Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.473
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728338

RESUMO

The objective of this study is to determine the possible association between exposure to air pollution and the risk of death from cancer during childhood in upper northern Thailand. Data were collected on children aged 0-15 years old diagnosed with cancer between January 2003 and December 2018 from the Chiang Mai Cancer Registry. Survival rates were determined by using Kaplan-Meier curves. Cox proportional hazard models were used to investigate associations of potential risk factors with the time-varying air pollution level on the risk of death. Of the 540 children with hematologic cancer, 199 died from any cause (overall mortality rate = 5.3 per 100 Person-Years of Follow-Up (PYFU); 95%CI = 4.6-6.0). Those aged less than one year old (adjusted hazard ratio [aHR] = 2.07; 95%CI = 1.25-3.45) or ten years old or more (aHR = 1.41; 95%CI = 1.04-1.91) at the time of diagnosis had a higher risk of death than those aged one to ten years old. Those diagnosed between 2003 and 2013 had an increased risk of death (aHR = 1.65; 95%CI = 1.13-2.42). Of the 499 children with solid tumors, 214 died from any cause (5.9 per 100 PYFU; 95%CI = 5.1-6.7). Only the cancer stage remained in the final model, with the metastatic cancer stage (HR = 2.26; 95%CI = 1.60-3.21) and the regional cancer stage (HR = 1.53; 95%CI = 1.07-2.19) both associated with an increased risk of death. No association was found between air pollution exposure and all-cause mortality for either type of cancer. A larger-scale analytical study might uncover such relationships.


Assuntos
Poluição do Ar , Neoplasias , Humanos , Tailândia/epidemiologia , Criança , Pré-Escolar , Lactente , Masculino , Feminino , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Adolescente , Neoplasias/mortalidade , Neoplasias/epidemiologia , Recém-Nascido , Fatores de Risco , Sistema de Registros , Exposição Ambiental/efeitos adversos , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Estimativa de Kaplan-Meier
2.
Lancet Planet Health ; 8(5): e297-e308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723642

RESUMO

BACKGROUND: Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS: This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS: We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION: These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING: French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Metilação de DNA , Exposição Materna , Placenta , Humanos , Feminino , Gravidez , Placenta/efeitos dos fármacos , Placenta/metabolismo , Estudos Prospectivos , Exposição Materna/efeitos adversos , Adulto , Poluição do Ar/efeitos adversos , Masculino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , França , Efeitos Tardios da Exposição Pré-Natal/genética , Resultado da Gravidez , Recém-Nascido , Adulto Jovem
3.
Front Public Health ; 12: 1344865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774048

RESUMO

Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors.


Assuntos
Poluição do Ar , Inteligência Artificial , Neoplasias do Sistema Respiratório , Humanos , Itália/epidemiologia , Poluição do Ar/efeitos adversos , Neoplasias do Sistema Respiratório/mortalidade , Fatores de Risco , Aprendizado de Máquina , Exposição Ambiental/efeitos adversos
4.
Medicine (Baltimore) ; 103(18): e38050, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701275

RESUMO

There has been a consistent and notable increase in the global prevalence of skin cutaneous melanoma (SKCM). Although genetic factors are closely associated with the occurrence and development of melanoma, the potential influence of environmental factors cannot be overlooked. The existing literature lacks a definitive consensus on the correlation between air pollution and the incidence rate of SKCM. This study seeks to investigate the causal relationship between air pollution, specifically focusing on particulate matter (PM) 2.5, PM2.5-10, PM10, and nitrogen oxides, and the risk of SKCM. A 2-sample Mendelian randomization (MR) method was applied, utilizing extensive publicly accessible genome-wide association studies summary datasets within European populations. The primary analytical method employed was the inverse variance weighted method. Supplementary methods, including the weighted median model, MR-Egger, simple model, and weighted model, were chosen to ensure robust analysis. Heterogeneity assessment was conducted using Cochran's Q test. To identify potential pleiotropy, both MR-Egger regression and the MR-PRESSO global test were employed. Additionally, a sensitivity analysis was performed using the leave-one-out method. The analysis revealed no statistically significant association between air pollution and SKCM risk, with specific findings as follows: PM2.5 (P = .485), PM2.5-10 (P = .535), PM10 (P = .136), and nitrogen oxides (P = .745). While some results exhibited heterogeneity, all findings demonstrated an absence of pleiotropy. This study did not find substantive evidence supporting a causal relationship between air pollution and the risk of SKCM within European populations. The comprehensive MR analysis, encompassing various pollutants, suggests that environmental factors such as air pollution may not be significant contributors to the development of SKCM.


Assuntos
Poluição do Ar , Melanoma Maligno Cutâneo , Melanoma , Análise da Randomização Mendeliana , Material Particulado , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Análise da Randomização Mendeliana/métodos , Melanoma/genética , Melanoma/epidemiologia , Melanoma/etiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Estudo de Associação Genômica Ampla , Europa (Continente)/epidemiologia , Fatores de Risco , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/efeitos adversos
5.
J Korean Med Sci ; 39(13): e131, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599601

RESUMO

BACKGROUND: Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS: This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS: Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 µg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 µg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION: Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Prospectivos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , República da Coreia/epidemiologia , China
6.
J Hazard Mater ; 471: 134315, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678703

RESUMO

Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [ß (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.


Assuntos
Cromossomos Humanos Y , Material Particulado , Masculino , Humanos , Material Particulado/toxicidade , Pessoa de Meia-Idade , Idoso , Estudos de Coortes , Mosaicismo , Poluentes Atmosféricos/toxicidade , China , Exposição Ambiental/efeitos adversos , Fumar , Herança Multifatorial , Poluição do Ar/efeitos adversos , Fatores de Risco , Estratificação de Risco Genético
8.
Environ Health ; 23(1): 35, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575976

RESUMO

BACKGROUND: An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults. METHODS: Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants' residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education. RESULTS: Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 µg/m3), PM10 (IQR: 3.35 µg/m3) and PM2.5 (IQR: 2.7 µg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants. CONCLUSIONS: The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Idoso , Humanos , Envelhecimento , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cognição , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estudos Longitudinais , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Inglaterra
9.
Front Endocrinol (Lausanne) ; 15: 1370489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681766

RESUMO

Objective: Diabetes mellitus is the leading cause of death worldwide, and multiple risk factors associated with diabetes mortality. Methods: Employing spatial statistics, we characterized the spatial distribution and patterns of diabetes mortality, and revealed the spatial relationship between diabetes mortality and 11 socioeconomic and environmental risk factors at the country level, from 1990 to 2019. Results: Globally, significantly high rates of diabetes mortality were primarily clustered in countries with limited land areas or located on islands, such as Fiji, Kiribati, Eswatini, and Trinidad and Tobago. Countries with weaker economic independence are more likely to have higher diabetes mortality rates. In addition, the impact of socioeconomic and environmental factors was significant at the country level, involving health expenditure, number of physicians, household and ambient air pollution, smoking, and alcohol consumption. Notably, the spatial relationship between diabetes mortality and ambient air pollution, as well as alcohol consumption, showed negative correlations. Countries with high diabetes mortality rates generally had lower levels of ambient air pollution and alcohol consumption. Conclusion: The study highlights the spatial clustering of diabetes mortality and its substantial variation. While many risk factors can influence diabetes mortality, it's also essential to consider the level of these factors at the country level. Tailoring appropriate interventions based on specific national circumstances holds the potential to more effectively mitigate the burden of diabetes mortality.


Assuntos
Diabetes Mellitus , Saúde Global , Análise Espacial , Humanos , Diabetes Mellitus/mortalidade , Diabetes Mellitus/epidemiologia , Fatores de Risco , Fatores Socioeconômicos , Mortalidade/tendências , Poluição do Ar/efeitos adversos
10.
EBioMedicine ; 103: 105126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631091

RESUMO

BACKGROUND: This study investigates the associations between air pollution and colorectal cancer (CRC) risk and survival from an epigenomic perspective. METHODS: Using a newly developed Air Pollutants Exposure Score (APES), we utilized a prospective cohort study (UK Biobank) to investigate the associations of individual and combined air pollution exposures with CRC incidence and survival, followed by an up-to-date systematic review with meta-analysis to verify the associations. In epigenetic two-sample Mendelian randomization analyses, we examine the associations between genetically predicted DNA methylation related to air pollution and CRC risk. Further genetic colocalization and gene-environment interaction analyses provided different insights to disentangle pathogenic effects of air pollution via epigenetic modification. FINDINGS: During a median 12.97-year follow-up, 5767 incident CRC cases among 428,632 participants free of baseline CRC and 533 deaths in 2401 patients with CRC were documented in the UK Biobank. A higher APES score was associated with an increased CRC risk (HR, 1.03, 95% CI = 1.01-1.06; P = 0.016) and poorer survival (HR, 1.13, 95% CI = 1.03-1.23; P = 0.010), particularly among participants with insufficient physical activity and ever smokers (Pinteraction > 0.05). A subsequent meta-analysis of seven observational studies, including UK Biobank data, corroborated the association between PM2.5 exposure (per 10 µg/m3 increment) and elevated CRC risk (RR,1.42, 95% CI = 1.12-1.79; P = 0.004; I2 = 90.8%). Genetically predicted methylation at PM2.5-related CpG site cg13835894 near TMBIM1/PNKD and cg16235962 near CXCR5, and NO2-related cg16947394 near TMEM110 were associated with an increased CRC risk. Gene-environment interaction analysis confirmed the epigenetic modification of aforementioned CpG sites with CRC risk and survival. INTERPRETATION: Our study suggests the association between air pollution and CRC incidence and survival, underscoring the possible modifying roles of epigenomic factors. Methylation may partly mediate pathogenic effects of air pollution on CRC, with annotation to epigenetic alterations in protein-coding genes TMBIM1/PNKD, CXCR5 and TMEM110. FUNDING: Xue Li is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001), the National Nature Science Foundation of China (No. 82204019) and Healthy Zhejiang One Million People Cohort (K-20230085). ET is supported by a Cancer Research UK Career Development Fellowship (C31250/A22804). MGD is supported by the MRC Human Genetics Unit Centre Grant (U127527198).


Assuntos
Poluição do Ar , Neoplasias Colorretais , Metilação de DNA , Epigênese Genética , Análise da Randomização Mendeliana , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/etiologia , Poluição do Ar/efeitos adversos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Fatores de Risco , Interação Gene-Ambiente , Poluentes Atmosféricos/efeitos adversos , Idoso , Incidência , Epigenômica/métodos
11.
Environ Health ; 23(1): 43, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654228

RESUMO

BACKGROUND: Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS: Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS: We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS: One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Registros Eletrônicos de Saúde , Exposição Ambiental , Taxa de Filtração Glomerular , Dióxido de Nitrogênio , Ozônio , Material Particulado , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/efeitos adversos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Ozônio/análise , Ozônio/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , North Carolina/epidemiologia , Adulto , Idoso de 80 Anos ou mais , Creatinina/sangue
12.
Front Public Health ; 12: 1247149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425468

RESUMO

Background: Air pollution poses a major threat to human health by causing various illnesses, such as cardiovascular diseases. While plenty of research indicates a correlation between air pollution and hypertension, a definitive answer has yet to be found. Methods: Our analyses were performed using the Genome-wide association study (GWAS) of exposure to air pollutants from UKB (PM2.5, PM10, NO2, and NOX; n = 423,796 to 456,380), essential hypertension from FinnGen (42,857 cases and 162,837 controls) and from UKB (54,358 cases and 408,652 controls) as a validated cohort. Univariable and multivariable Mendelian randomization (MR) were conducted to investigate the causal relationship between air pollutants and essential hypertension. Body mass index (BMI), alcohol intake frequency, and the number of cigarettes previously smoked daily were included in multivariable MRs (MVMRs) as potential mediators/confounders. Results: Our findings suggested that higher levels of both PM2.5 (OR [95%CI] per 1 SD increase in predicted exposure = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) and PM10 (OR [95%CI] = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) were linked to an increased risk for essential hypertension. Even though we used MVMR to adjust for the impacts of smoking and drinking on the relationship between PM2.5 exposure and essential hypertension risks, our findings suggested that although there was a direct positive connection between them, it is not present after adjusting BMI (OR [95%CI] = 1.05 [0.87-1.27], p = 6.17E-01). Based on the study, higher exposure to PM2.5 and PM10 increases the chances of developing essential hypertension, and this influence could occur through mediation by BMI. Conclusion: Exposure to both PM2.5 and PM10 is thought to have a causal relationship with essential hypertension. Those impacted by substantial levels of air pollution require more significant consideration for their cardiovascular health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Hipertensão Essencial/induzido quimicamente
13.
Environ Pollut ; 348: 123830, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518972

RESUMO

Atmospheric pollution is a serious problem in many countries, including India, and it is generally considered as an urban issue. To fill the knowledge gap about particulate pollution and its adverse health effects in rural India for well-informed region-specific policy interventions, we present new insights on the rural pollution of India in terms of PM2.5. Here, we analyse PM2.5 pollution and its associated health burden in rural India using satellite and reanalyses data for the period 2000-2019. We observe a gradual and consistent rise of atmospheric pollution in rural areas of India. The highest PM2.5 levels are observed in Indo-Gangetic Plain (IGP) during winter and post-monsoon seasons (107.0 ± 17.0 and 91.0 ± 21.7 µg/m3, respectively). A dipole reversal in seasonal trends between winter and post-monsoon seasons is found for black carbon (BC) and organic carbon (OC) in the rural IGP. The rural North West India (NWI) experiences elevated PM2.5 concentrations due to dust storms, while the rural hilly region (HR) in the Himalaya remains the least polluted region in India. The highest PM2.5 associated cardiopulmonary mortality in 2019 is observed in the rural IGP districts (1000-5100), whereas the highest mortality due to lung cancer at district level accounts for 10-60 deaths. The highest mortality attributed to PM2.5 is observed in districts of Uttar Pradesh, Bihar, West Bengal, Punjab, Haryana and Rajasthan. The priority-wise segregation of states as per World Health Organisation (WHO) Interim targets (ITs), as assessed in this study, might be helpful in implementation and development of policies in phases. We, therefore, present the first detailed study on the PM2.5 pollution in rural India, and provide valuable insights on its distribution, variability, sources and associated mortality, and emphasize the need for addressing this issue to protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Índia/epidemiologia , Monitoramento Ambiental , Aerossóis e Gotículas Respiratórios , Estações do Ano , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono/análise
14.
Front Public Health ; 12: 1359567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500735

RESUMO

With the development of technology and industry, the problem of global air pollution has become difficult to ignore. We investigated the association between air pollutant concentrations and daily all-cause mortality and stratified the analysis by sex, age, and season. Data for six air pollutants [fine particulate matter (PM2.5), inhalable particles (PM10), nitric dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and daily mortality rates were collected from 2015 to 2019 in Guangzhou, China. A time-series study using a quasi-Poisson generalized additive model was used to examine the relationships between environmental pollutant concentrations and mortality. Mortality data for 296,939 individuals were included in the analysis. The results showed that an increase of 10 µg/m3 in the concentrations of PM2.5, PM10, SO2, O3, NO2, and CO corresponded to 0.84% [95% confidence interval (CI): 0.47, 1.21%], 0.70% (0.44, 0.96%), 3.59% (1.77, 5.43%), 0.21% (0.05, 0.36%), 1.06% (0.70, 1.41%), and 0.05% (0.02, 0.09%), respectively. The effects of the six air pollutants were more significant for male individuals than female individuals, the cool season than the warm season, and people 75 years or older than those younger than 75 years. PM2.5, PM10, SO2, and NO2 were all associated with neoplasms and circulatory and respiratory diseases. The two-pollutant models found that PM2.5, PM10, and NO2 may independently affect the risk of mortality. The results showed that exposure to PM2.5, PM10 and NO2 may increase the risk of daily all-cause excessive mortality in Guangzhou.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Masculino , Humanos , Feminino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Ambientais/análise , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , China/epidemiologia
15.
Curr Allergy Asthma Rep ; 24(5): 233-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492159

RESUMO

PURPOSE OF REVIEW: In this review, we detail the exposome (consisting of environmental factors such as diet, microbial colonization, allergens, pollutants, and stressors), mechanistic and clinical research supporting its influence on atopic disease, and potentiation from climate change. We highlight contemporary environmental interventions and available evidence substantiating their roles in atopic disease prevention, from observational cohorts to randomized controlled trials, when available. RECENT FINDINGS: Early introduction to allergenic foods is an effective primary prevention strategy to reduce food allergy. Diverse dietary intake also appears to be a promising strategy for allergic disease prevention, but additional study is necessary. Air pollution and tobacco smoke are highly associated with allergic disease, among other medical comorbidities, paving the way for campaigns and legislation to reduce these exposures. There is no clear evidence that oral vitamin D supplementation, prebiotic or probiotic supplementation, daily emollient application, and antiviral prophylaxis are effective in preventing atopic disease, but these interventions require further study. While some environmental interventions have a well-defined role in the prevention of atopic disease, additional study of many remaining interventions is necessary to enhance our understanding of their role in disease prevention. Alignment of research findings from randomized controlled trials with public policy is essential to develop meaningful public health outcomes and prevent allergic disease on the population level.


Assuntos
Exposição Ambiental , Humanos , Exposição Ambiental/prevenção & controle , Exposição Ambiental/efeitos adversos , Alérgenos/imunologia , Mudança Climática , Hipersensibilidade Imediata/prevenção & controle , Expossoma , Hipersensibilidade Alimentar/prevenção & controle , Dieta , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle
16.
Arch Dis Child ; 109(6): 483-487, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503436

RESUMO

OBJECTIVE: To assess levels of pollutants at the sites of new schools and whether pupils are likely to be protected from associated risks. SETTING: Air pollution causes damage to children's health by increasing respiratory tract infection rates, asthma exacerbations, allergies and childhood cancers. Further effects include poorer neurocognitive outcomes and multisystemic illness in adulthood. DESIGN: We obtained a list of all 187 proposed new schools in England from 2017 to 2025 and found locations for 147 of them. We assessed air quality against WHO air quality targets and the air quality percentile of the location relative to pollution levels across the UK. We review relevant legislation and guidance. RESULTS: Our analysis found 86% of new schools (126/147) exceeded all three WHO targets, and every location exceeded at least one. Nationally, 76% (112/147) of sites were in the 60th or greater pollution percentile. Within London, the median pollution percentile was the 90th, with a minimum of 76th and maximum of 99th (IQR=83 rd to 94th). CONCLUSION: The guidance for school proposals does not include any requirement to assess air quality at the identified site. Building regulations also fail to consider how widespread poor air quality is, and significantly underestimates the levels of major air pollutants surrounding schools. Therefore it is unlikely that adequate action to reduce pupil and staff exposure is undertaken.We argue that air quality assessment should be mandatory at the proposal and planning stage of any new school building and that national guidance and legislation urgently needs to be updated.


Assuntos
Poluição do Ar , Instituições Acadêmicas , Humanos , Inglaterra/epidemiologia , Criança , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Monitoramento Ambiental/métodos , Jogos e Brinquedos
17.
J Hazard Mater ; 469: 134010, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492404

RESUMO

This study aimed to explore the associations between air pollution and male sexual function. A total of 5047 male subjects in China were included in this study. The average air pollution exposure (PM2.5, PM10, SO2, CO, NO2, and O3) for the preceding 1, 3, 6, and 12 months before the participants' response was assessed. Male sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT). Generalized linear models were utilized to explore the associations between air pollution and male sexual function. K-prototype algorithm was conducted to identify the association among specific populations. Significant adverse effects on the IIEF-5 score were observed with NO2 exposure during the preceding 1, 3, and 6 months (1 m: ß = -5.26E-05; 3 m: ß = -4.83E-05; 6 m: ß = -4.23E-05, P < 0.05). PM2.5 exposure during the preceding 12 months was found to significantly negatively affect the PEDT after adjusting for confounding variables. Our research indicated negative correlations between air pollutant exposures and male sexual function for the first time. Furthermore, these associations were more pronounced among specific participants who maintain a normal BMI, exhibit extroverted traits, and currently engage in smoking and alcohol consumption.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , China/epidemiologia , Material Particulado/análise
18.
BMC Med ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439026

RESUMO

BACKGROUND: Cardiovascular disease (CVD) caused by air pollution poses a considerable burden on public health. We aim to examine whether lifestyle factors mediate the associations of air pollutant exposure with the risk of CVD and the extent of the interaction between lifestyles and air pollutant exposure regarding CVD outcomes. METHODS: We included 7000 participants in 2011-2012 and followed up until 2018. The lifestyle evaluation consists of six factors as proxies, including blood pressure, blood glucose, blood lipids, body mass index, tobacco exposure, and physical activity, and the participants were categorized into three lifestyle groups according to the number of ideal factors (unfavorable, 0-1; intermediate, 2-4; and favorable, 5-6). Satellite-based spatiotemporal models were used to estimate exposure to ambient air pollutants (including particles with diameters ≤ 1.0 µm [PM1], ≤ 2.5 µm [PM2.5], ≤ 10 µm [PM10], nitrogen dioxide [NO2], and ozone [O3]). Cox regression models were used to examine the associations between air pollutant exposure, lifestyles and the risk of CVD. The mediation and modification effects of lifestyle categories on the association between air pollutant exposure and CVD were analyzed. RESULTS: After adjusting for covariates, per 10 µg/m3 increase in exposure to PM1 (HR: 1.09, 95% CI: 1.05-1.14), PM2.5 (HR: 1.04, 95% CI: 1.00-1.08), PM10 (HR: 1.05, 95% CI: 1.03-1.08), and NO2 (HR: 1.11, 95% CI: 1.05-1.18) was associated with an increased risk of CVD. Adherence to a healthy lifestyle was associated with a reduced risk of CVD compared to an unfavorable lifestyle (HR: 0.65, 95% CI: 0.56-0.76 for intermediate lifestyle and HR: 0.41, 95% CI: 0.32-0.53 for favorable lifestyle). Lifestyle played a significant partial mediating role in the contribution of air pollutant exposure to CVD, with the mediation proportion ranging from 7.4% for PM10 to 14.3% for PM2.5. Compared to an unfavorable lifestyle, the relative excess risk due to interaction for a healthier lifestyle to reduce the effect on CVD risk was - 0.98 (- 1.52 to - 0.44) for PM1, - 0.60 (- 1.05 to - 0.14) for PM2.5, - 1.84 (- 2.59 to - 1.09) for PM10, - 1.44 (- 2.10 to - 0.79) for NO2, and - 0.60 (- 1.08, - 0.12) for O3. CONCLUSIONS: Lifestyle partially mediated the association of air pollution with CVD, and adherence to a healthy lifestyle could protect middle-aged and elderly people from the adverse effects of air pollution regarding CVD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Idoso , Pessoa de Meia-Idade , Humanos , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Estilo de Vida , Poluentes Atmosféricos/efeitos adversos , China/epidemiologia , Material Particulado/efeitos adversos
19.
Eur Rev Med Pharmacol Sci ; 28(5): 1959-1969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497879

RESUMO

OBJECTIVE: Numerous investigations have indicated a correlation between air pollution (AP) and an elevated ischemic stroke (IS) likelihood. The existing literature does not provide a consensus about the possible link between AP and IS. A two-sample Mendelian randomization (MR) analysis was utilized to systematically measure the causal link between AP and ischemic stroke. Furthermore, the mediating impact of inflammatory factors was also performed by a two-step MR. MATERIALS AND METHODS: A two-sample MR analysis was utilized to examine the AP impact on the incidence of IS. Additionally, a two-step MR approach was carried out to account for possible mediating variables. The indirect impact was determined by employing the product approach, which included multiplying the AP impact on inflammatory factors by the inflammatory factors' impacts on IS. The MR effect was identified through inverse variance-weighted (IVW) meta-analysis of each Wald Ratio. Additionally, complementary studies were conducted using the weighted median and MR-egger approaches. RESULTS: The IVW method with random effects showed that the per unit increase in genetically predicted PM2.5 was linked to the 0.362-fold elevated ischemic stroke risk (OR: 1.362, 95% CI: 1.032-1.796, p=0.029). Furthermore, the IVM technique, incorporating random effects, demonstrated that the per unit increase in genetically predicted PM2.5 was related to an elevated Interleukin (IL)-1ß risk (OR: 1.529, 95% CI: 1.191-1.963, p=0.001), IL-6 (OR: 1.498, 95% CI: 1.094-2.052, p=0.012) and IL-17 (OR: 1.478, 95% CI: 1.021-2.139, p=0.038). IL-1ß, IL-6, and IL-17 modulated the PM2.5 impact on ischemic stroke, while the proportion mediated by them was 59.5%. CONCLUSIONS: A positive correlation between genetically predicted PM2.5 levels and elevated ischemic stroke risk is mediated by IL-1ß, IL-6, and IL-17.


Assuntos
Poluição do Ar , AVC Isquêmico , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/genética , Interleucina-17 , Interleucina-6/genética , Análise da Randomização Mendeliana , Poluição do Ar/efeitos adversos , Interleucina-1beta , Material Particulado/efeitos adversos
20.
JCO Glob Oncol ; 10: e2300427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513187

RESUMO

PURPOSE: This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS: This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS: The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION: The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Humanos , Incidência , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Neoplasias Pulmonares/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA