Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.850
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731817

RESUMO

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos Knockout , Microcefalia , Animais , Camundongos , Senescência Celular/genética , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Pontos de Checagem do Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589907

RESUMO

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
3.
Cell Death Dis ; 15(2): 149, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365764

RESUMO

Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.


Assuntos
Cobre , Neoplasias , Proteína Fosfatase 1 , Humanos , Cobre/metabolismo , Íons/metabolismo , Neoplasias/genética , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Apoptose/genética , Iniciação Traducional da Cadeia Peptídica/genética
4.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367657

RESUMO

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Assuntos
Fácies , Linfedema , Microcefalia , Doenças Retinianas , Displasia Retiniana , Animais , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Deficiências do Desenvolvimento , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
J Mol Biol ; 436(8): 168505, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423454

RESUMO

Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.


Assuntos
Proteínas de Ciclo Celular , Ciclina A , Diploide , Mitose , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
6.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242874

RESUMO

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/patologia , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
7.
Cancer Genomics Proteomics ; 21(1): 18-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151292

RESUMO

BACKGROUND/AIM: Pancreatic cancer is one of the most lethal malignant cancers worldwide and the seventh most common cause of cancer-related death in both sexes. Herein, we analyzed open access data and discovered that expression of a gene called deoxynucleotidyltransferase terminal-interacting protein 2 (DNTTIP2) is linked to prognosis of pancreatic ductal adenocarcinoma (PDAC). We then elucidated the role of DNTTIP2 in the proliferation of pancreatic cancer cells in vitro. MATERIALS AND METHODS: A WST-8 assay, cell cycle analysis, Annexin-V staining, quantitative reverse transcription-PCR, and western blot analysis were conducted to assess cell proliferation, cell cycle, apoptosis, and expression of DNTTIP2 mRNA and protein, respectively, in DNTTIP2-depleteted MIA-PaCa-2 and PK-1 cells. RESULTS: Depletion of DNTTIP2 induced G1 arrest in MIA-PaCa-2 cells by decreasing expression of special AT-rich sequence binding protein 1 (SATB1) and cyclin-dependent kinase 6 (CDK6). In addition, depletion of DNTTIP2 induced G2 arrest in PK-1 cells by decreasing expression of CDK1. Depletion of DNTTIP2 did not induce apoptosis in MIA-PaCa-2 or PK-1 cells. CONCLUSION: DNTTIP2 is involved in proliferation of pancreatic cancer cells. Thus, DNTTIP2 is a potential target for inhibiting progression of pancreatic cancers.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Neoplasias Pancreáticas , Feminino , Humanos , Masculino , Apoptose/genética , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/patologia , Fatores de Transcrição
8.
Sci Rep ; 13(1): 23103, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158431

RESUMO

Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors. However, the role of CPEB2 in glioma progression is unknown. In this study, the functional characterization of the role and molecular mechanism of CPEB2 in glioma were examined using a series of biological and cellular approaches in vitro and in vivo. Our work shows CPEB2 is significantly downregulated in various glioma patient cohorts. Functional characterization of CPEB2 by overexpression and knockdown revealed that it inhibits glioma cell proliferation and promotes apoptosis. CPEB2 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in glioma. Overall, this work stands as the first report of CPEB2 downregulation and involvement in glioma pathogenesis, and identifies CPEB2 as an important tumor suppressor gene through targeting p21 in glioma, which revealed that CPEB2 may become a promising predictive biomarker for prognosis in glioma patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Proteína Oncogênica p21(ras) , Estabilidade de RNA , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/sangue , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proliferação de Células/genética , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Estabilidade de RNA/genética , Glioma/diagnóstico , Glioma/fisiopatologia , Técnicas de Silenciamento de Genes , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Pontos de Checagem do Ciclo Celular/genética , Biomarcadores Tumorais/sangue , Regulação para Baixo/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Células HEK293 , Humanos , Feminino , Animais , Camundongos
9.
Oncogene ; 42(47): 3514-3528, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845393

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype and accounts for approximately 15-20% of breast cancer cases. In this study, we identified KLHL29, which is an understudied member of the Kelch-like gene family, as a crucial tumor suppressor that regulates chemosensitivity in TNBC. KLHL29 expression was significantly downregulated in breast cancer tissues compared with adjacent normal tissues, and low levels of KLHL29 were associated with unfavorable prognoses. Ectopic KLHL29 suppressed, while depleting KLHL29 promoted, the growth, proliferation, migration, and invasion of TNBC. Mechanistically, KLHL29 recruited the CUL3 E3-ligase to the RNA-binding protein DDX3X, leading to the proteasomal degradation of the latter. This downregulation of DDX3X resulted in the destabilization of CCND1 mRNA and the consequent cell cycle arrest at G0/G1 phase. Remarkably, the DDX3X inhibitor RK33 combined with platinum-based chemotherapy can synergistically suppress TNBC that usually expresses low levels of KLHL29 and high levels of DDX3X using cancer cell-derived xenograft and patient-derived organoids models. Altogether, we uncovered the potential role for the KLHL29-DDX3X signaling cascade in the regulation of TNBC progression, thus providing a promising combination strategy for overcoming TNBC chemoresistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
10.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833915

RESUMO

MLL rearrangement (MLLr) is responsible for the development of acute leukemias with poor outcomes. Therefore, new therapeutic approaches are urgently needed. The NOTCH1 pathway plays a critical role in the pathogenesis of many cancers including acute leukemia. Using a CRISPR/Cas9 MLL-AF4/-AF9 translocation model, the newly developed NOTCH1 inhibitor CAD204520 with less toxic side effects allowed us to unravel the impact of NOTCH1 as a pathogenic driver and potential therapeutic target in MLLr leukemia. RNA sequencing (RNA-seq) and RT-qPCR of our MLLr model and MLLr cell lines showed the NOTCH1 pathway was overexpressed and activated. Strikingly, we confirmed this elevated expression level in leukemia patients. We also demonstrated that CAD204520 treatment of MLLr cells significantly reduces NOTCH1 and its target genes as well as NOTCH1 receptor expression. This was not observed with a comparable cytarabine treatment, indicating the specificity of the small molecule. Accordingly, treatment with CAD204520 resulted in dose-dependent reduced proliferation and viability, increased apoptosis, and the induction of cell cycle arrest via the downregulation of MLL and NOTCH1 target genes. In conclusion, our findings uncover the oncogenic relevance of the NOTCH1 pathway in MLLr leukemia. Its inhibition leads to specific anti-leukemic effects and paves the way for further evaluation in clinical settings.


Assuntos
Leucemia Mieloide Aguda , Receptor Notch1 , Humanos , Pontos de Checagem do Ciclo Celular/genética , Citarabina/uso terapêutico , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor Notch1/genética
11.
Oncol Rep ; 50(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859622

RESUMO

Lung squamous cell carcinoma (LSCC) is a highly heterogeneous malignancy with high mortality and few therapeutic options. Licochalcone A (LCA, PubChem ID: 5318998) is a chalcone extracted from licorice and possesses anticancer and anti­inflammatory activities. The present study aimed to elucidate the anticancer effect of LCA on LSCC and explore the conceivable molecular mechanism. MTT assay revealed that LCA significantly inhibited the proliferation of LSCC cells with less cytotoxicity towards human bronchial epithelial cells. 5­ethynyl­2'­deoxyuridine (EdU) assay demonstrated that LCA could reduce the proliferation rate of LSCC cells. The flow cytometric assays indicated that LCA increased the cell number of the G1 phase and induced the apoptosis of LSCC cells. LCA downregulated the protein expression of cyclin D1, cyclin E, CDK2 and CDK4. Meanwhile, LCA increased the expression level of Bax, cleaved poly(ADP­ribose)polymerase­1 (PARP1) and caspase 3, as well as downregulated the level of Bcl­2. Proteomics assay demonstrated that LCA exerted its antitumor effects via inhibiting mitogen­activated protein kinase (MAPK) signaling pathways and the expression of F­box protein 5 (FBXO5). Western blot analysis showed that LCA decreased the expression of p­ERK1/2, p­p38MAPK and FBXO5. In the xenograft tumors of LSCC, LCA significantly inhibited the volumes and weight of tumors in nude mice with little toxicity in vital organs. Therefore, the present study demonstrated that LCA effectively inhibited cell proliferation and induced apoptosis in vitro, and suppressed xenograft tumor growth in vivo. LCA may serve as a future therapeutic candidate of LSCC.


Assuntos
Carcinoma de Células Escamosas , Chalconas , Proteínas F-Box , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Chalconas/farmacologia , Chalconas/uso terapêutico , Proteínas F-Box/metabolismo , Pulmão/patologia , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
12.
Cancer Lett ; 579: 216464, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37879429

RESUMO

The suppressor of variegation enhancer of zeste-trithorax (SET) domain methyltransferases have been reported to function as key regulators in multiple tumor types by catalyzing histone lysine methylation. Nevertheless, our understanding on the role of these lysine methyltransferases, including SETD4, in prostate cancer (PCa) remains limited. Hence, the specific role of SETD4 in PCa was investigated in this study. The expression of SETD4 in PCa cells and tissue samples was downregulated in PCa cells and tissue specimens, and decreased SETD4 expression led to inferior clinicopathological characteristics in patients with PCa. knockdown of SETD4 facilitated the proliferation of PCa cells and accelerated cell cycle progression. Mechanistically, SETD4 repressed NUPR1 transcription by methylating H3K27 to generate H3K27me3, subsequently inactivated Akt pathway and impeded the tumorigenesis of PCa. Our results highlight that SETD4 prevents the development of PCa by catalyzing the methylation of H3K27 and suppressing NUPR1 transcription, subsequently inactivating the Akt signaling pathway. The findings suggest the potential application of SETD4 in PCa prognosis and therapeutics.


Assuntos
Histonas , Neoplasias da Próstata , Humanos , Masculino , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Mol Cancer Res ; 21(12): 1274-1287, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713314

RESUMO

BTB and CNC homology 1 (BACH1) is a transcription repressor that regulates multiple physiological processes, including intracellular heme homeostasis and immune responses. Increasing lines of evidence indicate that BACH1 reshapes metastasis and metabolism of human solid tumors. However, its potential roles in mantle cell lymphoma (MCL) remain largely unknown. Here, we found that silencing BACH1 in MCL cells induced markedly cell-cycle arrest and cell apoptosis, whereas overexpression of BACH1 exhibited the opposite patterns. Increased BACH1 levels not only promoted tumor growth and dispersal in xenografts, but also conferred a long-term poor prognosis in patients with MCL. Interestingly, RNA sequencing analysis revealed noncanonical function of BACH1 in regulation of type I interferon (IFNI) response, DNA replication and repair, and cell cycle. Mechanistically, zinc finger and BTB domain containing 20 (ZBTB20) and HMG-box transcription factor 1 (HBP1) were for the first time identified as two novel downstream targets repressed by BACH1 in MCL cells. Further double-knockdown functional assays confirmed that loss of BACH1 induced ZBTB20-mediated IFNα production and HBP1-mediated cell-cycle arrest, indicating that BACH1-centered regulatory network may be a novel targetable vulnerability in MCL cells. IMPLICATIONS: BACH1 serves as a pleotropic regulator of tumor-intrinsic innate immune response and cell-cycle progression, disruption of which may offer a promising therapeutic strategy for MCL treatment.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Linfoma de Célula do Manto , Humanos , Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfoma de Célula do Manto/genética , Pontos de Checagem do Ciclo Celular/genética , Ciclo Celular , Imunidade Inata/genética , Proteínas de Grupo de Alta Mobilidade , Proteínas Repressoras
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(8): 714-720, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37515338

RESUMO

Objective To establish a stable strain of H9c2 cardiomyocytes overexpressing Cx40 and preliminarily investigate the effect of lentiviral vector-mediated Cx40 protein overexpression on the proliferation of H9c2 cells and its related mechanisms. Methods The Cx40 gene fragment was cloned from H9c2 cells by PCR and linked with lentivirus vector pLVX-IRES-Puro to obtain the recombinant plasmid pLVX-Flag-Cx40. Recombinant lentiviral particles carrying Flag-Cx40 were obtained by cotransfection with packaging plasmids into HEK293T cells. A stable expression strain (H9c2-Flag-Cx40 cell) was screened from infected H9c2 cells by purinomycin. The expression of Cx40 protein was detected by Western blot analysis, and the effect of Cx40 on H9c2 cells proliferation was determined by CCK-8 assay; cell cycle changes were measured by flow cytometry; the expression of the cell cycle protein cyclin D1 was detected by qRT-PCR and Western blot analysis. Co-immunoprecipitation (Co-IP) immunoprecipitation and Western blot analysis were used to identify the binding of Cx40 and Yes associated protein (YAP) in H9c2 cells; cytoplasmic and cytosolic proteins were isolated to detect the effect of Cx40 on the localization of YAP using Western blot analysis. Results Sequencing results showed that the recombinant pLVX-Flag-Cx40 expression vector was successfully established. A stable transfected cell line containing recombinant Flag-Cx40 lentivirus (H9c2-Flag-Cx40 cell) was successfully constructed from H9c2 cells. Compared with the control group, overexpression of Cx40 significantly reduced the proliferation of H9c2 cells, arrested the cell cycle at G0/G1 and reduced cyclin D1 expression. A significant increase in YAP expression was observed in the cytoplasm of the H9c2-Flag-Cx40 stable cell line, while the expression in the nucleus was significantly reduced. Cx40 bound to YAP in the cytoplasm and prevented it from entering the nucleus to play the role of transcriptional coactivation. Conclusion Overexpression of Cx40 induces cell-cycle arrest at G0/G1 phase and inhibits the proliferation in H9c2 cells.


Assuntos
Ciclina D1 , Miócitos Cardíacos , Ratos , Humanos , Animais , Ciclina D1/genética , Transfecção , Células HEK293 , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Lentivirus/genética , Vetores Genéticos/genética , Proteína alfa-5 de Junções Comunicantes
15.
Nat Commun ; 14(1): 4072, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429857

RESUMO

The CRISPR-Cas9 system has revolutionized our ability to precisely modify the genome and has led to gene editing in clinical applications. Comprehensive analysis of gene editing products at the targeted cut-site has revealed a complex spectrum of outcomes. ON-target genotoxicity is underestimated with standard PCR-based methods and necessitates appropriate and more sensitive detection methods. Here, we present two complementary Fluorescence-Assisted Megabase-scale Rearrangements Detection (FAMReD) systems that enable the detection, quantification, and cell sorting of edited cells with megabase-scale loss of heterozygosity (LOH). These tools reveal rare complex chromosomal rearrangements caused by Cas9-nuclease and show that LOH frequency depends on cell division rate during editing and p53 status. Cell cycle arrest during editing suppresses the occurrence of LOH without compromising editing. These data are confirmed in human stem/progenitor cells, suggesting that clinical trials should consider p53 status and cell proliferation rate during editing to limit this risk by designing safer protocols.


Assuntos
Sistemas CRISPR-Cas , Proteína Supressora de Tumor p53 , Humanos , Sistemas CRISPR-Cas/genética , Proteína Supressora de Tumor p53/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Separação Celular , RNA
16.
Med Oncol ; 40(7): 196, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284891

RESUMO

Anaplastic thyroid cancer (ATC) represents the type with the worst prognosis among thyroid cancers. In ATC with a highly invasive phenotype, selective targeting of TERT with BIBR1532 may be a goal-driven approach to preserving healthy tissues. In present study, it was aimed to investigate the effects of treatment of SW1736 cells with BIBR1532 on apoptosis, cell cycle progression, and migration. The apoptotic effect of BIBR1532 on SW1736 cells was examined using the Annexin V method, the cytostatic effect using cell cycle test, migration properties using wound healing assay. Gene expression differences were determined by real-time qRT-PCR and differences in protein level by ELISA test. BIBR1532-treated SW1736 cells had 3.1-fold increase in apoptosis compared to their untreated counterpart. There was 58.1% arrest in the G0/G1 phase and 27.6% arrest in the S phase of the cell cycle in untreated group, treatment with BIBR1532 increased cell population in G0/G1 phase to 80.9% and decreased in S phase to 7.1%. Treatment with the TERT inhibitor resulted in a 50.8% decrease in cell migration compared to the untreated group. After BIBR1532 treatment of SW1736 cells, upregulation of BAD, BAX, CASP8, CYCS, TNFSF10, CDKN2A genes, and downregulation of BCL2L11, XIAP, CCND2 genes were detected. BIBR1532 treatment resulted in an increase in BAX and p16 proteins, and a decrease in concentration of BCL-2 protein compared to untreated group. Targeting TERT with BIBR1532 as a mono drug or using of BIBR1532 at "priming stage" prior to chemotherapy treatment in ATC may present a novel and promising treatment strategy.


Assuntos
Antineoplásicos , Apoptose , Ciclo Celular , Movimento Celular , Inibidores Enzimáticos , Telomerase , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Telomerase/antagonistas & inibidores , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
17.
Nat Commun ; 14(1): 3007, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230975

RESUMO

Renal tubular epithelial cells (TECs) play a key role in kidney fibrosis by mediating cycle arrest at G2/M. However, the key HDAC isoforms and the underlying mechanism that are involved in G2/M arrest of TECs remain unclear. Here, we find that Hdac9 expression is significantly induced in the mouse fibrotic kidneys, especially in proximal tubules, induced by aristolochic acid nephropathy (AAN) or unilateral ureter obstruction (UUO). Tubule-specific deletion of HDAC9 or pharmacological inhibition by TMP195 attenuates epithelial cell cycle arrest in G2/M, then reduces production of profibrotic cytokine and alleviates tubulointerstitial fibrosis in male mice. In vitro, knockdown or inhibition of HDAC9 alleviates the loss of epithelial phenotype in TECs and attenuates fibroblasts activation through inhibiting epithelial cell cycle arrest in G2/M. Mechanistically, HDAC9 deacetylates STAT1 and promotes its reactivation, followed by inducing G2/M arrest of TECs, finally leading to tubulointerstitial fibrosis. Collectively, our studies indicate that HDAC9 may be an attractive therapeutic target for kidney fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Masculino , Camundongos , Apoptose , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Rim/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Obstrução Ureteral/metabolismo
18.
Mol Med Rep ; 27(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37203403

RESUMO

It has been reported that DEP domain protein 1B (DEPDC1B) serves several roles in the occurrence and development of various types of cancer. Nevertheless, the effect of DEPDC1B on colorectal cancer (CRC), as well as its particular underlying molecular mechanism remain to be elucidated. In the present study, the mRNA and protein expression levels of DEPDC1B and nucleoporin 37 (NUP37) in CRC cell lines were assessed by reverse transcription­quantitative PCR and western blotting, respectively. Cell Counting Kit­8 and 5­Ethynyl­2'­deoxyuridine assays were carried out to determine cell proliferation. In addition, the migration and invasion abilities of cells were evaluated using wound healing and Transwell assays. The changes in cell apoptosis and cell cycle distribution were assessed by flow cytometry and western blotting. Bioinformatics analysis and co­immunoprecipitation assays were performed to predict and verify, respectively, the binding capacity of DEPDC1B on NUP37. The expression levels of Ki­67 were detected by immunohistochemical assay. Finally, the activation of phosphoinositide 3­kinase (PI3K)/protein kinase B (AKT) signaling was measured using western blotting. The results showed that DEPDC1B and NUP37 were upregulated in CRC cell lines. DEPDC1B and NUP37 silencing both inhibited the proliferation, migration and invasion capabilities of CRC cells and promoted cell apoptosis and cell cycle arrest. Furthermore, NUP37 overexpression reversed the inhibitory effects of DEPDC1B silencing on the behavior of CRC cells. Animal experiments demonstrated that DEPDC1B knockdown inhibited the growth of CRC in vivo by targeting NUP37. In addition, DEPDC1B knockdown inhibited the expression levels of the PI3K/AKT signaling­related proteins in CRC cells and tissues by also binding to NUP37. Overall, the current study suggested that DEPDC1B silencing could alleviate the progression of CRC via targeting NUP37.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Proteínas Ativadoras de GTPase , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Proteínas Ativadoras de GTPase/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
19.
Mol Med ; 29(1): 70, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226090

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease in preterm infants with pathological characteristics of arrested lung development. DNA double-strand breaks (DSBs) are a serious manifestation of oxidative stress damage, but little is known about the role of DSBs in BPD. The current study set out to detect DSB accumulation and cell cycle arrest in BPD and study the expression of genes related to DNA damage and repair in BPD through DNA damage signaling pathway-based PCR array to determine a suitable target to improve arrested lung development associated with BPD. METHODS: DSB accumulation and cell cycle arrest were detected in a BPD animal model and primary cells, then a DNA damage signaling pathway-based PCR array was used to identify the target of DSB repair in BPD. RESULTS: DSB accumulation and cell cycle arrest were shown in BPD animal model, primary type II alveolar epithelial cells (AECII) and cultured cells after exposure to hyperoxia. Of the 84 genes in the DNA damage-signaling pathway PCR array, eight genes were overexpressed and 11 genes were repressed. Rad1, an important protein for DSB repair, was repressed in the model group. Real-time PCR and western blots were used to verify the microarray results. Next, we confirmed that silencing Rad1 expression aggravated the accumulation of DSBs and cell cycle arrest in AECII cells, whereas its overexpression alleviated DSB accumulation and cell cycle arrest. CONCLUSIONS: The accumulation of DSBs in AECII might be an important cause of alveolar growth arrest associated with BPD. Rad1 could be an effective target for intervention to improve this arrest in lung development associated with BPD.


Assuntos
Displasia Broncopulmonar , Exonucleases , Parada Cardíaca , Animais , Ratos , Células Epiteliais Alveolares , Displasia Broncopulmonar/genética , Pontos de Checagem do Ciclo Celular/genética , DNA , Quebras de DNA de Cadeia Dupla
20.
J Mol Cell Cardiol ; 179: 30-41, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062247

RESUMO

Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.


Assuntos
Proteínas Imediatamente Precoces , Proteínas Supressoras de Tumor , Animais , Camundongos , Ratos , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA