Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.090
Filtrar
1.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735931

RESUMO

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Assuntos
Ouro , Grafite , Estresse Oxidativo , Pontos Quânticos , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Ouro/química , Grafite/química , Óxido de Zinco/química , Animais , Pontos Quânticos/química , Camundongos , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Elétrons
2.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692786

RESUMO

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Antígeno Prostático Específico , Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Compostos de Cádmio/química , Sulfetos/química , Humanos , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Estruturas Metalorgânicas/química , Ouro/química , Cério/química , Técnicas Biossensoriais , Processos Fotoquímicos , Limite de Detecção , Eletrodos , Medições Luminescentes
3.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
4.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693877

RESUMO

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Assuntos
Imagem Óptica , Pontos Quânticos , Compostos de Prata , Pontos Quânticos/química , Compostos de Prata/química , Humanos , Animais , Camundongos , Raios Infravermelhos , Nanomedicina Teranóstica , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio
6.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731398

RESUMO

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Assuntos
Trifosfato de Adenosina , Carbono , Ácido Cítrico , Mitocôndrias , Polietilenoimina , Proteínas Quinases , Polietilenoimina/química , Carbono/química , Trifosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Pontos Quânticos/química , Animais , Peptídeos beta-Amiloides/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
7.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
8.
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696990

RESUMO

Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.


Assuntos
Carbono , Oxigênio , Pontos Quânticos , Camundongos , Animais , Pontos Quânticos/química , Carbono/química , Humanos , Catálise , Oxigênio/química , Imunoterapia , Tamanho da Partícula , Antineoplásicos/farmacologia , Antineoplásicos/química , Fotoquimioterapia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Ferro/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Propriedades de Superfície , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino
9.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669991

RESUMO

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Assuntos
Carbono , Raios Infravermelhos , Tamanho da Partícula , Terapia Fototérmica , Polilisina , Pontos Quânticos , Polilisina/química , Carbono/química , Animais , Pontos Quânticos/química , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Feminino , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/patologia
10.
J Colloid Interface Sci ; 668: 293-302, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678885

RESUMO

Understanding the cytotoxicity of fluorescent carbon dots (CDs) is crucial for their applications, and various biochemical assays have been used to study the effects of CDs on cells. Knowledge on the effects of CDs from a biophysical perspective is integral to the recognition of their cytotoxicity, however the related information is very limited. Here, we report that atomic force microscopy (AFM) can be used as an effective tool for studying the effects of CDs on cells from the biophysical perspective. We achieve this by integrating AFM-based nanomechanics with AFM-based imaging. We demonstrate the performance of this method by measuring the influence of CDs on living human neuroblastoma (SH-SY5Y) cells at the single-cell level. We find that high-dose CDs can mechanically induce elevated normalized hysteresis (energy dissipation during the cell deformation) and structurally impair actin skeleton. The nanomechanical change highly correlates with the alteration of actin filaments, indicating that CDs-induced changes in SH-SY5Y cells are revealed in-depth from the AFM-based biophysical aspect. We validate the reliability of the biophysical observations using conventional biological methods including cell viability test, fluorescent microscopy, and western blot assay. Our work contributes new and significant information on the cytotoxicity of CDs from the biophysical perspective.


Assuntos
Carbono , Sobrevivência Celular , Microscopia de Força Atômica , Pontos Quânticos , Humanos , Carbono/química , Pontos Quânticos/química , Sobrevivência Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Linhagem Celular Tumoral , Tamanho da Partícula , Propriedades de Superfície , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Actinas/química
11.
ACS Nano ; 18(18): 11560-11572, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682810

RESUMO

Second near-infrared (NIR-II) carbon dots, with absorption or emission between 1000 and 1700 nm, are gaining increasing attention in the biomaterial field due to their distinctive properties, which include straightforward preparation processes, stable photophysical characteristics, excellent biocompatibility, and low cost. As a result, there is a growing focus on the controlled synthesis and modulation of the photochemical and photophysical properties of NIR-II carbon dots, with the aim to further expand their biomedical applications, a current research hotspot. This account aims to provide a comprehensive overview of the recent advancements in NIR-II carbon dots within the biomedical field. The review will cover the following topics: (i) the design, synthesis, and purification of NIR-II carbon dots, (ii) the surface modification strategies, and (iii) the biomedical applications, particularly in the domain of cancer theranostics. Additionally, this account addresses the challenges encountered by NIR-II carbon dots and will outline future directions in the realm of cancer theranostics. By exploring carbon-based NIR-II biomaterials, we can anticipate that this contribution will garner increased attention and contribute to the development of next-generation advanced functional carbon dots, thereby offering enhanced tools and strategies in the biomedical field.


Assuntos
Carbono , Raios Infravermelhos , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Humanos , Neoplasias/tratamento farmacológico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Animais , Nanomedicina Teranóstica
12.
J Photochem Photobiol B ; 255: 112920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669742

RESUMO

As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Humanos , Animais
13.
Colloids Surf B Biointerfaces ; 238: 113887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581835

RESUMO

Alzheimer's disease (AD) is complex and multifactorial, and its pathogenesis involves multiple factors and processes. This study pioneered the in situ growth of cerium oxide nanoparticles on macrophage membranes (Ce-RAW). Further, carbon quantum dots (CQD) were biomimetically modified by Ce-RAW, leading to the synthesis of a multifunctional nanocomposite (CQD-Ce-RAW). Within the framework of this research, CQD-Ce-RAW was strategically combined with photothermal therapy (PTT), aiming to achieve a more significant therapeutic effect. The macrophage membrane confers the system with anti-phagocytic and anti-inflammatory biological functions. More importantly, the ultra-small size of cerium oxide grown on the membrane acts as a reactive oxygen species (ROS) scavenger and alleviates the degree of oxidative stress. Meanwhile, CQD as a photosensitizer helps dissociate amyloid-ß (Aß) aggregates and chelates excess copper ions, thus further inhibiting Aß aggregation. Cell experiments showed that CQD-Ce-RAW combined with PTT could effectively degrade and inhibit the aggregation of Aß, remove ROS, and improve cell survival rate. The results of in vivo photothermal experiments demonstrated that near-infrared light enhanced the efficiency of drug penetration through the blood-brain barrier and facilitated its accumulation in brain tissue. This comprehensive therapeutic approach can intervene in the disease progression from multiple pathways, providing a new prospect for treating AD.


Assuntos
Doença de Alzheimer , Biofilmes , Cério , Nanopartículas , Terapia Fototérmica , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Animais , Camundongos , Nanopartículas/química , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Células RAW 264.7 , Humanos , Propriedades de Superfície , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
14.
J Mater Chem B ; 12(19): 4724-4735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655674

RESUMO

We have developed a highly sensitive and reliable fluorescence resonance energy transfer (FRET) probe using nitro-dopamine (ND) and dopamine (DA) coated MnO2 nanosheet (ND@MnO2 NS and DA@MnO2 NS) as an energy acceptor and MoS2 quantum dots (QDs) as an energy donor. By employing surface-modified MnO2 NS, we can effectively reduce the fluorescence intensity of MoS2 QDs through FRET. It can reduce MnO2 NS to Mn2+ and facilitate the fluorescence recovery of the MoS2 QDs. This ND@MnO2 NS@MoS2 QD-based nanoprobe demonstrates excellent sensitivity to GSH, achieving an LOD of 22.7 nM in an aqueous medium while exhibiting minimal cytotoxicity and good biocompatibility. Moreover, our sensing platform shows high selectivity to GSH towards various common biomolecules and electrolytes. Confocal fluorescence imaging revealed that the nanoprobe can image GSH in A549 cells. Interestingly, the ND@MnO2 NS nanoprobe demonstrates no cytotoxicity in living cancer cells, even at concentrations up to 100 µg mL-1. Moreover, the easy fabrication and eco-friendliness of ND@MnO2 NS make it a rapid and simple method for detecting GSH. We envision the developed nanoprobe as an incredible platform for real-time monitoring of GSH levels in both extracellular and intracellular mediums, proving valuable for biomedical research and clinical diagnostics.


Assuntos
Dissulfetos , Dopamina , Glutationa , Compostos de Manganês , Molibdênio , Nanocompostos , Óxidos , Pontos Quânticos , Humanos , Compostos de Manganês/química , Dissulfetos/química , Óxidos/química , Pontos Quânticos/química , Molibdênio/química , Glutationa/análise , Glutationa/química , Dopamina/análise , Nanocompostos/química , Transferência Ressonante de Energia de Fluorescência , Células A549 , Tamanho da Partícula , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
15.
J Hazard Mater ; 470: 134271, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608593

RESUMO

Rapid and sensitive monitoring of pH and histamine is crucial for bridging biological and food systems and identifying corresponding abnormal situations. Herein, N-doped carbon dots (CDs) are fabricated by a hydrothermal method employing dipicolinic acid and o-phenylenediamine as precursors. The CDs exhibit colorimetric and fluorescent dual-mode responses to track pH and histamine variations in living cells and food freshness, respectively. The aggregation-induced emission enhancement and intramolecular charge transfer result in a decrease in absorbance and an increase in fluorescence, which become readily apparent as the pH changes from acidic to neutral. This property enables precise differentiation between normal and cancerous cells. Furthermore, given the intrinsic basicity of histamine, pH-responsive CDs are advantageous for additional colorimetric and fluorescent monitoring of histamine in food freshness, achieving linearities of 25-1000 µM and 30-1000 µM, respectively, which are broader than those of alternative nanoprobes. Interestingly, the smartphone-integrated sensing platform can portably and visually evaluate pH and histamine changes due to sensitive color changes. Therefore, the sensor not only establishes a dynamic connection between pH and histamine for the purposes of biological and food monitoring, but also presents a novel approach for developing a multifunctional biosensor that can accomplish environmental monitoring and biosensing simultaneously.


Assuntos
Carbono , Colorimetria , Histamina , Pontos Quânticos , Histamina/análise , Carbono/química , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência , Smartphone , Análise de Alimentos/métodos , Nitrogênio/química , Fluorescência , Corantes Fluorescentes/química
16.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603910

RESUMO

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Assuntos
Cádmio , Pontos Quânticos , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Óxido de Zinco , Pontos Quânticos/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
17.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
18.
J Nanobiotechnology ; 22(1): 210, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671474

RESUMO

Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.


Assuntos
Infecções Bacterianas , Carbono , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pontos Quânticos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamento farmacológico , Carbono/química , Carbono/uso terapêutico , Carbono/farmacologia , Infecções Bacterianas/tratamento farmacológico , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 14(1): 9618, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671084

RESUMO

Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.


Assuntos
Citocinas , Pontos Quânticos , Silício , Pontos Quânticos/química , Silício/química , Humanos , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Oligodesoxirribonucleotídeos/química , Interleucina-6/metabolismo , Propriedades de Superfície , Interferon-alfa/metabolismo , Interferon-alfa/química , Receptor Toll-Like 9/metabolismo
20.
J Colloid Interface Sci ; 667: 450-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643742

RESUMO

Single-atom catalysts (SACs) have attracted extensive attention in the field of catalysis due to their excellent catalytic ability and enhanced atomic utilization, but the multi-mode single-atom nanozymes for biosensors remain a challenging issue. In this work, iron-doped carbon dots (Fe CDs) were loaded onto the edges and pores of Mo SACs with nanoflower morphology; accordingly, a composite material Fe CDs/Mo SACs was prepared successfully, which improves the catalytic performance and develops a fluorescence mode without changing the original morphology. The steady-state kinetic data indicates that the material prepared have better affinity for substrates and faster reaction rates under optimized conditions. The specific kinetic parameters Km and Vmax were calculated as 0.39 mM and 7.502×10-7 M·s-1 respectively. The excellent peroxidase-like activity of Fe CDs/Mo SACs allows H2O2 to decompose into •OH, which in turn oxidizes colorless o-phenylenediamine (OPD) to yellow 2,3-diaminophenazine (DAP). At the same time, the fluorescence signal of Fe CDs/Mo SACs quenches obviously by DAP at 460 nm through internal filtration effect (IFE), while the characteristic fluorescence response of DAP gradually increases at 590 nm. Based on this sensing mechanism, a sensitive and accurate dual-mode (colorimetric and ratiometric fluorescent) sensor was constructed to detect H2O2 and uric acid, and the rate of recovery and linearity were acceptable for the detection of UA in human serum and urine samples. This method provides a new strategy for rapid and sensitive detection of UA, and also broadens the development of SACs in the field of biosensors.


Assuntos
Carbono , Peróxido de Hidrogênio , Ferro , Molibdênio , Pontos Quânticos , Ácido Úrico , Ácido Úrico/análise , Ácido Úrico/urina , Ácido Úrico/sangue , Ácido Úrico/química , Molibdênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Carbono/química , Ferro/química , Pontos Quânticos/química , Catálise , Humanos , Técnicas Biossensoriais , Limite de Detecção , Tamanho da Partícula , Nanoestruturas/química , Propriedades de Superfície , Fenilenodiaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA