Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493746

RESUMO

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Animais , Camundongos , Humanos , Cisteína Endopeptidases Gingipaínas/metabolismo , Células CACO-2 , Porphyromonas gingivalis/fisiologia , Citosol/metabolismo , Ocludina/metabolismo , Adesinas Bacterianas/metabolismo
2.
Int. j. morphol ; 41(2): 431-436, abr. 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1440308

RESUMO

La enfermedad periodontal es una de las principales causas de pérdida dentaria. Clínicamente, esta patología, mediada por la desregulación del sistema inmune producto de una disbiosis ocurrida en el surco gingival, inicia con la inflamación de la encía y evoluciona con el daño irreversible de los tejidos que rodean el diente. El hueso alveolar es uno de los tejidos afectados esta patología, esto debido a la activación de osteoclastos por la sobreexpresión de la proteína RANKL en el huésped. El propósito de este trabajo es determinar el nivel de sobreexpresión de RANKL, en un modelo de células tumorales U2OS, frente a la infección con Porphyromonas gingivalis y Prevotella intermedia. Para identificar el nivel de RANKL, se definieron cuatro grupos: Un grupo control, no tratado; Grupo PG, tratado con P. gingivalis; Grupo PI, tratado con P. Intermedia; y un grupo PG+PI, tratado con ambas bacterias. El nivel relativo de la proteína RANKL fue determinado en el sobrenadante y en los extractos celulares de manera independiente, mediante la técnica Western blot. En sobrenadantes, el grupo PG mostró mayores niveles de RANKL comparados con PI (p < 0,05). En extractos celulares los niveles fueron mayores en el grupo PG+PI (p < 0,05). El grupo PI mostró los niveles más bajos de RANKL. La infección polimicrobiana resulta en una mayor expresión de RANKL en células tumorales U2OS, mientras que frente a la infección P. gingivalis, se observó mayor cantidad de RANKL soluble.


SUMMARY: Periodontal disease is one of the main causes of tooth loss. Clinically, this pathology, mediated by the deregulation of the immune system due to a dysbiosis occurred in the gingival sulcus, begins with the inflammation of the gum and evolves with the irreversible damage of the tissues that surround the tooth. Alveolar bone is one of the most affected tissues by this disease, due to the activation of osteoclasts by the upregulation of RANKL in the host. The aim of this study is to determine the increase of RANKL, in a U2OS tumor cells model, inoculated with Porphyromonas gingivalis and Prevotella intermedia. To identify the level of RANKL, four groups were defined: A control group, not treated; PG group, treated with P.gingivalis; PI group, treated with P. intermedia; and a PG+PI group, treated with both bacteria. The relative level of RANKL was determined in the supernatant and cell extracts independently, using the Western blot technique. In supernatants, the PG group showed higher RANKL levels compared to PI (p < 0.05). In cell extracts the levels were higher in the PG+PI group (p < 0.05.). The PI group showed the lowest levels of RANKL.Polymicrobial infection results in a greater expression of of soluble RANKL was observed.


Assuntos
Doenças Periodontais/microbiologia , Bactérias Anaeróbias/fisiologia , Reabsorção Óssea/microbiologia , Ligante RANK/metabolismo , Células Cultivadas , Western Blotting , Porphyromonas gingivalis/fisiologia , Prevotella intermedia/fisiologia , Linhagem Celular Tumoral , Eletroforese , Ligante RANK/análise
3.
J Adv Res ; 50: 55-68, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36243399

RESUMO

INTRODUCTION: Serum amyloid P component (SAP) regulates the innate immune system and microbial diseases. Periodontitis is an inflammatory oral disease developed by the host immune system's interaction with the dysbiotic oral microbiome, thereby SAP could play a role in periodontitis pathogenicity. OBJECTIVES: To investigate the role of SAP in oral microbiome modulation and peridontitis pathogenicity. METHODS: In this study, wildtype and SAP-knockout (KO) mice were used. Ligature-based periodontitis was developed in mice. Oral microbiome diversity was analyzed by 16 s rRNA sequencing. Macrophages and Porphyromonas gingivalis (P. gingivalis) co-culture system analyzed the effect of SAP in macrophage phagocytosis of P. gingivalis. RESULTS: The level of SAP was upregulated in the periodontitis-affected periodontium of humans and mice but not in the liver and blood circulation. Periodontal macrophages were the key source of upregulated SAP in periodontitis. SAP-KO aggravated periodontal inflammation, periodontitis, and a higher number of M1-type inflammatory macrophage infiltration in the periodontium. The oral microbiome of SAP-KO periodontitis mice was altered with a higher abundance of Porphyromonas at the genus level. SAP-KO macrophages showed compromised phagocytosis of P. gingivalis in the co-culture system. Co-culture of SAP-KO macrophages and P. gingivalis induced the C5a expression and exogenous SAP treatment nullified this effect. Exogenous recombinant SAP treatment did not affect P. gingivalis growth and opsonization. PMX205, an antagonist of C5a, treatment robustly enhanced P. gingivalis phagocytosis by SAP-KO macrophages, indicating the involvement of the C5a-C5aR signaling in the compromised P. gingivalis phagocytosis by SAP-KO macrophages. CONCLUSION: SAP deficiency aggravates periodontitis possibly via C5a-C5aR signaling-mediated defective macrophage phagocytosis of P. gingivalis. A higher abundance of P. gingivalis during SAP deficiency could promote M1 macrophage polarization and periodontitis. This finding suggests the possible protecting role of elevated levels of periodontal SAP against periodontitis progression.


Assuntos
Periodontite , Porphyromonas gingivalis , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Camundongos Knockout , Periodontite/metabolismo , Fagocitose , Porphyromonas gingivalis/fisiologia , Transdução de Sinais , Componente Amiloide P Sérico/metabolismo
4.
ACS Nano ; 16(11): 18253-18265, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36288552

RESUMO

Periodontitis is a chronic inflammatory disease caused by the interaction of oral microorganisms with the host immune response. Porphyromonas gingivalis (P.g.) acts as a key mediator in subverting the homeostasis of the local immune system. On the one hand, P.g. inhibits phagocytosis and the killing capacity of immune cells. On the other hand, P.g. increases selective cytokine release, which is beneficial to its further proliferation. Here, we prepared a penetrating macrophage-based nanoformulation (MZ@PNM)-encapsulating hydrogel (MZ@PNM@GCP) that responded to the periodontitis microenvironment. MZ@PNM targeted P.g. via the Toll-like receptor complex 2/1 (TLR2/1) on its macrophage-mimicking membrane, then directly killed P.g. through disruption of bacterial structural integrity by the cationic nanoparticles and intracellular release of an antibacterial drug, metronidazole (MZ). Meanwhile, MZ@PNM interrupted the specific binding of P.g. to immune cells and neutralized complement component 5a (C5a), preventing P.g. subversion of periodontal host immune response. Overall, MZ@PNM@GCP showed potent efficacy in periodontitis treatment, restoring local immune function and killing pathogenic bacteria, while exhibiting favorable biocompatibility, all of which have been demonstrated both in vivo and in vitro.


Assuntos
Periodontite , Humanos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Porphyromonas gingivalis/fisiologia , Macrófagos/metabolismo , Citocinas
5.
Microbiol Spectr ; 10(5): e0075322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000865

RESUMO

Porphyromonas gingivalis is a keystone oral pathogen that successfully manipulates the human innate immune defenses, resulting in a chronic proinflammatory state of periodontal tissues and beyond. Here, we demonstrate that secreted outer membrane vesicles (OMVs) are deployed by P. gingivalis to selectively coat and activate human neutrophils, thereby provoking degranulation without neutrophil killing. Secreted granule components with antibacterial activity, especially LL-37 and myeloperoxidase (MPO), are subsequently degraded by potent OMV-bound proteases known as gingipains, thereby ensuring bacterial survival. In contrast to neutrophils, the P. gingivalis OMVs are efficiently internalized by macrophages and epithelial cells. Importantly, we show that neutrophil coating is a conserved feature displayed by OMVs of at least one other oral pathogen, namely, Aggregatibacter actinomycetemcomitans. We conclude that P. gingivalis deploys its OMVs for a neutrophil-deceptive strategy to create a favorable inflammatory niche and escape killing. IMPORTANCE Severe periodontitis is a dysbiotic inflammatory disease that affects about 15% of the adult population, making it one of the most prevalent diseases worldwide. Importantly, periodontitis has been associated with the development of nonoral diseases, such as rheumatoid arthritis, pancreatic cancer, and Alzheimer's disease. Periodontal pathogens implicated in periodontitis can survive in the oral cavity only by avoiding the insults of neutrophils while at the same time promoting an inflamed environment where they successfully thrive. Our present findings show that outer membrane vesicles secreted by the keystone pathogen Porphyromonas gingivalis provide an effective delivery tool of virulence factors that protect the bacterium from being killed while simultaneously activating human neutrophils.


Assuntos
Neutrófilos , Periodontite , Humanos , Antibacterianos , Membrana Externa Bacteriana , Cisteína Endopeptidases Gingipaínas , Neutrófilos/metabolismo , Periodontite/microbiologia , Peroxidase/metabolismo , Porphyromonas gingivalis/fisiologia , Fatores de Virulência/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628542

RESUMO

Porphyromonas gingivalis as the keystone periodontopathogen plays a critical role in the pathogenesis of periodontitis, and crucially accounts for inflammatory comorbidities such as cardiovascular disease and Alzheimer's disease. We recently identified the existence of P. gingivalis persisters and revealed the unforeseen perturbation of innate response in human gingival epithelial cells (HGECs) due to these noxious persisters. Herein, RNA sequencing revealed how P. gingivalis persisters affected the expression profile of cytokine genes and related signaling pathways in HGECs. Results showed that metronidazole-treated P. gingivalis persisters (M-PgPs) impaired the innate host defense of HGECs, in a similar fashion to P. gingivalis. Notably, over one thousand differentially expressed genes were identified in HGECs treated with M-PgPs or P. gingivalis with reference to the controls. Gene Ontology and KEGG pathway analysis demonstrated significantly enriched signaling pathways, such as FOXO. Importantly, the FOXO1 inhibitor rescued the M-PgP-induced disruption of cytokine expression. This study suggests that P. gingivalis persisters may perturb innate host defense, through the upregulation of the FOXO signaling pathway. Thus, the current findings could contribute to developing new approaches to tackling P. gingivalis persisters for the effective control of periodontitis and P. gingivalis-related inflammatory comorbidities.


Assuntos
Periodontite , Porphyromonas gingivalis , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Periodontite/tratamento farmacológico , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis/fisiologia , Análise de Sequência de RNA , Transdução de Sinais , Regulação para Cima
7.
mBio ; 13(3): e0378721, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491845

RESUMO

Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts. IMPORTANCE Gingipain cysteine proteases are essential virulence factors of Porphyromonas gingivalis, an oral bacterium implicated in development of periodontitis. Gingipains diffusing from anaerobic periodontal pockets lose proteolytic activity in the oxygenated environment of gingival tissues. We found that despite the loss of activity, gingipains still elicit a strong inflammatory response, which may contribute to the progression of periodontitis and bone resorption. Moreover, we identified the host molecules utilized by the pathogen as receptors for proteolytically inactivated gingipains. The broad distribution of those receptors in human tissue suggests their involvement in systemic diseases associated with periodontal pathogens.


Assuntos
Reabsorção Óssea , Periodontite , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Receptores ErbB/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Imunidade , Bolsa Periodontal , Periodontite/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Porphyromonas gingivalis/fisiologia
8.
J Immunol Res ; 2022: 6839356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224112

RESUMO

Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman's correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (p < 0.001), C-reactive protein (p < 0.001), matrix metalloproteinase-3 (p < 0.001), and IL-6 (p = 0.001), and were inversely correlated with hemoglobin (p = 0.005). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (p = 0.002) and painVAS (p < 0.001). Total bacteria counts were correlated with ENC (p < 0.001), and inversely correlated with serum LPS (p < 0.001) and anti-Pg-LPS IgA antibody levels (p < 0.001). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.


Assuntos
Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/microbiologia , Disbiose/microbiologia , Boca/microbiologia , Porphyromonas gingivalis/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Carga Bacteriana , Infecções por Bacteroidaceae/imunologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Estudos Transversais , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal , Humanos , Imunoglobulina A/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade
9.
Biochem Biophys Res Commun ; 589: 35-40, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34891039

RESUMO

Porphyromonas gingivalis (Pg) a major periodontal pathogen involved in periodontal disease development and progression. Moreover, Pg has two fimbriae surface proteins (FimA and Mfa1) that are genetically distinct and make-up the fimbrial shaft which in-turn form crucial attachment to oral bacteria and multiple host cells. However, unlike FimA, Mfa1 attachment to non-periodontal cells has not been fully elucidated. Considering Pg-associated periodontal disease contributes to pulmonary disease development, we investigated whether Mfa1 can functionally interact with human bronchial epithelial cells and, likewise, trigger a functional response. Initially, we simulated molecular docking and performed both luciferase and neutralization assays to confirm Mfa1-related functional interaction. Subsequently, we treated BEAS-2B cells with purified Mfa1 and performed cytokine quantification through real time-PCR and ELISA to establish Mfa1-related functional response. We found that both Mfa1-TLR2 and Mfa1-TLR4 docking is possible, however, only Mfa1-TLR2 showed a functional interaction. Additionally, we observed that both IL-8 and IL-6 gene expression and protein levels were induced confirming Mfa1-related functional response. Taken together, we propose that BEAS-2B human bronchial epithelial cells are able to recognize Pg Mfa1 and induce both IL-8 and IL-6 inflammatory responses.


Assuntos
Proteínas de Bactérias/metabolismo , Brônquios/patologia , Células Epiteliais/metabolismo , Proteínas de Fímbrias/metabolismo , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Porphyromonas gingivalis/fisiologia , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Fímbrias Bacterianas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Porphyromonas gingivalis/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
10.
J Innate Immun ; 14(4): 306-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34823251

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is constitutively produced by endothelial cells and plays a vital role in maintaining vascular homeostasis. Chronic periodontitis is an inflammatory disease characterized by bleeding of periodontal tissues that support the tooth. In this study, we aimed to determine the role of PAI-1 produced by endothelial cells in response to infections caused by the primary periodontal pathogen Porphyromonas gingivalis. We demonstrated that P. gingivalis infection resulted in significantly reduced PAI-1 levels in human endothelial cells. This reduction in PAI-1 levels could be attributed to the proteolysis of PAI-1 by P. gingivalis proteinases, especially lysine-specific gingipain-K (Kgp). We demonstrated the roles of these degradative enzymes in the endothelial cells using a Kgp-specific inhibitor and P. gingivalis gingipain-null mutants, in which the lack of the proteinases resulted in the absence of PAI-1 degradation. The degradation of PAI-1 by P. gingivalis induced a delayed wound healing response in endothelial cell layers via the low-density lipoprotein receptor-related protein. Our results collectively suggested that the proteolysis of PAI-1 in endothelial cells by gingipains of P. gingivalis might lead to the deregulation of endothelial homeostasis, thereby contributing to the permeabilization and dysfunction of the vascular endothelial barrier.


Assuntos
Células Endoteliais , Porphyromonas gingivalis , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Cisteína Endopeptidases Gingipaínas , Humanos , Inibidor 1 de Ativador de Plasminogênio , Porphyromonas gingivalis/fisiologia , Cicatrização
11.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831265

RESUMO

Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1ß and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1ß and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.


Assuntos
Apoptose , Encéfalo/patologia , Citocinas/metabolismo , Células Endoteliais/patologia , NF-kappa B/metabolismo , Estresse Oxidativo , Porphyromonas gingivalis/fisiologia , Transdução de Sinais , Animais , Aderência Bacteriana , Forma Celular , Sobrevivência Celular , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
Sci Rep ; 11(1): 18398, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526589

RESUMO

Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Porphyromonas gingivalis/fisiologia , Animais , Terapia Biológica , Biomarcadores , Glicemia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Jejum , Insulina/sangue , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Periodontite/complicações , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/terapia
13.
mBio ; 12(3): e0050221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182783

RESUMO

Periodontal disease (PD) is an inflammatory disease of the supporting tissues of the teeth that develops in response to formation of a dysbiotic biofilm on the subgingival tooth surface. Although exacerbated inflammation leads to alveolar bone destruction and may cause tooth loss, the molecular basis of PD initiation and progression remains elusive. Control over the inflammatory reaction and return to homeostasis can be efficiently restored by negative regulators of Toll-like receptor (TLR) signaling pathways such as monocyte chemoattractant protein-induced protein 1 (MCPIP-1), which is constitutively expressed in gingival keratinocytes and prevents hyperresponsiveness in the gingiva. Here, we found that inflammophilic periodontal species influence the stability of MCPIP-1, leading to an aggravated response of the epithelium to proinflammatory stimulation. Among enzymes secreted by periodontal species, gingipains-cysteine proteases from Porphyromonas gingivalis-are considered major contributors to the pathogenic potential of bacteria, strongly influencing the components of the innate and adaptive immune system. Gingipain proteolytic activity leads to a rapid degradation of MCPIP-1, exacerbating the inflammatory response induced by endotoxin. Collectively, these results establish a novel mechanism of corruption of inflammatory signaling by periodontal pathogens, indicating new possibilities for treatment of this chronic disease. IMPORTANCE Periodontitis is a highly prevalent disease caused by accumulation of a bacterial biofilm. Periodontal pathogens use a number of virulence strategies that are under intensive study to find optimal therapeutic approaches against bone loss. In our work, we present a novel mechanism utilized by the key periodontal pathogen Porphyromonas gingivalis, based on the selective degradation of the negative regulator of inflammation, MCPIP-1. We found that the diminished levels of MCPIP-1 in gingival keratinocytes-cells at the forefront of the fight against bacteria-cause sensitization to endotoxins produced by other oral species. This results in an enhanced inflammatory response, which promotes the growth of inflammophilic pathobionts and damage of tooth-supporting tissues. Our observation is relevant to understanding the molecular basis of periodontitis and the development of new methods for treatment.


Assuntos
Gengiva/citologia , Inflamação , Queratinócitos/imunologia , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais , Animais , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Feminino , Cisteína Endopeptidases Gingipaínas , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/microbiologia , Porphyromonas gingivalis/fisiologia , Ribonucleases/genética , Ribonucleases/imunologia , Organismos Livres de Patógenos Específicos
14.
J Biomed Mater Res B Appl Biomater ; 109(11): 1754-1767, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33871914

RESUMO

Early infection and peri-implantitis after implant restoration are major reasons for dental implant failure. Implant-associated infections are majorly attributed to biofilm formation. In this study, co-incorporated zinc- (Zn-) and strontium- (Sr-) nanorod coating on sandblasted and acid-etched (SLA) titanium (SLA-Zn/Sr) was fabricated by hydrothermal synthesis. It was aimed at promoting osteogenesis while inhibiting biofilm formation. The nanorod-like particles (φ 30-50 nm) were found to be evenly formed on SLA-Zn/Sr (Zn: 1.49 ± 0.16 wt%; Sr: 21.69 ± 2.74 wt%) that was composed of well-crystallized ZnTiO3 and SrTiO3 phases. With a sufficient interface bonding strength (42.00 ± 3.00 MPa), SLA-Zn/Sr enhanced the corrosion resistance property of titanium. Besides, SLA-Zn/Sr promoted the cellular initial adhesion, proliferation and osteogenic differentiation of rBMSCs in vitro while inhibiting the adhesion of Staphylococcus aureus and Porphyromonas gingivalis . In addition, through down-regulating icaA gene expression, this novel surface reduced the secretion of polysaccharide intercellular adhesion (reduced by 87.9% compared to SLActive) to suppress the S. aureus biofilm formation. We, therefore, propose a new chemical modification on titanium for multifunctional implant material development. Due to the Zn/Sr co-doping in coating, material properties, early osteogenic effect and antibacterial ability of titanium can be simultaneously enhanced, which has the potential to be applied in dental implantation in the future.


Assuntos
Antibacterianos/química , Biofilmes , Células-Tronco Mesenquimais , Nanotubos/química , Porphyromonas gingivalis/fisiologia , Staphylococcus aureus/fisiologia , Estrôncio/química , Titânio/química , Zinco/química , Animais , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/microbiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
15.
BMC Immunol ; 22(1): 23, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765924

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin and a vital component of gram-negative bacteria's outer membrane. During gram-negative bacterial sepsis, LPS regulates osteoclast differentiation and activity, in addition to increasing inflammation. This study aimed to investigate how LPS regulates osteoclast differentiation of RAW 264.7 cells in vitro. RESULTS: Herein, we revealed that RAW cells failed to differentiate into mature osteoclasts in vitro in the presence of LPS. However, differentiation occurred in cells primed with receptor activator of nuclear factor-kappa-Β ligand (RANKL) for 24 h and then treated with LPS for 48 h (henceforth, denoted as LPS-treated cells). In cells treated with either RANKL or LPS, an increase in membrane levels of toll-like receptor 4 (TLR4) receptor was observed. Mechanistically, an inhibitor of TLR4 (TAK-242) reduced the number of osteoclasts as well as the secretion of tumor necrosis factor (TNF)-α in LPS-treated cells. RANKL-induced RAW cells secreted a very basal level TNF-α. TAK-242 did not affect RANKL-induced osteoclastogenesis. Increased osteoclast differentiation in LPS-treated osteoclasts was not associated with the RANKL/RANK/OPG axis but connected with the LPS/TLR4/TNF-α tumor necrosis factor receptor (TNFR)-2 axis. We postulate that this is because TAK-242 and a TNF-α antibody suppress osteoclast differentiation. Furthermore, an antibody against TNF-α reduced membrane levels of TNFR-2. Secreted TNF-α appears to function as an autocrine/ paracrine factor in the induction of osteoclastogenesis independent of RANKL. CONCLUSION: TNF-α secreted via LPS/TLR4 signaling regulates osteoclastogenesis in macrophages primed with RANKL and then treated with LPS. Our findings suggest that TLR4/TNF-α might be a potential target to suppress bone loss associated with inflammatory bone diseases, including periodontitis, rheumatoid arthritis, and osteoporosis.


Assuntos
Infecções por Bacteroidaceae/imunologia , Macrófagos/fisiologia , Osteoclastos/fisiologia , Porphyromonas gingivalis/fisiologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Reabsorção Óssea , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Osteogênese , Células RAW 264.7 , Transdução de Sinais , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
16.
Sci Rep ; 11(1): 4953, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654123

RESUMO

Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 µg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 µg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fabaceae/química , Extratos Vegetais/farmacologia , Porphyromonas gingivalis/fisiologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Extratos Vegetais/química
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 683-696, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33772282

RESUMO

The bacteria-mediated inflammatory conditions adversely affect the osseointegration process of endosseous implants, which can even lead to implant malfunction or failure. Local drug delivery has been designed to exert anti-inflammatory and antibacterial activities, but whether this strategy has an effect on the compromised osseointegration under inflammation has rarely been studied. The present study focused on the osteoinductive efficacy of two known phytoestrogens [bergapten (BP) and quercetin (QE)] on implant sites under multiple bacteria-infected conditions in situ. Furthermore, the gene expression profiles of rat bone mesenchymal stem cells (rBMSCs) treated with BP and QE in the presence of Porphyromonas gingivalis-derived lipopolysaccharide were identified. The results showed that both drugs, especially QE, had significant potentiating effects on promoting osteogenic differentiation of rBMSCs, resisting multiple pathogens, and reducing inflammatory activity. Meanwhile, RNA sequencing analysis highlighted the enriched gene ontology terms and the differentially expressed genes (Vps25, Il1r2, Csf3, Efemp1, and Ccl20) that might play essential roles in regulating the above tri-effects, which provided the basis for the drug delivery system to be used as a novel therapeutic strategy for integrating peri-implant health. Overall, our study confirmed that QE appeared to outperform BP in osteogenesis and bacterial killing but not in anti-inflammation. Moreover, both drugs possess favorable tri-effects and can serve as the pivotal agents for the drug delivery system to boost osseointegration at inflammatory implant sites.


Assuntos
5-Metoxipsoraleno/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fitoestrógenos/farmacologia , Quercetina/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Lipopolissacarídeos/farmacologia , Masculino , Osseointegração/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Próteses e Implantes/microbiologia , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
18.
Innate Immun ; 27(2): 158-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33445998

RESUMO

Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Acetaldeído/química , Acetaldeído/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Células Clonais , Epitopos de Linfócito B/metabolismo , Proteínas de Fímbrias/metabolismo , Cisteína Endopeptidases Gingipaínas/metabolismo , Imunidade Inata , Imunoglobulina G/isolamento & purificação , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Malondialdeído/química , Malondialdeído/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Receptores de LDL/genética , Receptores de Reconhecimento de Padrão/isolamento & purificação
19.
Methods Mol Biol ; 2210: 215-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32815142

RESUMO

Porphyromonas gingivalis is a major pathogen responsible for severe and chronic manifestations of periodontal disease, which is one of the most common infectious disorders of humans. Although human gingival epithelium prevents intrusions by periodontal bacteria, P. gingivalis is able to invade gingival epithelial cells. To study the dynamics and the fate of intracellular P. gingivalis, confocal laser scanning microscopy (CLSM) is a method of choice. Information gained with CLSM contains not only the number of P. gingivalis associated with gingival epithelial cells but also the bacterial localization on/inside the host cells, morphological change of host cells, and physical interaction between the bacteria and host organelle. In this chapter, we describe the protocols for microscopy techniques to morphologically study gingival epithelial cells infected by P. gingivalis.


Assuntos
Infecções por Bacteroidaceae/patologia , Células Epiteliais/patologia , Gengiva/patologia , Doenças Periodontais/patologia , Porphyromonas gingivalis/fisiologia , Infecções por Bacteroidaceae/microbiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Epiteliais/microbiologia , Gengiva/citologia , Gengiva/microbiologia , Humanos , Microscopia Confocal/métodos , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/isolamento & purificação , Coloração e Rotulagem/métodos
20.
J Mol Neurosci ; 71(1): 89-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32557144

RESUMO

Hyperphosphorylated tau is the main component of neurofibrillary tangles and involved in the pathogenesis of Alzheimer's disease (AD). Increasing evidences suggest close associations between Porphyromonas gingivalis (P. gingivalis) and AD, but the relationship between P. gingivalis and tau hyperphosphorylation is still unclear. In this study, we investigated whether peripheral infection with P. gingivalis caused tau hyperphosphorylation by using wild Sprague-Dawley (SD) rats and HT-22 cells. The rats were injected with P. gingivalis suspension or phosphate-buffered saline 3 times per week. After 4 weeks or 12 weeks, the rats were sacrificed for analyzing systemic inflammation, neuroinflammation, and tau hyperphosphorylation. The results showed that the severity of phosphorylated tau at the AD-related sites Thr181 and Thr231 and the number of activated astrocytes were notably greater in the hippocampus of rats with P. gingivalis injection. And the levels of the inflammatory cytokines interleukin (IL)-1ß and IL-6 and tumor necrosis factor-α in serum and hippocampus were also increased in the rats with P. gingivalis injection. In addition, the activity of protein phosphatase 2A (PP2A) was significantly inhibited in the hippocampus of rats with P. gingivalis injection. In vitro, IL-1ß induced tau hyperphosphorylation by inhibiting the activity of PP2A in HT-22 cells and application of the PP2A promoter efficiently attenuated IL-1ß-induced tau hyperphosphorylation in HT-22 cells. These results indicated that P. gingivalis could induce tau hyperphosphorylation via, in part, attenuating the activity of PP2A through triggering systemic inflammation and neuroinflammation in wild-type SD rats.


Assuntos
Doença de Alzheimer/microbiologia , Infecções por Bacteroidaceae/metabolismo , Porphyromonas gingivalis/patogenicidade , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Astrócitos/metabolismo , Bacteriemia/metabolismo , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular , Citocinas/análise , Citocinas/sangue , Modelos Animais de Doenças , Ativação Enzimática , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Porphyromonas gingivalis/fisiologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA