Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 870
Filtrar
1.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
2.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053378

RESUMO

Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.


Assuntos
Envelhecimento/genética , Hipocampo/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Nicotina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
3.
Exp Neurol ; 350: 113929, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34813840

RESUMO

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Hipóxia Encefálica/tratamento farmacológico , Hipóxia Encefálica/psicologia , Receptor A2A de Adenosina/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Doença Crônica , Transtornos Cognitivos/induzido quimicamente , Disfunção Cognitiva , Hipocampo/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Desempenho Psicomotor/efeitos dos fármacos , Pirimidinas/uso terapêutico , Receptor A2A de Adenosina/genética , Triazóis/uso terapêutico
4.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684684

RESUMO

Memory deterioration in Alzheimer's disease (AD) is thought to be underpinned by aberrant amyloid ß (Aß) accumulation, which contributes to synaptic plasticity impairment. Avenanthramide-C (Avn-C), a polyphenol compound found predominantly in oats, has a range of biological properties. Herein, we performed methanolic extraction of the Avns-rich fraction (Fr. 2) from germinated oats using column chromatography, and examined the effects of Avn-C on synaptic correlates of memory in a mouse model of AD. Avn-C was identified in Fr. 2 based on 1H-NMR analysis. Electrophysiological recordings were performed to examine the effects of Avn-C on the hippocampal long-term potentiation (LTP) in a Tg2576 mouse model of AD. Avn-C from germinated oats restored impaired LTP in Tg2576 mouse hippocampal slices. Furthermore, Avn-C-facilitated LTP was associated with changes in the protein levels of phospho-glycogen synthase kinase-3ß (p-GSK3ß-S9) and cleaved caspase 3, which are involved in Aß-induced synaptic impairment. Our findings suggest that the Avn-C extract from germinated oats may be beneficial for AD-related synaptic plasticity impairment and memory decline.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Avena/química , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Extratos Vegetais/farmacologia
5.
Cell Rep ; 37(1): 109786, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610314

RESUMO

Regulated insertion and removal of postsynaptic AMPA glutamate receptors (AMPARs) mediates hippocampal long-term potentiation (LTP) and long-term depression (LTD) synaptic plasticity underlying learning and memory. In Alzheimer's disease ß-amyloid (Aß) oligomers may impair learning and memory by altering AMPAR trafficking and LTP/LTD balance. Importantly, Ca2+-permeable AMPARs (CP-AMPARs) assembled from GluA1 subunits are excluded from hippocampal synapses basally but can be recruited rapidly during LTP and LTD to modify synaptic strength and signaling. By employing mouse knockin mutations that disrupt anchoring of the kinase PKA or phosphatase Calcineurin (CaN) to the postsynaptic scaffold protein AKAP150, we find that local AKAP-PKA signaling is required for CP-AMPAR recruitment, which can facilitate LTP but also, paradoxically, prime synapses for Aß impairment of LTP mediated by local AKAP-CaN LTD signaling that promotes subsequent CP-AMPAR removal. These findings highlight the importance of PKA/CaN signaling balance and CP-AMPARs in normal plasticity and aberrant plasticity linked to disease.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Peptídeos beta-Amiloides/farmacologia , Calcineurina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia , Sinapses/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
6.
Biomed Pharmacother ; 144: 112266, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634555

RESUMO

BACKGROUND: In the present study, we aimed to investigate the effects of probucol on aging-related hippocampus-dependent cognitive impairment and explore the potential mechanisms. METHODS: D-galactose (100 mg/kg, once daily for 6 weeks) was subcutaneously injected to induce aging in mice. Then the mice were administered with probucol or vehicle once a day for 2 weeks. The hippocampus-related cognition was evaluated with Morris water maze test, novel object recognition test, and contextual fear conditioning test. Moreover, synaptic plasticity was assessed, and RNA-sequencing was applied to further explore the molecular mechanisms. RESULTS: Aging mice induced by D-galactose showed conspicuous learning and memory impairment, which was significantly ameliorated by probucol. Meanwhile, probucol enhanced the spine density and dendritic branches, improved long-term potentiation, and increased the expression of PSD95 of aging mice. Probucol regulated 70 differentially expressed genes compared to D-galactose group, of which 38 genes were upregulated and 32 genes were downregulated. At last, RNA-sequencing results were verified by quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS: Probucol improved learning and memory in aging mice through enhancing synaptic plasticity and regulating gene expression, indicating the potential application of probucol to prevent and treat aging-related disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Probucol/farmacologia , Fatores Etários , Animais , Senescência Celular/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Medo/efeitos dos fármacos , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Teste de Campo Aberto/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Pak J Pharm Sci ; 34(3): 909-914, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602413

RESUMO

N-Methyl-D-aspartate receptor (NMDAR)-induced antioxidation is a significant cause of neuronal injury after ischemic stroke. In a previous work, we verified the neuroprotective roles of geniposide during tMCAO in vivo. However, it remains unknown whether geniposide ameliorates injury to hippocampal neurons during Ischemic Long Term Potentiation (iLTP) induction in vitro. After induction of cells oxygen-glucose deprivation or hydrogen peroxide, the protection of geniposide evaluated by MTT assay and electrophysiological tests. In this study, we suggested neuronal cell apoptosis was attenuated by geniposide. Furthermore, field excitatory postsynaptic potentials (fEPSCs) following postischemic LTP were assessed by electrophysiological tests. Finally, we determined that medium and high doses of geniposide attenuated oxidative stress insult and improved iLTP. Importantly, these effects were abolished by cotreatment with geniposide and the GluN2A antagonist NVP. In contrast, the GluN2B inhibitor ifenprodil failed to have an effect. In conclusion, we suggest for the first time that treatment with geniposide can attenuate postischemic LTP induction in a concentration-dependent manner. We infer that GluN2A-containing NMDARs are involved in the neuroprotection induced by geniposide treatment in ischemia.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/metabolismo , Iridoides/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/fisiopatologia , Neurônios/metabolismo , Oxidantes/farmacologia , Células PC12 , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
8.
J Alzheimers Dis ; 84(1): 239-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511503

RESUMO

BACKGROUND: Tauopathies are a group of neurodegenerative disorders, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau pathology. Hyperphosphorylation modification promotes tau protein misfolding and aggregation into neurofibrillary tangles, leading to impairments of synaptic plasticity and learning and memory. However, very limited therapeutic strategies are available. OBJECTIVE: In the present study, we wanted to investigate the potential effects of Dihydroartemisinin (DHA) on tauopathies. METHODS: We constructed adeno-associated virus carrying hTau cDNA (AAVhTau) to establish a mouse model of tauopathy through intrahippocampal microinjection. Using a combination of behavioral test, electrophysiological recording, and western blotting assay, we examined the neuroprotective effects of DHA on learning and memory deficits in mice with tauopathy. RESULTS: DHA improved learning and memory and increased hippocampal CA1 long-term potentiation (LTP) in mice overexpressed human tau (hTau) in the hippocampus. More importantly, further study revealed that DHA could induce protein O-GlcNAcylation modification and reduce protein phosphorylation. O-GlcNAc transferase inhibitor alloxan could suppress DHA-induced protein O-GlcNAcylation, and subsequently prevent therapeutic effect of DHA on the deficits of learning and memory as well as synaptic plasticity in hTau mice. CONCLUSION: These results indicate that DHA may exert neuroprotective role in tauopathy through a crosstalk between O-GlcNAcylation and phosphorylation, suggesting a potential therapeutic for learning and memory deficits associated with tau pathology.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cognição/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tauopatias/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Aprendizagem/efeitos dos fármacos , Camundongos , Fosforilação
9.
Mol Brain ; 14(1): 140, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526080

RESUMO

Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adenilil Ciclases/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Carbazóis/farmacologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Alcaloides Indólicos/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/fisiologia , Receptores de AMPA/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Ritmo Teta/efeitos dos fármacos
10.
Mol Brain ; 14(1): 144, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544455

RESUMO

Astrocytes express a plethora of G protein-coupled receptors (GPCRs) that are crucial for shaping synaptic activity. Upon GPCR activation, astrocytes can respond with transient variations in intracellular Ca2+. In addition, Ca2+-dependent and/or Ca2+-independent release of gliotransmitters can occur, allowing them to engage in bidirectional neuron-astrocyte communication. The development of designer receptors exclusively activated by designer drugs (DREADDs) has facilitated many new discoveries on the roles of astrocytes in both physiological and pathological conditions. They are an excellent tool, as they can target endogenous GPCR-mediated intracellular signal transduction pathways specifically in astrocytes. With increasing interest and accumulating research on this topic, several discrepancies on astrocytic Ca2+ signalling and astrocyte-mediated effects on synaptic plasticity have emerged, preventing a clear-cut consensus about the downstream effects of DREADDs in astrocytes. In the present study, we performed a side-by-side evaluation of the effects of bath application of the DREADD agonist, clozapine-N-oxide (10 µM), on Gq- and Gi-DREADD activation in mouse CA1 hippocampal astrocytes. In doing so, we aimed to avoid confounding factors, such as differences in experimental procedures, and to directly compare the actions of both DREADDs on astrocytic intracellular Ca2+ dynamics and synaptic plasticity in acute hippocampal slices. We used an adeno-associated viral vector approach to transduce dorsal hippocampi of male, 8-week-old C57BL6/J mice, to drive expression of either the Gq-DREADD or Gi-DREADD in CA1 astrocytes. A viral vector lacking the DREADD construct was used to generate controls. Here, we show that agonism of Gq-DREADDs, but not Gi-DREADDs, induced consistent increases in spontaneous astrocytic Ca2+ events. Moreover, we demonstrate that both Gq-DREADD as well as Gi-DREADD-mediated activation of CA1 astrocytes induces long-lasting synaptic potentiation in the hippocampal CA1 Schaffer collateral pathway in the absence of a high frequency stimulus. Moreover, we report for the first time that astrocytic Gi-DREADD activation is sufficient to elicit de novo potentiation. Our data demonstrate that activation of either Gq or Gi pathways drives synaptic potentiation through Ca2+-dependent and Ca2+-independent mechanisms, respectively.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Clozapina/análogos & derivados , Drogas Desenhadas/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Região CA1 Hipocampal/citologia , Clozapina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Vetores Genéticos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos
11.
Mol Brain ; 14(1): 130, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429141

RESUMO

Somatostatin-expressing interneurons (SOM-INs) are a major subpopulation of GABAergic cells in CA1 hippocampus that receive excitation from pyramidal cells (PCs), and, in turn, provide feedback inhibition onto PC dendrites. Excitatory synapses onto SOM-INs show a Hebbian long-term potentiation (LTP) mediated by type 1a metabotropic glutamate receptors (mGluR1a) that is implicated in hippocampus-dependent learning. The neuropeptide somatostatin (SST) is also critical for hippocampal long-term synaptic plasticity, as well as learning and memory. SST effects on hippocampal PCs are well documented, but its actions on inhibitory interneurons remain largely undetermined. In the present work, we investigate the involvement of SST in long-term potentiation of CA1 SOM-IN excitatory synapses using pharmacological approaches targeting the somatostatinergic system and whole cell recordings in slices from transgenic mice expressing eYFP in SOM-INs. We report that application of exogenous SST14 induces long-term potentiation of excitatory postsynaptic potentials in SOM-INs via somatostatin type 1-5 receptors (SST1-5Rs) but does not affect synapses of PC or parvalbumin-expressing interneurons. Hebbian LTP in SOM-INs was prevented by inhibition of SSTRs and by depletion of SST by cysteamine treatment, suggesting a critical role of endogenous SST in LTP. LTP of SOM-IN excitatory synapses induced by SST14 was independent of NMDAR and mGluR1a, activity-dependent, and prevented by blocking GABAA receptor function. Our results indicate that endogenous SST may contribute to Hebbian LTP at excitatory synapses of SOM-INs by controlling GABAA inhibition, uncovering a novel role for SST in regulating long-term synaptic plasticity in somatostatinergic cells that may be important for hippocampus-dependent memory processes.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Somatostatina/fisiologia , Sinapses/efeitos dos fármacos , Animais , Proteínas de Bactérias , Cisteamina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/metabolismo , Técnicas de Introdução de Genes , Genes Reporter , Humanos , Interneurônios/metabolismo , Proteínas Luminescentes , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Peptídeos Cíclicos/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores de Somatostatina/efeitos dos fármacos , Receptores de Somatostatina/fisiologia , Somatostatina/farmacologia , Sinapses/fisiologia
12.
J Alzheimers Dis ; 83(2): 799-818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366339

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS: A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS: DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION: DA4-JC is a promising drug for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Proteína 4 Homóloga a Disks-Large/genética , Peptídeo 1 Semelhante ao Glucagon/agonistas , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/metabolismo
13.
Neurobiol Dis ; 157: 105441, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224862

RESUMO

Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alterations being eliminated by A2AR blockade. However, it is not known if upon convulsions there is a CD73-mediated coupling between ATP release and A2AR overactivation, causing neurodegeneration. We now show that kainate-induced convulsions trigger a parallel increase of ATP release and of CD73 and A2AR densities in synapses and astrocytes of the mouse hippocampus. Notably, the genetic deletion of CD73 attenuates neuronal degeneration but has no impact on astrocytic modifications in the hippocampus upon kainate-induced convulsions. Furthermore, kainate-induced convulsions cause a parallel deterioration of hippocampal long-term potentiation (LTP) and hippocampal-dependent memory performance, which is eliminated by knocking out CD73. This demonstrates the key role of the ATP release/CD73/A2AR pathway to selectively control synaptic dysfunction and neurodegeneration following an acute brain insult, paving the way to consider CD73 as a new therapeutic target to prevent neuronal damage upon acute brain damage.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Convulsões/metabolismo , Sinapses/metabolismo , 5'-Nucleotidase/genética , Animais , Astrócitos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Convulsões/induzido quimicamente , Sinapses/efeitos dos fármacos
14.
FASEB J ; 35(8): e21726, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196433

RESUMO

Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.


Assuntos
Ácido 2-Aminoadípico/toxicidade , Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido 2-Aminoadípico/administração & dosagem , Ácido 2-Aminoadípico/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Injeções Intraventriculares , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Serina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
15.
Neurochem Res ; 46(9): 2359-2375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146194

RESUMO

Long-term potentiation (LTP) is a neurobiological mechanism of cognitive function, and the N-methyl-D-aspartate (NMDA) receptors is fundamental for LTP. Previous studies showed that over activation of NMDA receptors may be a crucial cause of LTP and cognitive impairment induced by stress or corticosterone. However, other studies showed that the function of NMDA receptors is insufficient since the NMDA receptors co-agonist D-serine could improve stress-induced cognitive impairment. The purpose of this study is to clarify whether over activation of NMDA receptors or hypofunction of NMDA receptors is involved in hippocampal impairment of LTP by corticosterone and the underlying mechanisms. Results showed that hippocampal LTP and object location recognition memory were impaired in corticosterone-treated mice. Corticosterone increased the glutamate level in hippocampal tissues, neither NMDA receptors antagonist nor its subtype antagonists alleviated impairment of LTP, while enhancing the function of NMDA receptors by D-serine did alleviate impairment of LTP by corticosterone, suggesting that hypofunction of NMDA receptors might be one of the main reasons for impairment of LTP by corticosterone. Further results showed that the level of D-serine and its precursor L-serine did not change. D-serine release-related protein Na+-independent alanine-serine-cysteine transporter-1 (ASC-1) in the cell membrane was decreased and increasing D-serine release by the selective activator of ASC-1 antiporter activity alleviated impairment of LTP by corticosterone. Taken together, this study demonstrates that hypofunction of NMDA receptors may be involved in impairment of LTP by corticosterone and reduced D-serine release may be an important reason for its hypofunction, which is an important complement to existing mechanisms of corticosterone-induced LTP and cognitive impairment.


Assuntos
Corticosterona/farmacologia , Giro Denteado/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Via Perfurante/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animais , Giro Denteado/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos , Via Perfurante/metabolismo , Fenóis/farmacologia , Piperidinas/farmacologia , Quinolonas/farmacologia , Quinoxalinas/farmacologia , Serina/farmacologia
16.
Neurol Res ; 43(7): 562-569, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33627050

RESUMO

Objectives: Alzheimer disease (AD) is a neurodegenerative disorderliness that involves deductible progressive cognition function caused by amyloid-beta (Aß) peptide accumulation in the interstitial space. The increase of Aß stimulates all kinds of active oxygen and causes oxidative stress and apoptosis. In this investigation, we researched the neuroprotective impacts of vanillic acid (VA) on the Aß-induced (Aß1-40) long-term potentiation (LTP) of the hippocampus - a commonly probed synaptic plasticity model that happens at the same time as memory and learning - in the AD rats.Methods: Forty-five male Wistar rats were categorized into five groups (n = 8 rats/group, 200-220 g), and studied as control (standard diet), sham (vehicle), VA (50 mg/kg), Aß and Aß + VA (50 mg/kg) groups. In vivo electrophysiological recordings were implemented after the stereotaxic surgery to gauge the excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the dentate gyrus of the hippocampus. By the stimulation at high-frequency of the perforate pathway, long-term potentiation (LTP) was induced. To assess the plasma levels of malondialdehyde (MDA) and total thiol group (TTG), blood samples were garnered.Results: In the Aß-injected rats, EPSP slope, and PS amplitude were significantly reduced after the induction of LTP. Thus, the findings demonstrate that VA decreases the impacts of Aß on LTP; also, the treatments through VA neuroprotective against the negative effects of Aß on the synaptic plasticity of the hippocampus can decrease the MDA levels and also increase the TTG levels significantly.Discussion: Therefore, based on this experiment on male rats, VA has neuroprotective effects and antioxidants benefits against the Aß-mediated inhibition of long-term potentiation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ácido Vanílico/farmacologia , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Ratos Wistar
17.
Eur J Pharmacol ; 897: 173946, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607106

RESUMO

Metaplasticity is referred to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), has been considered to be the neural processes underlying learning and memory. Previous observations that cordycepin (an adenosine derivative) improved learning and memory seemed to be contradictory to the findings that cordycepin inhibited LTP. Therefore, we speculated that the conflicting reports of cordycepin might be related to metaplasticity. In the current study, population spike (PS) in hippocampal CA1 area of rats was recorded by using electrophysiological method in vivo. The results showed that cordycepin reduced PS amplitude in hippocampal CA1 with a concentration-dependent relationship, and high frequency stimulation (HFS) failed to induce LTP when cordycepin was intrahippocampally administrated but improved LTP magnitude when cordycepin was pre-treated. Cordycepin increased LTD induced by activating N-Methyl-D-aspartate (NMDA) receptors and subsequently facilitated LTP induced by HFS. Furthermore, we found that 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptors antagonist, could block the roles of cordycepin on LTD and LTP. Collectively, cordycepin was able to modulate metaplasticity in hippocampal CA1 area of rats through adenosine A1 receptors. These findings would be helpful to reconcile the conflicting reports in the literatures and provided new insights into the mechanisms underlying cognitive function promotions with cordycepin treatment.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
18.
J Alzheimers Dis ; 80(2): 695-713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579843

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE: The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS: Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aß plaques and neuroinflammation in the brain. IL-1ß, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS: DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aß deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1ß and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION: DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Placa Amiloide/patologia
19.
Cell Mol Neurobiol ; 41(6): 1299-1310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32562098

RESUMO

Recent studies show that alcohol exposure can induce glial production of neuroimmune factors in the CNS. Of these, IL-6 has gained attention because it is involved in a number of important physiological and pathophysiological processes that could be affected by alcohol-induced CNS production of IL-6, particularly under conditions of excessive alcohol use. For example, IL-6 has been shown to play a role in hippocampal behaviors and synaptic plasticity (long-term potentiation; LTP) associated with memory and learning. Surprisingly, in our in vitro studies of LTP at the Schaffer collateral to CA1 pyramidal neuron synapse in hippocampus from transgenic mice that express elevated levels of astrocyte produced IL-6 (TG), LTP was not altered by the increased levels of IL-6. However, exposure to acute alcohol revealed neuroadaptive changes that served to protect LTP against the alcohol-induced reduction of LTP observed in hippocampus from non-transgenic control mice (WT). Here we examined the induction phase of LTP to assess if presynaptic neuroadaptive changes occurred in the hippocampus of TG mice that contributed to the resistance of LTP to alcohol. Results are consistent with a role for IL-6-induced neuroadaptive effects on presynaptic mechanisms involved in transmitter release in the resistance of LTP to alcohol in hippocampus from the TG mice. These actions are important with respect to a role for IL-6 in physiological and pathophysiological processes in the CNS and in CNS actions of alcohol, especially when excessive alcohol used is comorbid with conditions associated with elevated levels of IL-6 in the CNS.


Assuntos
Astrócitos/metabolismo , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-6/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Hipocampo/efeitos dos fármacos , Interleucina-6/genética , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
20.
Neurosci Lett ; 740: 135450, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127445

RESUMO

The rodent dorsal hippocampus is essential for episodic memory consolidation, a process heavily modulated by dopamine D1-like receptor (D1/5R) activation. It was previously thought that the ventral tegmental area provided the only supply of dopamine release to dorsal hippocampus, but several recent studies have established the locus coeruleus (LC) as the major source for CA1. Here we show that selective blockade of the norepinephrine transporter (NET) prevents dopamine-dependent, late long-term synaptic potentiation (LTP) in dorsal CA1, a neural correlate of memory formation that relies on LC-mediated activation of D1/5Rs. Since dopamine activation of D1/5Rs by vesicular release is expected to be enhanced by NET antagonism, our data identify NET reversal as a plausible mechanism for LC-mediated DA release. We also show that genetic deletion of LC NMDA receptors (NMDARs) blocks D1R-mediated LTP, suggesting the requirement of both a functional NET and presynaptic NMDARs for this release. As LC activity is highly correlated with attentional processes and memory, these experiments provide insight into how selective attention influences memory formation at the synaptic and circuit levels.


Assuntos
Dopamina/farmacologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Atenção/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Dopamina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA