Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.615
Filtrar
1.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708182

RESUMO

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Assuntos
Antineoplásicos , Artemisininas , Resistencia a Medicamentos Antineoplásicos , Imidazóis , Neoplasias Pulmonares , Estruturas Metalorgânicas , Espécies Reativas de Oxigênio , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/farmacocinética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacocinética , Estruturas Metalorgânicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Concentração de Íons de Hidrogênio , Células A549 , Liberação Controlada de Fármacos , Camundongos Nus , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Hemólise/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 4429-4449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784761

RESUMO

Background: Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods: Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results: As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion: Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.


Assuntos
Emulsões , Peptídeos , Peptídeos/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Emulsões/química , Humanos , Proteínas/química , Proteínas/administração & dosagem , Proteínas/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Aminoácidos/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766663

RESUMO

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Assuntos
Neoplasias da Mama , Verde de Indocianina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Receptores da Transferrina , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Verde de Indocianina/administração & dosagem , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Humanos , Feminino , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Receptores da Transferrina/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Apoferritinas/química , Ferritinas/química , Antígenos CD/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Células MCF-7
4.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645464

RESUMO

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Neoplasias do Colo , Imidazóis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Macrófagos Associados a Tumor , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Animais , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Humanos , Distribuição Tecidual , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Tamanho da Partícula , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
5.
Int J Nanomedicine ; 19: 3753-3772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686338

RESUMO

Background: Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods: We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results: Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙µg/mL) compared to oral free-GEM (19.04 hr∙µg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion: In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Desoxicitidina/administração & dosagem , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Células CACO-2 , Administração Oral , Animais , Linhagem Celular Tumoral , Nanogéis/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Disponibilidade Biológica , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Tamanho da Partícula , Carcinoma Ductal Pancreático/tratamento farmacológico , Polimerização , Sistemas de Liberação de Medicamentos/métodos
6.
Int J Pharm ; 651: 123784, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185340

RESUMO

Dasatinib (DAS) is an oral tyrosine kinase inhibitor; however, its efficacy is significantly subsided by its low oral bioavailability. The present research aimed to improve DAS's oral delivery and efficacy in triple-negative breast cancer by fabricating its mucoadhesive lecithin-chitosan hybrid nanoparticles (DAS-L/CS-NPs). DAS-L/CS-NPs were optimized using Box-Behnken design which showed mean particle size and percent entrapment efficiency of 179.7 ± 5.42 nm and 64.65 ± 0.06 %, respectively. DAS-L/CS-NPs demonstrated sustained release profile in different release media up to 48 h and showed 10 times higher apparent permeability coefficient and flux than free DAS suspension. The binding of DAS-L/CS-NPs to the mucus layer was demonstrated via ex-vivo mucoadhesion study and change in absorbance using turbidimetry. In cell culture studies, DAS-L/CS-NPs revealed a 4.14-fold decrease in IC50, significantly higher cellular uptake and mitochondrial membrane depolarization, 3.82-fold increased reactive oxygen species generation and 2.10-fold enhanced apoptosis in MDA-MB-231 cells than free DAS. In in-vivo pharmacokinetic assessment, DAS-L/CS-NPs showed a 5.08-fold and 3.74-fold rise in AUC (0-t) and Cmax than free DAS suspension, respectively. An acute toxicity study revealed a good safety profile of DAS-L/CS-NPs. In a nutshell, proposed hybrid nanoparticles are promising carriers for improved oral delivery of poorly water-soluble drugs.


Assuntos
Quitosana , Nanopartículas , Portadores de Fármacos/farmacocinética , Lecitinas , Dasatinibe , Tamanho da Partícula
7.
Int J Biol Macromol ; 253(Pt 8): 127254, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37813219

RESUMO

Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.


Assuntos
Ferroptose , Nanopartículas , Sorafenibe/farmacologia , Soroalbumina Bovina , Sinvastatina/farmacologia , Portadores de Fármacos/farmacocinética , Tamanho da Partícula
8.
Pak J Pharm Sci ; 36(2): 483-490, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530156

RESUMO

Piperlongumine (PL) is a biologically active alkaloid derived from peppers, has significant cytotoxic effects on cancer with no cytotoxicity. This study used NabTM technology to prepare PL albumin nanoparticles (PL-BSA-NPs) to improve water solubility and bioavailability. We carried out a pharmacological evaluation of the PL-BSA-NPs. The morphological profile of the PL-BSA-NPs was relatively uniform, with an average particle size of approximately 210 nm, with drug load of 2.1% and encapsulation rate of 87.6%. PL-BSA-NPs were stable for 4 weeks when stored at 4°C. In vitro release behavior of the PL-BSA-NPs showed a sustained release, with a cumulative release of 67.24% in approximately 24 hours. The pharmacokinetic properties of PL-BSA-NPs were shown that PL-BSA-NPs could maintain a certain level of blood drug concentration for a long time, thus demonstrating the sustained release and increased bioavailability of PL. Finally, we investigated the in vitro antitumor activity of the PL-BSA-NPs and found that PL can significantly inhibit HepG2 cell proliferation, and that PL-BSA-NPs enhanced the inhibitory effect of PL on this proliferative effect. Thus, we concluded that PL can destroy liver cancer cells by increasing ROS levels. These results suggested that PL-BSA-NPs show promising potential as a targeted anti-tumor drug.


Assuntos
Antineoplásicos , Nanopartículas , Solubilidade , Soroalbumina Bovina , Disponibilidade Biológica , Preparações de Ação Retardada , Antineoplásicos/farmacologia , Tamanho da Partícula , Portadores de Fármacos/farmacocinética , Linhagem Celular Tumoral
9.
AAPS J ; 25(3): 39, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041376

RESUMO

Paclitaxel (PTX) is a frequently prescribed chemotherapy drug used to treat a wide variety of solid tumors. Oligo(lactic acid)8-PTX prodrug (o(LA)8-PTX) loaded poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) micelles have higher loading, slower release and higher antitumor efficacy in murine tumor models over PTX-loaded PEG-b-PLA micelles. The goal of this work is to study plasma stability of o(LA)8-PTX-loaded PEG-b-PLA micelles and its pharmacokinetics after IV injection in rats. In rat plasma, o(LA)8-PTX prodrug is metabolized into o(LA)1-PTX and PTX. In human plasma, o(LA)8-PTX is metabolized more slowly into o(LA)2-PTX, o(LA)1-PTX, and PTX. After IV injection of 10 mg/kg PTX-equiv of o(LA)8-PTX prodrug loaded PEG-b-PLA micelles in Sprague-Dawley rats, metabolite abundance in plasma follows the order: o(LA)1-PTX > o(LA)2-PTX > o(LA)4-PTX > o(LA)6-PTX. Bile metabolite profiles of the o(LA)8-PTX prodrug is similar to plasma metabolite profiles. In comparison to equivalent doses of Abraxane®, plasma PTX exposure is two orders of magnitude higher for Abraxane® than PTX from o(LA)8-PTX prodrug loaded PEG-b-PLA micelles, and plasma o(LA)1-PTX exposure is fivefold higher than PTX from Abraxane®, demonstrating heightened plasma metabolite exposure for enhanced antitumor efficacy.


Assuntos
Paclitaxel , Pró-Fármacos , Ratos , Camundongos , Humanos , Animais , Paclitaxel/farmacocinética , Ácido Láctico , Micelas , Paclitaxel Ligado a Albumina , Portadores de Fármacos/farmacocinética , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Polímeros , Poliésteres
10.
Int J Biol Macromol ; 228: 273-285, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581023

RESUMO

The development of synergistic drug combinations is a promising strategy for effective cancer suppression. Here, we report all-polysaccharide biodegradable polyelectrolyte complex hydrogels (DPCS) based on dextran phosphate carbamate (DP) and chitosan (CS) for controlled co-delivery of the anticancer drug doxorubicin (DOX) and the non-steroidal anti-inflammatory drug indomethacin (IND). IND can induce more apoptosis in tumor cells by reducing the level of multidrug resistance-associated protein 1. Based on calculations using density functional theory and zeta potential analysis data, carriers with high drug loading were obtained. The release profile of both drugs from the hydrogels was tuned by changing the molecular weight and functional groups content of the polysaccharides. The optimized DPCS showed a steady release of DOX both in vitro and in vivo, and a gradual release of IND, which constantly induced the action of DOX. Considering all of these benefits, DOX- and IND-loaded DPCS offer a promising long-acting polysaccharide-based antitumor platform.


Assuntos
Quitosana , Nanopartículas , Indometacina/farmacocinética , Portadores de Fármacos/farmacocinética , Carbamatos , Doxorrubicina/farmacocinética , Polissacarídeos/farmacologia , Hidrogéis
11.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500388

RESUMO

Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Nanoestruturas , Infecção por Zika virus , Zika virus , Camundongos , Animais , Portadores de Fármacos/farmacocinética , Lipídeos , Azitromicina/farmacologia , SARS-CoV-2/metabolismo , Tamanho da Partícula , Lesão Pulmonar Aguda/tratamento farmacológico , Zika virus/metabolismo , Sistemas de Liberação de Medicamentos/métodos
12.
J Microencapsul ; 39(6): 522-538, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36327982

RESUMO

Low aqueous solubility, adverse effects of Cisplatin includes hepatotoxicity and nephrotoxicity necessitates development of nanoparticulate drug delivery. The study pertains to development of CisNLC (Cisplatin loaded Nanostructured Lipid Carrier) by ultrasonication. Physical characterisation includes particle size, zeta potential, TEM, SEM-EDX, DSC. Its ex vivo biocompatibility, pharmacokinetics and biodistribution along with acute toxicity induced oxidative stress in Balb/c mice were evaluated. The mean particle diameter of CisNLC was observed to be 141.5 ± 3.86 nm with zeta potential of -41.5 ± 1.62 mV. In vitro release studies at pH 7.4 and 5.8 showed burst release following a sustained release pattern post-72 h. CisNLC showed anticancer efficacy against PA-1. Negligible ex vivo haemolysis indicated bio-compatibility. Improved pharmacokinetics of CisNLC was observed. Acute toxicity and oxidative stress evaluation proved negligible toxicity by CisNLC. The formulated CisNLC had a good physical stability, biocompatible, indicated enhanced circulation and caused negligible toxicity on liver and kidney as compared to pure Cis.


Assuntos
Cisplatino , Nanoestruturas , Camundongos , Animais , Cisplatino/farmacologia , Distribuição Tecidual , Lipídeos , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Portadores de Fármacos/farmacocinética
13.
J Microencapsul ; 39(6): 563-574, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36222429

RESUMO

BACKGROUND AND AIM: The study was to extend systemic circulation and biological half-life (t1/2) of trans-resveratrol (RSV) using solid lipid nanoparticles (RSV-SLN) to improve its anti-cancer potential. METHODS: RSV-SLN was prepared by solvent emulsification evaporation technique and proceeded for evaluation like particle size, PDI, zeta potential, in vitro release, in vitro cytotoxicity, cellular internalisation, haemolysis and erythrocyte membrane integrity, platelet aggregation and pharmacokinetic studies in rats. Moreover, cancer cells accumulation of RSV-SLN also needs to be evaluated for proving their targeting ability. RESULT: Prepared SLN showed 126.85 ± 12.09 nm particle size, -24.23 ± 3.27 mV Zeta potential and 74.67 ± 4.76%. release at 48 h and haemocompatible. The cellular internalisation image showed the SLN reach in a cytoplasm and nucleus of PC3 prostate cells. RSV-SLN exhibited high t1/2 (8.22 ± 1.36 h) and 7.19 ± 0.69 h MRT (Mean residence time) and lower clearance i.e. 286.42 ± 13.64 mL/min/kg. The bio-distribution of RSV-SLN was found to be extremely high in prostate cells and accumulate 7.56 times greater than that of RSV solution. CONCLUSION: The developed RSV-SLN can be applied as potential carrier for delivery of drug of chemotherapeutics at an extend systemic circulation and targeting efficiency at tumour site.


Assuntos
Nanopartículas , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Resveratrol/farmacologia , Distribuição Tecidual , Lipídeos/farmacocinética , Neoplasias da Próstata/tratamento farmacológico , Tamanho da Partícula , Portadores de Fármacos/farmacocinética
14.
Drug Deliv ; 29(1): 2579-2591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35915055

RESUMO

Benign prostatic hyperplasia (BPH) is a nonmalignant growth of the prostate tissue and causes urinary tract symptoms. To provide effective treatment, tamsulosin (TM), saw palmetto oil (SP), and pumpkin seed oil (PSO) were combined and fabricated a nanostructured lipid carrier (NLC) as TM-S/P-NLC using experimental design. The purpose was to enhance the permeation and therapeutic activity of TM; combining TM with SP and PSO in an NLC generates a synergistic activity. An optimized TM-S/P-NLC was obtained after statistical analysis, and it had a particle size, percentage of entrapment efficiency, and steady-state flux of 102 nm, 65%, and 4.5 µg/cm2.min, respectively. Additionally, the optimized TM-S/P-NLC had spherical particles with a more or less uniform size and a stability score of 95%, indicating a high level of stability. The in vitro release studies exhibited the optimized TM-S/P-NLC had the maximum release profile for TM (81 ± 4%) as compared to the TM-NLCs prepared without the addition of S/P oil (59 ± 3%) or the TM aqueous suspension (30 ± 5%). The plasma TM concentration-time profile for the TM-S/P-NLC and the marketed TM tablets indicated that when TM was supplied in a TM-S/P-NLC, the pharmacokinetic profile of the drug was improved. Simultaneously, in vivo therapeutic efficacy studies also showed favorable results for the TM-S/P-NLC in terms of the prostate weight and prostate index following treatment of BPH. Based on the findings of present study, we suggest that in the future, the TM-S/P-NLC could be a novel drug delivery system for treating BPH.


Assuntos
Cucurbita , Nanoestruturas , Hiperplasia Prostática , Portadores de Fármacos/farmacocinética , Excipientes , Humanos , Lipídeos , Masculino , Tamanho da Partícula , Extratos Vegetais , Óleos de Plantas , Hiperplasia Prostática/tratamento farmacológico , Serenoa , Tansulosina/uso terapêutico
15.
Carbohydr Polym ; 282: 119108, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123744

RESUMO

A bioinspired chitosan/vitamin E conjugate (Ch/VES, 1:4) was synthesized, optimized based on chitosan's molecular weight (15, 300 kDa), and was assembled to entrap oxaliplatin (OXPt). 1H NMR, infrared spectroscopy, chromatography, X-ray photoelectron spectroscopy, X-ray diffraction, drug release, hemolysis, and stability studies were performed to characterize OXPt@Ch/VES micelles. The therapeutic efficacy of the micelles was tested in vitro in ER+/PR+/HER2- and triple-negative sensitive/resistant breast cancer cells, MCF-7 and MDA-MB-231 via cellular uptake, cytotoxicity, nuclear staining, DNA fragmentation, mitochondrial membrane potential, ROS generation, apoptosis, and cell cycle assays and in vivo using 4T1(Luc)-tumor-bearing mice. OXPt@Ch/VES Ms exhibited decreased IC50 towards MCF-7, MDA-MB-231 (sensitive/resistant) than OXPt. OXPt@Ch/VES Ms caused extensive DNA damage, mitochondrial depolarization, apoptosis, and cell-growth arrest (G2/M). OXPt@Ch/VES Ms treatment retarded tumor growth significantly, prolonged survival, and decreased nephrotoxicity than OXPt. The OXPt@Ch/VES Ms could serve as a potential nanomedicine to overcome conventional OXPt-mediated drug resistance/nephrotoxicity in breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Oxaliplatina/administração & dosagem , alfa-Tocoferol/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacocinética , Portadores de Fármacos/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Micelas , Oxaliplatina/farmacocinética , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacocinética
16.
Carbohydr Polym ; 282: 119087, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123755

RESUMO

The efficient triggering of prodrug release has become a challengeable task for stimuli-responsive nanomedicine utilized in cancer therapy due to the subtle differences between normal and tumor tissues and heterogeneity. In this work, a dual ROS-responsive nanocarriers with the ability to self-regulate the ROS level was constructed, which could gradually respond to the endogenous ROS to achieve effective, hierarchical and specific drug release in cancer cells. In brief, DOX was conjugated with MSNs via thioketal bonds and loaded with ß-Lapachone. TPP modified chitosan was then coated to fabricate nanocarriers for mitochondria-specific delivery. The resultant nanocarriers respond to the endogenous ROS and release Lap specifically in cancer cells. Subsequently, the released Lap self-regulated the ROS level, resulting in the specific DOX release and mitochondrial damage in situ, enhancing synergistic oxidation-chemotherapy. The tumor inhibition Ratio was achieved to 78.49%. The multi-functional platform provides a novel remote drug delivery system in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Naftoquinonas/administração & dosagem , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/administração & dosagem , Quitosana/química , Quitosana/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Mitocôndrias/fisiologia , Nanopartículas/química , Naftoquinonas/química , Naftoquinonas/farmacocinética , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Carga Tumoral/efeitos dos fármacos
17.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164146

RESUMO

3D-printed hydrogels are particularly advantageous as drug-delivery platforms but their loading with water-soluble active compounds remains a challenge requiring the development of innovative inks. Here, we propose a new 3D extrusion-based approach that, by exploiting the internal gelation of the alginate, avoids the post-printing crosslinking process and allows the loading of epirubicin-HCl (EPI). The critical combinations of alginate, calcium carbonate and d-glucono-δ-lactone (GDL) combined with the scaffold production parameters (extrusion time, temperature, and curing time) were evaluated and discussed. The internal gelation in tandem with 3D extrusion allowed the preparation of alginate hydrogels with a complex shape and good handling properties. The dispersion of epirubicin-HCl in the hydrogel matrix confirmed the potential of this self-crosslinking alginate-based ink for the preparation of 3D-printed drug-delivery platforms. Drug release from 3D-printed hydrogels was monitored, and the cytotoxic activity was tested against MCF-7 cells. Finally, the change in the expression pattern of anti-apoptotic, pro-apoptotic, and autophagy protein markers was monitored by liquid-chromatography tandem-mass-spectrometry after exposure of MCF-7 to the EPI-loaded hydrogels.


Assuntos
Alginatos , Portadores de Fármacos , Epirubicina , Hidrogéis , Impressão Tridimensional , Alginatos/química , Alginatos/farmacologia , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Epirubicina/química , Epirubicina/farmacocinética , Epirubicina/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7
18.
Biomolecules ; 12(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35053211

RESUMO

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Ciclodextrinas , Doxorrubicina , Portadores de Fármacos , Grafite , Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Ciclodextrinas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
19.
Neurosci Lett ; 767: 136298, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673147

RESUMO

Alzheimer's disease (AD) is characterized by amyloid beta (Aß) plaques and neurofibrillary tangles. AD drug development has been limited due to the presence of the blood-brain barrier (BBB), which prevents efficient uptake of therapeutics into the brain. To solve this problem, we used trans-activator of transcription (TAT)-transducing domain and added the human serum albumin (HSA) carrier to increase the half-life of the drug within the body. In addition, we included the protein of interest for lowering Aß deposition and/or neurofibrillary tangles. We made HSA fusion protein (designated AL04) which contains Cystatin C (CysC) as core mechanism of action moiety in the construct containing tandem repeat TAT (dTAT). After purification of 80KDa AL04, we investigate the therapeutic potential of AL04 in vitro and AD mouse model Tg2576. We evaluated the permeability of AL04 through the BBB using a cell-basedhuman BBB model and show that dTAT plays a role in facilitating the delivery of 80 kDa protein. We found out that AL04 attenuates Aß-induced neurotoxicity in PC12 cells. In Tg2576 mice brain, Aß plaques were dramatically reduced in AL04 treated mice. These data suggest that BBB-crossing albumin fusion protein AL04 with CysC active moiety can be a disease modifying treatment for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cistatina C/farmacocinética , Portadores de Fármacos/farmacocinética , Albumina Sérica Humana/farmacocinética , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Encéfalo/patologia , Cistatina C/administração & dosagem , Portadores de Fármacos/química , Produtos do Gene tat/farmacocinética , Humanos , Camundongos , Células PC12 , Ratos , Albumina Sérica Humana/química
20.
Drug Deliv Transl Res ; 12(3): 562-576, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33774776

RESUMO

The present investigation demonstrates the development of crosslinked ß-cyclodextrin nanoparticles (ß-CD NPs) for enhancing the therapeutic efficacy of docetaxel (DTX) against breast cancer. Initially, a partial inclusion complex between ß-CD and polypropylene glycol (PPG) was formed to induce self-assembly. This was followed by crosslinking of ß-CDs using epichlorohydrin (EPI) and removal (by solubilization) of PPG to yield uniform ß-CD NPs. The formed particles were used for loading DTX to form DTX ß-CD NPs. The resultant DTX ß-CD NPs exhibited particle size of 223.36 ± 17.73 nm with polydispersity index (PDI) of 0.13 ± 0.09 and showed entrapment efficiency of 54.53 ± 2%. Increased cell uptake (~5-fold), cytotoxicity (~3.3-fold), and apoptosis were observed in MDA-MB-231 cells when treated with DTX ß-CD NPs in comparison to free DTX. Moreover, pharmacokinetic evaluation of DTX ß-CD NPs revealed ~2 and ~5-fold increase in AUC0-∞ and mean residence time (MRT) of DTX when compared to Docepar®. Further, the anti-tumor activity using DMBA-induced cancer model showed that DTX ß-CD NPs were capable of reducing the tumor volume to ~40%, whereas Docepar® was able to reduce tumor volume till ~80%. Finally, the toxicity evaluation of DTX ß-CD NPs revealed no short-term nephrotoxicity and was confirmed by estimating the levels of biomarkers and histopathology of the organs. Thus, the proposed formulation strategy can yield uniformly formed ß-CD NPs which can be effectively utilized for improving the therapeutic efficacy of DTX.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , beta-Ciclodextrinas , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/farmacocinética , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA