Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Rep ; 14(1): 1324, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225252

RESUMO

Despite surging interest in space travel in recent decades, the impacts of prolonged, elevated exposure to galactic cosmic radiation (GCR) on human health remain poorly understood. This form of ionizing radiation causes significant changes to biological systems including damage to DNA structure by altering epigenetic phenotype with emphasis on DNA methylation. Building on previous work by Kennedy et al. (Sci Rep 8(1): 6709. 10.1038/S41598-018-24755-8), we evaluated spatial DNA methylation patterns triggered by high-LET (56Fe, 28Si) and low-LET (X-ray) radiation and the influence of chromosome positioning and epigenetic architecture in distinct radial layers of cell nucleus. Next, we validated our results using gene expression data of mice irradiated with simulated GCR and JAXA astronauts. We showed that primarily 56Fe induces a persistent DNA methylation increase whereas 28Si and X-ray induce a decrease DNA methylation which is not persistent with time. Moreover, we highlighted the role of nuclear chromatin architecture in cell response to external radiation. In summary, our study provides novel insights towards epigenetic and transcriptomic response as well as chromatin multidimensional structure influence on galactic cosmic radiation damage.


Assuntos
Radiação Cósmica , Humanos , Camundongos , Animais , Radiação Cósmica/efeitos adversos , Metilação de DNA , Posicionamento Cromossômico , Epigênese Genética , Cromatina/genética
2.
Nature ; 607(7919): 604-609, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831506

RESUMO

Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.


Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
3.
Mol Reprod Dev ; 88(5): 349-361, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33843103

RESUMO

This study investigated the effect of the antioxidant dieckol, a component of Ecklonia cava, on maturation and developmental competence of porcine oocytes exposed to oxidative stress in vitro. Oocytes were matured in in vitro maturation (IVM) medium containing various concentrations of dieckol. The blastocyst formation rate was highest in the 0.5 µM dieckol-treated (0.5 DEK) group. The reactive oxygen species level was decreased, and the level of glutathione and expression of antioxidant genes (NFE2L, SOD1, and SOD2) at metaphase II were increased in the 0.5 DEK group. Abnormal spindle organization and chromosome misalignment were prevented in the 0.5 DEK group. Expression of maternal markers (CCNB1 and MOS) and activity of p44/42 mitogen-activated protein kinase were increased in the 0.5 DEK group. After parthenogenetic activation, the total number of cells per blastocyst was increased and the percentage of apoptotic cells was decreased in the 0.5 DEK group. Expression of development-related genes (CX45, CDX2, POU5F1, and NANOG), antiapoptotic genes (BCL2L1 and BIRC5), and a proapoptotic gene (CASP3) were altered in the 0.5 DEK group. These results indicate that the antioxidant dieckol improves IVM and subsequent development of porcine oocytes and can be used to improve the quality of oocytes under peroxidation experimental conditions.


Assuntos
Antioxidantes/farmacologia , Benzofuranos/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Benzofuranos/administração & dosagem , Blastocisto/citologia , Posicionamento Cromossômico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas de Cultura Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Meiose , Oócitos/metabolismo , Phaeophyceae/química , Espécies Reativas de Oxigênio/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Suínos
4.
J Cell Biol ; 219(2)2019 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31881080

RESUMO

Aurora kinases create phosphorylation gradients within the spindle during prometaphase and anaphase, thereby locally regulating factors that promote spindle organization, chromosome condensation and movement, and cytokinesis. We show that one such factor is the kinesin KIF4A, which is present along the chromosome axes throughout mitosis and the central spindle in anaphase. These two pools of KIF4A depend on condensin I and PRC1, respectively. Previous work has shown KIF4A is activated by Aurora B at the anaphase central spindle. However, whether or not chromosome-associated KIF4A bound to condensin I is regulated by Aurora kinases remain unclear. To determine the roles of the two different pools of KIF4A, we generated specific point mutants that are unable to interact with either condensin I or PRC1 or are deficient for Aurora kinase regulation. By analyzing these mutants, we show that Aurora A phosphorylates the condensin I-dependent pool of KIF4A and thus actively promotes chromosome congression from the spindle poles to the metaphase plate.


Assuntos
Adenosina Trifosfatases/metabolismo , Aurora Quinase A/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/metabolismo , Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Complexos Multiproteicos/metabolismo , Anáfase/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Posicionamento Cromossômico/fisiologia , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitose/fisiologia , Fosforilação/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia
5.
BMC Mol Cell Biol ; 20(1): 11, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117946

RESUMO

BACKGROUND: Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). RESULTS: Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. CONCLUSIONS: Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus.


Assuntos
Núcleo Celular/genética , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Interfase/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Actinas/metabolismo , Linhagem Celular Tumoral , Posicionamento Cromossômico/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 19/genética , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Loci Gênicos , Humanos , Calicreínas/genética , Proteínas Musculares/genética , Miosina Tipo I/metabolismo , Membrana Nuclear/genética , Polimerização , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Proteína Smad2/genética , Transfecção
6.
Nature ; 569(7756): 345-354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092938

RESUMO

How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.


Assuntos
Diferenciação Celular/genética , Células/citologia , Células/metabolismo , Genoma , Fatores de Transcrição/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Posicionamento Cromossômico , Regulação da Expressão Gênica , Genoma/genética , Humanos , Especificidade de Órgãos/genética
7.
J Biol Chem ; 293(40): 15733-15747, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30054275

RESUMO

Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.


Assuntos
Posicionamento Cromossômico , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Prometáfase , Sequência de Aminoácidos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas de Neoplasias/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Imagem com Lapso de Tempo
8.
Health Phys ; 115(1): 77-89, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787433

RESUMO

Higher-order organization of the human genome is well established with chromosomes occupying distinct domains or territories in the interphase nucleus. Spatial organization of chromosome territories in the interphase nucleus occurs in a cell-type-specific manner. Since both stable and unstable aberrations induced by ionizing radiation involve the exchange of material between two or more chromosomes, this study investigated the role of spatial organization of chromosome domains in ionizing-radiation-induced chromosome translocation events. Using multicolor fluorescence in situ hybridization, the study characterized the positioning of each human chromosome relative to its neighborhood territories in the interphase nucleus of lymphocytes and B-lymphoblastoid cells before ionizing radiation and compared this interphase positioning with the spectrum of exchanges observed after ionizing radiation in the metaphase chromosomes. In addition to multicolor fluorescence in situ hybridization, the genome-wide chromosome conformation capture technique (Hi-C) was also performed in mock and x-ray-irradiated human B-lymphoblastoid and fibroblast cells to characterize the interactions among chromosomes and to assess the genome reorganization changes, if any, after ionizing radiation exposure. On average, 35-50% of the total translocations induced by x rays and neutrons correlated with proximity of chromosome territories detected by multicolor fluorescence in situ hybridization in both lymphocytes and lymphoblastoid cells. The translocation rate observed in proximally positioned chromosome territories was consistently higher than distally located territories and was found to be statistically significant (p = 0.01) in human lymphoblastoid cells after x rays. The interchromosome interaction frequencies detected by Hi-C correlate fairly well with ionizing-radiation-induced translocations detected by multicolor fluorescence in situ hybridization, suggesting the importance of chromosome proximity effects in ionizing-radiation-induced chromosomal translocation events.


Assuntos
Núcleo Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Posicionamento Cromossômico/efeitos da radiação , Cromossomos Humanos , Linfócitos/patologia , Células Cultivadas , Humanos , Hibridização in Situ Fluorescente , Linfócitos/efeitos da radiação , Raios X
9.
Biochemistry (Mosc) ; 83(4): 313-325, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29626919

RESUMO

4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.


Assuntos
Evolução Biológica , Núcleo Celular/genética , Posicionamento Cromossômico , Genoma , Animais , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Humanos
10.
Nucleic Acids Res ; 46(11): 5561-5586, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29684168

RESUMO

Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.


Assuntos
Posicionamento Cromossômico , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos Humanos , Cromossomos Humanos Par 18 , Regulação da Expressão Gênica , Código das Histonas , Humanos , Lamina Tipo B/metabolismo , Laminas/análise , Proteínas de Membrana/química , Proteínas Nucleares/química , Fosforilação , Transcrição Gênica , Tirosina/metabolismo
11.
J Biol Chem ; 292(37): 15216-15224, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717002

RESUMO

Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease.


Assuntos
Replicação do DNA , DNA/metabolismo , RNA/metabolismo , Origem de Replicação , Ribonuclease H/metabolismo , Substituição de Aminoácidos , Posicionamento Cromossômico , DNA/química , Dano ao DNA , Período de Replicação do DNA , Regulação da Expressão Gênica , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/genética , Homeostase do Telômero
12.
Dev Cell ; 41(6): 605-622.e7, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28633016

RESUMO

Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer.


Assuntos
Segregação de Cromossomos/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Cinesinas/metabolismo , Mitose/fisiologia , Fuso Acromático/metabolismo , Posicionamento Cromossômico/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Ligação Proteica
13.
J Cell Biol ; 216(2): 393-408, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28077446

RESUMO

In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Pareamento Cromossômico , Posicionamento Cromossômico , Imunofilinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Genótipo , Imunofilinas/genética , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Fenótipo , Interferência de RNA , Transdução de Sinais , Complexo Sinaptonêmico/genética , Fatores de Tempo
14.
PLoS One ; 11(3): e0151377, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999432

RESUMO

The pugilist-Dominant mutation results from fusion of a portion of the gene encoding the tri-functional Methylene Tetrahydrofolate Dehydrogenase (E.C.1.5.1.5, E.C.3.5.4.9, E.C.6.3.4.3) to approximately one kb of a heterochromatic satellite repeat. Expression of this fusion gene results in an unusual ring pattern of pigmentation around the eye. We carried out experiments to determine the mechanism for this pattern. By using FLP-mediated DNA mobilization to place different pugD transgenes at pre-selected sites we found that variation in repeat length makes a strong contribution to variability of the pug phenotype. This variation is manifest primarily as differences in the thickness of the pigmented ring. We show that similar phenotypic variation can also be achieved by changing gene copy number. We found that the pugD pattern is not controlled by wingless, which is normally expressed in a similar ring pattern. Finally, we found that physical injury to a pugD eye can lead to pigment deposition in parts of the eye that would not have been pigmented in the absence of injury. Our results are consistent with a model in which a metabolite vital for pigment formation is imported from the periphery of the eye, and pugD limits the extent of its transport towards the center of the eye, thus revealing the existence of a hitherto unknown mechanism of localized transport in the eye.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Olho/metabolismo , Genes Dominantes , Genes de Insetos , Proteínas de Membrana Transportadoras/metabolismo , Repetições de Microssatélites/genética , Mutação/genética , Animais , Baculoviridae/metabolismo , Sequência de Bases , Posicionamento Cromossômico/genética , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis/genética , Dosagem de Genes , Vetores Genéticos/metabolismo , Injeções , Dados de Sequência Molecular , Fenótipo , Pigmentação , Transporte Proteico , Pteridinas/metabolismo , Pupa/metabolismo , Transgenes , Proteína Wnt1/metabolismo
15.
EMBO Rep ; 17(3): 317-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26882550

RESUMO

Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.


Assuntos
Pareamento Cromossômico , Posicionamento Cromossômico , Fuso Acromático/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/ultraestrutura , Quinase 1 Polo-Like
16.
Oncotarget ; 7(6): 6460-75, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26771136

RESUMO

Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response.


Assuntos
Cromatina/genética , Cromossomos Humanos/genética , Regulação da Expressão Gênica , Genoma Humano/genética , Infecções por Herpesviridae/genética , Nucleossomos/genética , Ativação Viral/genética , Posicionamento Cromossômico , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligação Proteica , Fatores de Transcrição , Sítio de Iniciação de Transcrição
17.
Nucleic Acids Res ; 44(8): 3618-28, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704981

RESUMO

Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Ciclo Celular/genética , Posicionamento Cromossômico , Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Centrômero , Coloração Cromossômica , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Mutação , RNA Polimerase III , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
18.
Curr Biol ; 25(14): R601-3, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26196485

RESUMO

Erroneous kinetochore-microtubule interactions must be detected and corrected before a cell enters anaphase to prevent chromosome mis-segregation. Two new studies describe an Aurora A-mediated error correction mechanism based on the spatial position of a chromosome within the mitotic spindle.


Assuntos
Aurora Quinase A/genética , Polaridade Celular , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinetocoros/metabolismo , Meiose , Microtúbulos/metabolismo , Polos do Fuso/metabolismo , Animais , Feminino
19.
Curr Biol ; 25(14): 1842-51, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26166783

RESUMO

Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-MT attachments are commonplace but are often corrected prior to anaphase. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK), typically occurs near spindle poles; however, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles, can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles. Hence, there is a conundrum: erroneous kinetochore-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome misalignment and an increased incidence of erroneous kinetochore-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated. We propose that an AAK activity gradient contributes to correcting mal-oriented kinetochore-MT attachments in the vicinity of spindle poles.


Assuntos
Aurora Quinase A/genética , Polaridade Celular , Posicionamento Cromossômico , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animais , Aurora Quinase A/metabolismo , Células Cultivadas , Cromossomos de Insetos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Regulação da Expressão Gênica , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
20.
PLoS Genet ; 10(6): e1004411, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945276

RESUMO

Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by the activity of the conserved mitotic kinase Aurora B/Ipl1, thereby promoting the formation of correctly attached chromosomes. Recruitment of the conserved centromeric protein shugoshin is essential for biorientation, but its exact role has been enigmatic. Here, we identify a novel function of shugoshin (Sgo1 in budding yeast) that together with the protein phosphatase PP2A-Rts1 ensures localization of condensin to the centromeric chromatin in yeast Saccharomyces cerevisiae. Failure to recruit condensin results in an abnormal conformation of the pericentric region and impairs the correction of tensionless chromosome attachments. Moreover, we found that shugoshin is required for maintaining Aurora B/Ipl1 localization on kinetochores during metaphase. Thus, shugoshin has a dual function in promoting biorientation in budding yeast: first, by its ability to facilitate condensin recruitment it modulates the conformation of the pericentric chromatin. Second, shugoshin contributes to the maintenance of Aurora B/Ipl1 at the kinetochore during gradual establishment of bipolarity in budding yeast mitosis. Our findings identify shugoshin as a versatile molecular adaptor that governs chromosome biorientation.


Assuntos
Adenosina Trifosfatases/metabolismo , Aurora Quinases/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Centrômero/metabolismo , Posicionamento Cromossômico/genética , Cromossomos Fúngicos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA