Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
J Hazard Mater ; 472: 134558, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739958

RESUMO

Nitric oxide (NO) functions as an essential signalling molecule in various physiological and pathological pathways. In vitro and vivo redox processes mediated by reactive oxygen species (ROS) and nitric oxide (NO) directly influence the intracellular state. In this study, a red-emitting fluorescent nanoprobe, N,S-CDs@Zn-ICA, was synthesized to monitor NO fluctuations in living cells and zebrafish under the exposure to various pollutants. Red-emissive carbon dots (N,S-CDs) were synthesized by a hydrothermal method using o-phenylenediamine and urea as carbon / nitrogen sources, and H2SO4 as sulfur source. Glutathione (GSH) was introduced to link N,S-CDs with metal organic complexes (Zn-ICA) through an amidation reaction to fabricate a carbon dot-based composite fluorescent probe, which greatly improved the selectivity, stability, and response time of the N,S-CDs. The composite probe has high selectivity and sensitivity with limit of detection (LOD) of 96.0 nM. Furthermore, the proposed probe was successfully used to monitor the dynamic changes in NO levels and evaluate oxidative stress in MCF-7 cells and zebrafish under the exposure to various pollutants, including seven heavy metal ions (such as Pb2+, Cd2+, and Hg2+) and nine organic pollutants at different concentrations and exposure times. This work provides a novel strategy for constructing highly selective and red-emitting fluorescent probe for real-time and dynamic monitoring of NO and further evaluating oxidative stress induced by pollutants in vitro and in vivo via fluorescence imaging.


Assuntos
Carbono , Corantes Fluorescentes , Óxido Nítrico , Estresse Oxidativo , Pontos Quânticos , Peixe-Zebra , Animais , Óxido Nítrico/metabolismo , Corantes Fluorescentes/química , Estresse Oxidativo/efeitos dos fármacos , Carbono/química , Carbono/toxicidade , Humanos , Células MCF-7 , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Limite de Detecção
2.
J Photochem Photobiol B ; 255: 112920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669742

RESUMO

As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Humanos , Animais
3.
Sci Rep ; 14(1): 7091, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528032

RESUMO

Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.


Assuntos
Grafite , Mucoproteínas , Pontos Quânticos , Domínio Catalítico , Grafite/toxicidade , Grafite/química , Simulação de Dinâmica Molecular , Óxidos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
4.
Anal Chem ; 96(10): 4299-4307, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38414258

RESUMO

To boost the enzyme-like activity, biological compatibility, and antiaggregation effect of noble-metal-based nanozymes, folic-acid-strengthened Ag-Ir quantum dots (FA@Ag-Ir QDs) were developed. Not only did FA@Ag-Ir QDs exhibit excellent synergistic-enhancement peroxidase-like activity, high stability, and low toxicity, but they could also promote the lateral root propagation of Arabidopsis thaliana. Especially, ultratrace cysteine or Hg2+ could exclusively strengthen or deteriorate the inherent fluorescence property with an obvious "turn-on" or "turn-off" effect, and dopamine could alter the peroxidase-like activity with a clear hypochromic effect from blue to colorless. Under optimized conditions, FA@Ag-Ir QDs were successfully applied for the turn-on fluorescence imaging of cysteine or the stress response in cells and plant roots, the turn-off fluorescence monitoring of toxic Hg2+, or the visual detection of dopamine in aqueous, beverage, serum, or medical samples with low detection limits and satisfactory recoveries. The selective recognition mechanisms for FA@Ag-Ir QDs toward cysteine, Hg2+, and dopamine were illustrated. This work will offer insights into constructing some efficient nanozyme sensors for multichannel environmental analyses, especially for the prediagnosis of cysteine-related diseases or stress responses in organisms.


Assuntos
Mercúrio , Pontos Quânticos , Pontos Quânticos/toxicidade , Cisteína , Dopamina , Ácido Fólico , Imagem Óptica , Peroxidases , Raízes de Plantas
5.
NanoImpact ; 33: 100494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38246246

RESUMO

Nano-bio interface is significant concern in nanomedicine. When nanoparticles (NPs) come into contact with cells, they form complexes with proteins known as protein corona (PC). Cadmium telluride quantum dots (CdTe QDs) have been applied as bioimaging probes and for macrophage theragnostic. However, the impact of protein corona on the behavior of CdTe QDs is not well understood. Macrophages play a crucial role in defending against NPs. In this study, RAW264.7 cells were used to investigated the inflammatory response in macrophages when exposed to CdTe QDs before and after PC formation in fetal bovine serum. The results indicated that protein corona polarized more macrophages towards M1 phenotype. Transcriptomics analysis revealed that PC-CdTe QDs altered a greater number of differentially expressed genes (DEGs) compared to CdTe QDs (177 and 398) at 1.0 µM in macrophages. The DEGs affected by PC-CdTe QDs contained several personalized inflammatory cytokines. The enriched pathways after PC formation included Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and TNF signaling pathway, etc. Furthermore, PC specifically exacerbated the overexpression of CCL2 and IL-1ß proteins. Importantly, PC altered the mechanism of CdTe QD-induced pyroptosis, shifting it from activating NLRC4 to both NLRP1 and NLRP3 inflammasomes, and from cleaving GSDMD and GSDMB to GSDMB alone. Overall, protein corona exacerbated the inflammatory response induced by CdTe QDs in macrophages. This study provides valuable insight into the pro-inflammatory effect of protein corona on CdTe QDs, with implications for their use in bioimaging or macrophage theragnostic by either exploiting or eliminating this biological interface effect.


Assuntos
Compostos de Cádmio , Coroa de Proteína , Pontos Quânticos , Pontos Quânticos/toxicidade , Compostos de Cádmio/toxicidade , Telúrio/toxicidade , Macrófagos
6.
Colloids Surf B Biointerfaces ; 234: 113760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244484

RESUMO

Recently, carbon quantum dots (CQDs) have become popular because of their simple synthesis and potential applications. Although CQDs have high biocompatibility, their biotoxicity must be verified to reduce the possible risks associated with large-scale application. In this study, the hepatotoxicity of three CQD types, namely diammonium citrate (AC)-based (CQDs-AC), spermidine trihydrochloride (Spd)-based (CQDs-Spd), and AC- and Spd-based CQDs (CQDs-AC/Spd), were evaluated in vivo and in vitro. It was observed in vivo that CQDs-Spd and CQDs-AC/Spd, but not CQDs-AC, caused histopathological damage, including liver steatosis and mild mixed inflammatory cell infiltration; however, reduced liver function was only observed in CQD-Spd-treated mice. The in vitro results revealed that only CQDs-Spd significantly decreased the number of viable HepG2 cells (NADH depletion) and induced oxidative stress (heme oxygenase-1 activation) after 24 h of exposure, which promoted inflammatory factor secretion (NF-κB activation). Additionally, decreasing zonula occludens-2 and α1-antitrypsin protein expression in HepG2 cells suggested that CQD-Spd exposure increases the risk of liver diseases. Our results revealed that CQDs-Spd had greater hepatotoxic potential than CQDs-AC and CQDs-AC/Spd, which might be attributable to their high positive surface charge. Overall, the risk of CQD-induced hepatotoxic risk must be considered when applying positively charged CQDs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Pontos Quânticos , Camundongos , Animais , Humanos , Pontos Quânticos/toxicidade , Carbono/farmacologia , Espermidina , Células Hep G2 , Doença Hepática Induzida por Substâncias e Drogas/etiologia
7.
Analyst ; 149(4): 1221-1228, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221877

RESUMO

Cancer-targeted nanotechnology has a new trend in the design and preparation of new materials with functions for imaging and therapeutic applications simultaneously. As a new type of carbon nanomaterial, the inherent core-shell structured carbon dots (CDs) can be designed to provide a modular nanoplatform for integration of bioimaging and therapeutic capabilities. Here, core-shell structured CDs are designed and synthesized from levofloxacin and arginine and named Arg-CDs, in which levofloxacin-derived chromophores with up-conversion fluorescence are densely packed into the carbon core while guanidine groups are located on the shell, providing nitric oxide (NO) for photodynamic therapy of tumors. Moreover, the chromophores in the carbon core irradiated by visible LED light generate large amounts of reactive oxygen species (ROSs) that will oxidize the guanidine groups located on the shell of the Arg-CDs and further increase the NO releasing capacity remarkably. The as-synthesized Arg-CDs show excellent biocompatibility, bright up-conversion fluorescence, and a light-controlled ROS & NO releasing ability, which can be a potential light-modulated nanoplatform to integrate bioimaging and therapeutic functionalities.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Óxido Nítrico , Carbono , Fluorescência , Levofloxacino , Neoplasias/patologia , Espécies Reativas de Oxigênio , Guanidinas/uso terapêutico , Pontos Quânticos/toxicidade
8.
ChemistryOpen ; 12(10): e202300094, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37803419

RESUMO

The choice of capping agents used during the synthesis process of quantum dots (QDs) can significantly influence their fate and fundamental properties. Hence, choosing an appropriate capping agent is a critical step in both synthesis and biomedical application of QDs. In this research, ZnS QDs were synthesized via chemical precipitation process and three commonly employed capping agents, namely mercaptoethanol (ME), mercaptoacetic acid (MAA), and cysteamine (CA), were used to stabilize the QDs. This study was aimed to examine how these capping agents impact the physicochemical and optical characteristics of ZnS QDs, as well as their interactions with biological systems. The findings revealed that the capping agents had considerable effects on the behavior and properties of ZnS QDs. MAA-QD exhibited superior crystal lattice, smaller size, and significant quantum yield (QY). In contrast, CA-QDs demonstrated the lowest QY and the highest tendency for aggregation. ME-QDs exhibited intermediate characteristics, along with an acceptable level of cytotoxicity, rapid uptake by cells, and efficient escape from lysosomes. Consequently, it is advisable to select capping agents in accordance with the specific objectives of the research.


Assuntos
Pontos Quânticos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Sulfetos/química , Compostos de Zinco/química , Lisossomos
9.
Langmuir ; 39(37): 13325-13334, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37612781

RESUMO

Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.


Assuntos
Portadores de Fármacos , Pontos Quânticos , Portadores de Fármacos/toxicidade , Microesferas , Pontos Quânticos/toxicidade , Durapatita/toxicidade , Concentração de Íons de Hidrogênio
10.
Environ Sci Technol ; 57(29): 10574-10581, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450278

RESUMO

Surface modifications are generally used to functionalize QDots to improve their properties for practical applications, but the relationship between QDot modification and biological activity is not well understood. Using an early staged zebrafish model, we investigated the biodistribution and toxicity of CdSe/ZnS QDots with four types of modifications, including anionic poly(ethylene glycol)-carboxyl ((PEG)n-COOH), anionic mercaptopropionic acid (MPA), zwitterionic glutathione (GSH), and cationic cysteamine (CA). None of the QDots showed obvious toxicity to zebrafish embryos prior to hatching because the zebrafish chorion is an effective barrier that protects against QDot exposure. The QDots were mainly absorbed on the epidermis of the target organs after hatching and were primarily deposited in the mouth and gastrointestinal tract when the zebrafish started feeding. CA-QDots possessed the highest adsorption capacity; however, (PEG)n-COOH-QDots showed the most severe toxicity to zebrafish, as determined by mortality, hatching rate, heartbeat, and malformation assessments. It shows that the toxicity of the QDots is mainly attributed to ROS generation rather than Cd2+ release. This study provides a comprehensive understanding of the environmental and ecological risks of nanoparticles in relation to their surface modification.


Assuntos
Nanopartículas , Pontos Quânticos , Animais , Pontos Quânticos/toxicidade , Peixe-Zebra , Distribuição Tecidual , Polietilenoglicóis
11.
Arch Microbiol ; 205(7): 259, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289260

RESUMO

The potential of CdS quantum dots for biomedical and bioimaging applications depends on their cytotoxicity, which can be modulated by coating molecules. Using sulfur as a precursor can be used along with cadmium nitrate to synthesize CdS quantum dots with the fungus Fusarium oxysporum f. sp. lycopersici. The latter replaces pure chemical sulfur as a precursor for CdS quantum dot synthesis, thus transforming waste into a value-added product, increasing sustainability, reducing the environmental impact of the process through the implementation of green synthesis techniques, and contributing to the circular economy. Therefore, we compared the cytotoxicity on HT-29 cells of biogenic, and chemical CdSQDs, synthesized by a chemical method using pure sulfur. Biogenic and chemical CdSQDs had diameters of 4.08 ± 0.07 nm and 3.2 ± 0.20 nm, Cd/S molar ratio of 43.1 and 1.1, Z-potential of - 14.77 ± 0.64 mV and - 5.52 ± 1.11 mV, and hydrodynamic diameters of 193.94 ± 3.71 nm and 152.23 ± 2.31 nm, respectively. The cell viability improved 1.61 times for biogenic CdSQDs over chemical CdSQDs, while cytotoxicity, measured as IC50, diminished 1.88-times. The lower cytotoxicity of biogenic CdSQDs was attributed to their organic coating consisting of lipids, amino acids, proteins, and nitrate groups that interacted with CdS through -OH and -SH groups. Therefore, the biogenic synthesis of CdSQDs has repurposed a pathogenic fungus, taking advantage of the biomolecules it secretes, to transform hazardous sulfur waste and metal ions into stable CdSQDs with advantageous structural and cytotoxic properties for their potential application in biomedicine and bioimaging.


Assuntos
Fusarium , Pontos Quânticos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Fungos , Enxofre
12.
Talanta ; 260: 124560, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116362

RESUMO

Quantum dots (QDs) have been widely used for bioimaging in vivo because of their excellent optical properties. As part of the preparation process of QD-based nanohybrids, purification is an important step for minimizing contaminants and improving the quality of the product. In this work, we describe high-performance size exclusion chromatography (HPSEC) used to purify nanohybrids of CdSe/ZnS QDs and anti-human epidermal growth factor receptor 2 antibodies (QD-HER2-Ab). The unbound antibody and suspended agglomerates were removed from freshly prepared QD-HER2-Ab via HPSEC. Pure and homogeneous QD-HER2-Ab were then used as immunofluorescence target imaging bioprobes in vivo. The QD-HER2-Ab did not cause any obvious acute toxicity in mice one week after a single intravenous injection of 15 nmol/kg. The purified QD-HER2-Ab bioprobes showed high tumor targeting ability in a human breast tumor xenograft nude mouse model (24 h after injected) with the possibility of in vivo immunofluorescence tumor imaging. The immunofluorescence imaging background signal and acute toxicity in vivo were minimized because of the reduction of residual QDs. HPSEC-purified QD-HER2-Ab is an accurate and convenient tool for in vivo tumor target imaging and HER2 detection, thus providing a basis for the purification of other QD-based bioprobes.


Assuntos
Neoplasias da Mama , Pontos Quânticos , Humanos , Camundongos , Animais , Feminino , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Anticorpos/química , Neoplasias da Mama/diagnóstico por imagem , Corantes
13.
Talanta ; 259: 124520, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058943

RESUMO

Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 µM (LOD = 0.25 µΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Humanos , Células HeLa , Corantes Fluorescentes/toxicidade , Pontos Quânticos/toxicidade , Carbono/toxicidade , Glutationa , Complexo de Golgi , Nitrogênio , Limite de Detecção
14.
Chemosphere ; 327: 138463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966929

RESUMO

PURPOSE: The board application of black phosphorus quantum dots (BP-QDs) increases the risk of inhalation exposure in the manufacturing process. The aim of this study is to explore the toxic effect of BP-QDs on human bronchial epithelial cells (Beas-2B) and lung tissue of Balb/c mice. METHODS: The BP-QDs were characterized using transmission electron microscopy (TEM) and a Malvern laser particle size analyzer. Cell Counting Kit-8 (CCK-8) and TEM were used to detect cytotoxicity and organelle injury. Damage to the endoplasmic reticulum (ER) was detected by using the ER-Tracker molecular probe. Rates of apoptosis were detected by AnnexinV/PI staining. Phagocytic acid vesicles were detected using AO staining. Western blotting and immunohistochemistry were used to examine the molecular mechanisms. RESULTS: After treatment with different concentrations of BP-QDs for 24 h, the cell viability decreased, as well as activation of the ER stress and autophagy. Furthermore, the rate of apoptosis was increased. Inhibition of ER stress caused by 4-phenyl butyric acid (4-PBA) was shown to significantly inhibit both apoptosis and autophagy, suggesting that ER stress could be an upstream mediator of both autophagy and apoptosis. BP-QD-induced autophagy can also inhibit the occurrence of apoptosis using molecules related to autophagy including rapamycin (Rapa), 3-methyladenine (3-MA), and bafilomycin A1 (Bafi A1). In general, BP-QDs activate ER stress in Beas-2B cells, which further induces autophagy and apoptosis, and autophagy may be activated as a factor that protects against apoptosis. We also observed strong staining of related proteins of ER stress, autophagy, and apoptosis proteins in mouse lung tissue following intracheal instillation over the course of a week. CONCLUSION: BP-QD-induced ER stress facilitates autophagy and apoptosis in Beas-2B cells and autophagy may be activated as a protective factor against apoptosis. Under conditions of ER stress induced by BP-QDs, The interplay between autophagy and apoptosis determines cell fate.


Assuntos
Pontos Quânticos , Humanos , Animais , Camundongos , Pontos Quânticos/toxicidade , Apoptose , Células Epiteliais , Autofagia , Estresse do Retículo Endoplasmático
15.
Environ Pollut ; 326: 121397, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933817

RESUMO

The rapid developments in nanotechnology have brought increased attention to the safety of Quantum Dots (QDs). Exploring their mechanisms of toxicity and characterizing their toxic effects in different cell lines will help us better understand and apply QDs appropriately. This study aims to elucidate the importance of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-induced autophagy for CdTe QDs toxicity, that is, the importance of the nanoparticles in mediating cellular uptake and consequent intracellular stress effects inside the cell. The results of the study showed that cancer cells and normal cells have different cell outcomes as a result of intracellular stress effects. In normal human liver cells (L02), CdTe QDs leads to ROS generation and prolong ER stress. The subsequent autophagosome accumulation eventually triggers apoptosis by activating proapoptotic signaling pathways and the expression of proapoptotic Bax. In contrast, in human liver cancer cells (HepG2 cells), expression of UPR restrains proapoptotic signaling and downregulates Bax, and activated protective cellular autophagy, as a result of protecting these liver cancer cells from CdTe QDs-induced apoptosis. In summary, we assess the safety of CdTe QDs and recounted the molecular mechanism underlying its nanotoxicity in normal and cancerous cells. Notwithstanding, additional detailed studies on the deleterious effects of these nanoparticles in the organisms of interest are required to ensure low-risk application.


Assuntos
Compostos de Cádmio , Neoplasias Hepáticas , Pontos Quânticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Proteína X Associada a bcl-2 , Telúrio/toxicidade , Linhagem Celular , Apoptose , Estresse do Retículo Endoplasmático , Autofagia
16.
Toxicology ; 484: 153389, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481571

RESUMO

To investigate the potential factors of graphene quantum dots (GQDs), the assessment impact on the innate immune system is one of the most important. As the innate immune cell, macrophages possess phagocytosis activity and affect immunomodulation. Higher oxygen consumption rates (OCR) are used to gain insight into GQDs' effects on macrophages. Metabolomics profiling also revealed that GQDs exposure provoked an increase in phosphoglycerides, sphingolipids, and oxidized lipids in macrophages. The molecular pathways disrupted by GQDs were associated with lipid and energy metabolisms. Metabolite flux analysis was used to evaluate changes in the lipid metabolism of macrophages exposed to 100 µg mL-1 GQDs for 24 and 48 h. A combination of 13C-flux analysis and metabolomics revealed the regulation of lipid biosynthesis influenced the balance of energy metabolism. Integrated proteomics and metabolomics analyses showed that nicotinic acid adenine dinucleotide and coenzyme Q10 were significantly increased under GQDs treatment, alongside upregulated protein activity (e.g., Cox5b and Cd36). The experimental evidences were expected to be provided in this study to reveal the potential harmful effect from exposure to GQDs.


Assuntos
Grafite , Pontos Quânticos , Grafite/toxicidade , Pontos Quânticos/toxicidade , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Homeostase
17.
Nanotoxicology ; 16(6-8): 733-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36403151

RESUMO

Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Carbono/toxicidade , Carbono/química , Nanoestruturas/química
18.
Chem Biol Interact ; 368: 110247, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328131

RESUMO

Quantum dots (QDs) are nanoparticles with a particle size of 1-10 nm. Typical QDs are made of compounds such as cadmium sulfide, cadmium selenide, silver sulfide, and indium phosphide, among others. QDs exhibit promising potential for a wide range of applications owing to their excellent optical properties. With the rise in the application of and demand for QDs, QDs accumulation in the environment has increased markedly. QDs enter the pulmonary system via inhalation and trigger pulmonary toxicity. This paper first reviews the pulmonary toxicity of different types of QDs in vivo and in vitro. Regarding acute toxicity, QDs cause changes in cell morphology, cell membrane disruption, cell viability, and pulmonary inflammation. Regarding chronic toxicity, cadmium-based QDs cause pulmonary granulomas and have a potential carcinogenic risk. Second, this paper presents an overview of the pulmonary toxicity mechanism of QDs, involving oxidative stress, inflammation, autophagy, apoptosis, and ferroptosis. It summarizes mitogen-activated protein kinases, nuclear factor κB, nuclear factor-erythroid 2-related factor 2, P53, and Phosphoinositide 3-kinase/AKT signaling pathways in apoptosis and autophagy. Third, it enumerates the physicochemical properties of QDs influencing pulmonary toxicity, ranging from components, surface functional groups, size, and surface charge. Lastly, it outlines the shortcomings of current studies on QDs pulmonary toxicity. The paper concludes with a recommendation discussing research-based improvements in the physicochemical properties of QDs to reduce their release in the environment.


Assuntos
Nanopartículas , Pontos Quânticos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Fosfatidilinositol 3-Quinases , Nanopartículas/toxicidade , Sobrevivência Celular , Tamanho da Partícula
19.
Ecotoxicol Environ Saf ; 245: 114108, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174319

RESUMO

CuInS2/ZnS-PEG quantum dots (QDs) are among the most widely used near infrared non-cadmium QDs and are favored because of their non-cadmium content and strong tissue penetration. However, with their increasing use, there is great concern about whether exposure to QDs is potentially risky to the environment and humans. Furthermore, toxicological data related to CuInS2/ZnS-PEG QDs are scarce. In the study, we found that CuInS2/ZnS-PEG QDs (0-100 µg/mL) could internalize into human LAD2 mast cells without affecting their survival rate, nor did it cause degranulation or release of IL-8 and TNF-α. However, CuInS2/ZnS-PEG QDs significantly inhibited Substance P (SP) and LL-37-induced degranulation and chemotaxis of LAD2 cells by inhibiting calcium mobilization. Lower concentrations of CuInS2/ZnS-PEG QDs promoted the release of TNF-α and IL-8 stimulated by SP, but higher concentrations of CuInS2/ZnS-PEG QDs significantly inhibited the release of TNF-α and IL-8. On the other hand, CuInS2/ZnS-PEG QDs promoted LL-37-mediated TNF-α release from LAD2 cells in a dose-dependent manner from 6.25 to 100 µg/mL, while release of IL-8 triggered by LL-37 was dose-dependently inhibited within a dose concentration of 12.5-100 µg/mL. Collectively, our data demonstrated that CuInS2/ZnS-PEG QDs differentially mediated human mast cell activation induced by SP and LL-37.


Assuntos
Pontos Quânticos , Cálcio , Defeitos Congênitos da Glicosilação , Cobre , Humanos , Interleucina-8 , Mastócitos , Polietilenoglicóis , Pontos Quânticos/toxicidade , Substância P , Sulfetos/farmacologia , Fator de Necrose Tumoral alfa , Compostos de Zinco/toxicidade
20.
Nanoscale ; 14(39): 14683-14694, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36165351

RESUMO

Pancreatic islet amyloid deposition is a pathological hallmark of Type 2 diabetes (T2D), contributing to reduced functional ß-cell mass. Islet amyloids result not only from the aggregation and fibrillation of human islet amyloid polypeptide (hIAPP), but also from beta-amyloid 42 (Aß42), the key amyloidogenic peptide linked to Alzheimer's disease. Importantly, Aß42 and hIAPP aggregates (IAPP:Aß42) can interact with each other and form some harmful heterocomplex fibrils. While it is well-documented that hIAPP aggregation occurs only when islets are exposed to a diabetic environment, including hyperglycemia and/or elevated concentrations of saturated fatty acids (SFAs), it remains unclear if hIAPP and IAPP:Aß42 heteromer fibrillations are directly or indirectly triggered by this environment. In this study, we show the interplay between high glucose concentrations and palmitate as the SFA in the aggregation of hIAPP. In addition, we outline that the interaction of hIAPP and Aß42 leads to the formation of complex protein aggregates, which are toxic to ß-cells. Carbon nanocolloids in the form of positively charged carbon quantum dots (CQD-pos) efficiently prevent single amyloid aggregation and the formation of IAPP:Aß42 heterocomplexes. We provide clear evidence with this study that the diabetogenic environment of islets could directly contribute to the formation of homomeric and heteromeric amyloid aggregates and fibrils in T2D. We also propose carbon nanocolloids as biocompatible nanomaterials for developing innovative therapeutic strategies that prevent the decline of functional ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2 , Pontos Quânticos , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Carbono , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos , Glucose , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Palmitatos , Agregados Proteicos , Pontos Quânticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA