos
16.
Ecotoxicol Environ Saf ; 280: 116509, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833979

RESUMO

Cadmium, as a typical heavy metal, has the potential to induce soil pollution and threaten human health through the soil-plant-human pathway. The conventional evaluation method based on the total content in soil cannot accurately represent the content migrated from the food chain to plants and the human body. Previous studies focused on the process of plant enrichment of heavy metals in soil, and very few studies directly predicted human exposure or risk through the labile state of Cd in soil. Hence, a relatively accurate and convenient prediction model of Cd release and translocation in the soil-rice-human system was developed. This model utilizes available Cd and soil parameters to predict the bioavailability of Cd in soil, as well as the in vitro bioaccessibility of Cd in cooked rice. The bioavailability of Cd was determined by the Diffusive Gradients in Thin-films technology and BCR sequential extraction procedure, offering in-situ quantification, which presents a significant advantage over traditional monitoring methods and aligns closely with the actual uptake of heavy metals by plants. The experimental results show that the prediction model based on the concentration of heavy metal forms measured by BCR sequential extraction procedure and diffusive gradients in thin-films technique can accurately predict the Cd uptake in rice grains, gastric and gastrointestinal phase (R2=0.712, 0.600 and 0.629). This model accurately predicts Cd bioavailability and bioaccessibility across the soil-rice-human pathway, informing actual human Cd intake, offering scientific support for developing more effective risk assessment methods.


Assuntos
Disponibilidade Biológica , Cádmio , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Humanos , Solo/química , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , Metais Pesados/metabolismo
17.
Sci Rep ; 14(1): 13327, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858445

RESUMO

This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.


Assuntos
Atrazina , Biomassa , Diurona , Herbicidas , Oryza , Solo , Atrazina/análise , Oryza/química , Herbicidas/análise , Solo/química , Diurona/análise , Poluentes do Solo/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
18.
Chemosphere ; 361: 142509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830466

RESUMO

The significant increase in cadmium (Cd) and lead (Pb) pollution in agricultural soil has greatly heightened environmental contamination issues and the risk of human diseases. However, the mechanisms underlying the transformation of Cd and Pb in soil as well as the influencing factors during their accumulation in crop grains remain unclear. Based on the analysis of the distribution trend of Cd and Pb in soil during the growth and development stages of wheat (tillering, filling, and maturity) in alkaline heavy metal-polluted farmland in northern China, this study investigated the response mechanism of soil heavy metal form transformation to soil physicochemical properties, and elucidated the main determining periods and influencing factors for Cd and Pb enrichment in wheat grains. The results showed that an increase in CEC and SOM levels, along with a decrease in pH level, contributed to enhancing the bioavailability of Cd in the soil. This effect was particularly evident during the tillering stage and grain filling stage of wheat. Nevertheless, the effects of soil physicochemical properties on bioavailable Pb was opposite to that on bioavailable Cd. The enrichment of Cd and Pb in grain was significantly influenced by soil pH (r = -0.786, p < 0.01), SOM (r = 0.807, p < 0.01), K (r = -0.730, p < 0.01), AK (r = 0.474, p = 0.019), and AP (r = -0.487, p = 0.016). The reducible form of Cd in soil during the wheat tillering stage was identified as the primary factor contributing to the accumulation of Cd and Pb in wheat grains, with a significant contribution rate of 84.5%. This study provides a greater scientific evidence for the management and risk control of heavy metal pollution in alkaline farmland.


Assuntos
Cádmio , Chumbo , Poluentes do Solo , Solo , Triticum , Triticum/metabolismo , Triticum/química , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Chumbo/metabolismo , Chumbo/análise , Solo/química , China , Metais Pesados/análise , Metais Pesados/metabolismo , Concentração de Íons de Hidrogênio , Agricultura , Grão Comestível/química , Grão Comestível/metabolismo , Monitoramento Ambiental
19.
Chemosphere ; 361: 142520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834092

RESUMO

Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 µm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.


Assuntos
Compostagem , Lactuca , Microplásticos , Poluentes do Solo , Microplásticos/análise , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Monitoramento Ambiental , Polímeros/análise , Resíduos Sólidos/análise , Polietileno , Fertilizantes/análise , Polipropilenos
20.
Huan Jing Ke Xue ; 45(6): 3480-3492, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897768

RESUMO

Site contamination has caused serious harm to human health and the ecological environment, so understanding its spatial and temporal distribution patterns is the basis for contamination assessment and site remediation. For this reason, this study analyzed the spatial-temporal distribution patterns of organic pollutants and their driving factors in the Yangtze River Delta based on site sampling data using the optimal-scale geographical detector. The analysis results showed that:① There was a significant scale effect in the spatial distribution of organic pollutants in the Yangtze River Delta, and its optimal geographic detection scale grid was 8 000 meters. ② The main control factor of the spatial distribution of pollutants in the Yangtze River Delta originated mostly from the biological field, followed by the chemical field. ③ At the depth of 0-20 cm of soil, the explanatory power of sucrase content, urease content, microbial nitrogen amount, total nitrogen content, and cation exchange amount were stronger for the spatial distribution of organic pollutants. At the soil depth of 20-40 cm, the factors with stronger explanatory power on the spatial distribution of organic pollutants were soil moisture, population, and total nitrogen content. With the deepening of soil depth, the explanatory power of the factors of the hydrodynamic field increased. ④ Population, total nitrogen content, and polyphenol oxidase content had stronger explanatory power for the spatial distribution of organic pollutants in the spring. The spatial distribution of organic pollutants was more complex in autumn, and the factors showed stronger enhanced-nonlinear and enhanced-bi phenomena.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos , Rios , Análise Espaço-Temporal , Poluentes Químicos da Água , China , Rios/química , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA