Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 739837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721406

RESUMO

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos Virais/administração & dosagem , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Endopeptidases/metabolismo , Vacinas contra Encefalite Japonesa/administração & dosagem , Potexvirus/enzimologia , Vírion/enzimologia , Aminoaciltransferases/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Vetores Genéticos , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Potexvirus/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Vírion/genética , Vírion/imunologia
2.
Mol Plant Pathol ; 20(5): 673-684, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30924604

RESUMO

One up-regulated host gene identified previously was found involved in the infection process of Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. The full length cDNA of this gene was cloned by 5' and 3'-rapid amplification of cDNA ends and found to encode a polypeptide containing a conserved really interesting new gene (RING) domain and a transmembrane domain. The gene might function as an ubiquitin E3 ligase. We designated this protein in Nicotiana benthamiana as ubiquitin E3 ligase containing RING domain 1 (NbUbE3R1). Further characterization by using Tobacco rattle virus-based virus-induced gene silencing (loss-of-function) revealed that increased BaMV accumulation was in both knockdown plants and protoplasts. The gene might have a defensive role in the replication step of BaMV infection. To further inspect the functional role of NbUbE3R1 in BaMV accumulation, NbUbE3R1 was expressed in N. benthamiana plants. The wild-type NbUbE3R1-orange fluorescent protein (NbUbE3R1-OFP), NbUbE3R1/△TM-OFP (removal of the transmembrane domain) and NbUbE3R1/mRING-OFP (mutation at the RING domain, the E2 interaction site) were transiently expressed in plants. NbUbE3R1 and its derivatives all functioned in restricting the accumulation of BaMV. The common feature of these constructs was the intact substrate-interacting domain. Yeast two-hybrid and co-immunoprecipitation experiments used to determine the possible viral-encoded substrate of NbUbE3R1 revealed the replicase of BaMV as the possible substrate. In conclusion, we identified an up-regulated gene, NbUbE3R1 that plays a role in BaMV replication.


Assuntos
Nicotiana/enzimologia , Nicotiana/virologia , Potexvirus/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/fisiologia , Proteínas do Capsídeo/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Leupeptinas/farmacologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/efeitos dos fármacos , Potexvirus/enzimologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Replicação Viral/efeitos dos fármacos
3.
Virol J ; 16(1): 36, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894176

RESUMO

BACKGROUND: Cross protection is a promising alternative to control plant viral diseases. One critical factor limiting the application of cross protection is the availability of attenuated mutants or mild strains. Potato virus X (PVX) infects many crops and induces huge economic losses to agricultural production. However, researches on the variability and mechanism of PVX virulence are scarce. METHODS: The mutants were obtained by introducing mutations into the RNA dependent RNA polymerase (RdRp) gene of PVX via site-directed mutagenesis. Attenuated mutants were screen according to their symptoms in Nicotiana benthamiana plants. The protection efficacy against severe infection were evaluated with interval of 5, 10 and 15 days. RESULTS: Among the 40 mutants obtained, four mutants carrying substitutions of either Glu46, Asn863, Asn968 or Glu1001 to Ala in PVX RdRp showed drastically attenuated symptom, accompanying with reduced accumulation levels of coat protein, plus- and minus-sense RNAs. When the interval between protective and challenging inoculations was 15 days, mutant E1001A (with substitution of Glu1001 to Ala in RdRp) provided complete protection against severe infection in both Nicotiana benthamiana and tomato, while E46A (Glu46 mutated to Ala) provided incomplete protection. To reduce the risk of reverse mutation, we constructed mutant dM which carries double mutations of both Glu46 and Glu1001 to Ala in RdRp. The mutant dM could provide effective protection against severe PVX infection. CONCLUSION: Mutations of Glu46, Asn863, Asn968 or Glu1001 to Ala in PVX RdRp significantly reduced the viral symptoms. Mutants E1001A and E46A could provide effective protection against wild type PVX in both Nicotiana benthamiana and tomato. These results provide theoretical and practical bases for the control of PVX via cross protection.


Assuntos
Proteção Cruzada , Mutação , Doenças das Plantas/virologia , Potexvirus/genética , China , Genoma Viral , Solanum lycopersicum/virologia , Mutagênese Sítio-Dirigida , Folhas de Planta/virologia , Potexvirus/enzimologia , Potexvirus/fisiologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Genética Reversa , Nicotiana/virologia , Proteínas Virais/genética , Virulência/genética
4.
Phytopathology ; 106(4): 395-406, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26667188

RESUMO

Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.


Assuntos
Doenças das Plantas/virologia , Potexvirus/enzimologia , RNA Polimerase Dependente de RNA/genética , Solanum lycopersicum/virologia , Sequência de Aminoácidos , Ciclopentanos/metabolismo , Meio Ambiente , Genótipo , Interações Hospedeiro-Patógeno , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Dados de Sequência Molecular , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Potexvirus/genética , Potexvirus/patogenicidade , Potexvirus/ultraestrutura , Estrutura Terciária de Proteína , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/ultraestrutura , Nicotiana/virologia
5.
Mol Plant Microbe Interact ; 26(9): 1106-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23906090

RESUMO

Lectin-mediated resistance (LMR) has been suggested to comprise an uncharacterized branch of antiviral plant innate immunity. To unveil the feature of resistance conferred by jacalin-type lectin required for potexvirus resistance 1 (JAX1), a recently isolated LMR gene against potexviruses, we analyzed the resistance-breaking variants to find the viral component involved in resistance. We employed grafting-mediated inoculation, a high-pressure virus inoculation method, to obtain Potato virus X (PVX) variants that can overcome JAX1-mediated resistance. Whole-genome sequencing of the variants suggested that a single amino acid in the methyl transferase domain of the replicase encoded by PVX is responsible for this resistance-breaking property. Reintroduction of the amino-acid substitution to avirulent wild-type PVX was sufficient to overcome the JAX1-mediated resistance. These results suggest that viral replicase is involved in JAX1-mediated resistance. The residue that determines the resistance-breaking properties was highly conserved among potexviruses, suggesting a general role of the residue in potexvirus-JAX1 interactions.


Assuntos
Nicotiana/virologia , Doenças das Plantas/virologia , Imunidade Vegetal , Potexvirus/enzimologia , Potexvirus/patogenicidade , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Lectinas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Potexvirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Nicotiana/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Virus Res ; 167(2): 267-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22617023

RESUMO

Pepino mosaic virus (PepMV)-infected tomato plants were used to develop an in vitro template-dependent system for the study of viral RNA synthesis. Differential sedimentation and sucrose-gradient purification of PepMV-infected tomato extracts resulted in fractions containing a transcriptionally active membrane-bound RNA-dependent RNA polymerase (RdRp). In the presence of Mg(2+) ions, (32)P-labelled UTP and unlabelled ATP, CTP, GTP, the PepMV RdRp catalysed the conversion of endogenous RNA templates into single- and double-stranded (ds) genomic RNAs and three 3'-co-terminal subgenomic dsRNAs. Hybridisation experiments showed that the genomic ssRNA was labelled only in the plus strand, the genomic dsRNA mainly in the plus strand and the three subgenomic dsRNAs equally in both strands. Following removal of the endogenous templates from the membrane-bound complex, the purified template-dependent RdRp could specifically catalyse transcription of PepMV virion RNA, in vitro-synthesized full-length plus-strand RNA and the 3'-termini of both the plus- and minus-strand RNAs. Rabbit polyclonal antibodies against an immunogenic epitope of the PepMV RdRp (anti-RdRp) detected a protein of approximately 164kDa in the membrane-bound and template-dependent RdRp preparations and exclusively inhibited PepMV RNA synthesis when added to the template-dependent in vitro transcription system. The 300 nucleotides long 3'-terminal region of the PepMV genome, containing a stretch of at least 20 adenosine (A) residues, was an adequate exogenous RNA template for RdRp initiation of the minus-strand synthesis but higher transcription efficiency was observed as the number of A residues increased. This observation might indicate a role for the poly(A)-tail in the formation and stabilisation of secondary structure(s) essential for initiation of transcription. The template-dependent specific RdRp system described in this article will facilitate identification of RNA elements and host components required for PepMV RNA synthesis.


Assuntos
Potexvirus/enzimologia , Potexvirus/genética , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Solanum lycopersicum/virologia , Coenzimas/metabolismo , Magnésio/metabolismo , Extratos Vegetais/metabolismo
7.
Mol Plant Microbe Interact ; 24(4): 408-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21190438

RESUMO

Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.


Assuntos
Regulação Viral da Expressão Gênica , Nicotiana/virologia , Potexvirus/genética , Potexvirus/fisiologia , RNA Polimerase Dependente de RNA/genética , Replicação Viral/fisiologia , Mutação da Fase de Leitura , Regulação Enzimológica da Expressão Gênica , Necrose , Doenças das Plantas/virologia , Mutação Puntual , Potexvirus/enzimologia , Potexvirus/patogenicidade , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia , Replicação Viral/genética
8.
J Virol ; 83(15): 7761-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19439477

RESUMO

Recombination in RNA viruses, one of the main factors contributing to their genetic variability and evolution, is a widespread phenomenon. In this study, an in vivo assay to characterize RNA recombination in potato virus X (PVX), under high selection pressure, was established. Agrobacterium tumefaciens was used to express in Nicotiana benthamiana leaf tissue both a PVX isolate labeled with green fluorescent protein (GFP) containing a coat protein deletion mutation (DeltaCP) and a transcript encoding a functional coat protein +3'-ntr. Coexpression of the constructs led to virus movement and systemic infection; reconstituted recombinants were observed in 92% of inoculated plants. Similar results were obtained using particle bombardment, demonstrating that recombination mediated by A. tumefaciens was not responsible for the occurrence of PXC recombinants. The speed of recombination could be estimated by agroinfection of two PVX mutants lacking the 3' and 5' halves of the genome, respectively, with an overlap in the triple gene block 1 gene, allowing GFP expression only in the case of recombination. Ten different pentapeptide insertion scanning replicase mutants with replication abilities comparable to wild-type virus were applied in the different recombination assays. Two neighboring mutants affecting the linker between the methyltransferase and helicase domains were shown to be strongly debilitated in their ability to recombine. The possible functional separation of replication and recombination in the replicase molecule supports the model that RNA recombination represents a distinct function of this protein, although the underlying mechanism still needs to be investigated.


Assuntos
Nicotiana/virologia , Potexvirus/enzimologia , Potexvirus/genética , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Proteínas Virais/metabolismo , Potexvirus/química , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/química , Proteínas Virais/genética
9.
J Virol ; 83(11): 5796-805, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297487

RESUMO

Bamboo mosaic virus (BaMV) is a 6.4-kb positive-sense RNA virus belonging to the genus Potexvirus of the family Flexiviridae. The 155-kDa viral replicase, the product of ORF1, comprises an N-terminal S-adenosyl-l-methionine (AdoMet)-dependent guanylyltransferase, a nucleoside triphosphatase/RNA 5'-triphosphatase, and a C-terminal RNA-dependent RNA polymerase (RdRp). To search for cellular factors potentially involved in the regulation of replication and/or transcription of BaMV, the viral RdRp domain was targeted as bait to screen against a leaf cDNA library of Nicotiana benthamiana using a yeast two-hybrid system. A putative methyltransferase (PNbMTS1) of 617 amino acid residues without an established physiological function was identified. Cotransfection of N. benthamiana protoplasts with a BaMV infectious clone and the PNbMTS1-expressing plasmid showed a PNbMTS1 dosage-dependent inhibitory effect on the accumulation of BaMV coat protein. Deletion of the N-terminal 36 amino acids, deletion of a predicted signal peptide or transmembrane segment, or mutations in the putative AdoMet-binding motifs of PNbMTS1 abolished the inhibitory effect. In contrast, suppression of PNbMTS1 by virus-induced gene silencing in N. benthamiana increased accumulation of the viral coat protein as well as the viral genomic RNA. Collectively, PNbMTS1 may function as an innate defense protein against the accumulation of BaMV through an uncharacterized mechanism.


Assuntos
Metiltransferases/metabolismo , Nicotiana/virologia , Potexvirus/enzimologia , Sequência de Aminoácidos , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Potexvirus/genética , Ligação Proteica , Protoplastos/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
10.
FEBS Lett ; 579(22): 4955-60, 2005 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16115626

RESUMO

Coat proteins (CPs) of plant viruses are involved in different stages of the viral life cycle such as virion assembly, replication, movement, vector transmission, and regulation of host defense responses. Here, we report that the CPs of two filamentous RNA viruses, potato virus X (PVX, Potexvirus) and potato virus A (PVA, Potyvirus) exhibit an enzyme activity. The CP isolated from PVX virions possesses ATP-binding and ATPase activities. Recombinant PVX and PVA CPs produced in Escherichia coli show Mg2+-dependent ATPase and UTPase activities inhibited by antibodies against virus particles. Deletion of the C-terminal regions of these proteins diminishes their ATPase activity.


Assuntos
Proteínas do Capsídeo/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Potexvirus/enzimologia , Potyvirus/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas do Capsídeo/genética , Magnésio/metabolismo , Nucleosídeo-Trifosfatase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vírion/metabolismo
11.
Virus Res ; 110(1-2): 177-82, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15845269

RESUMO

A Potato virus X (PVX) strain, PVX-OS, causes a necrotic mosaic in Nicotiana benthamiana and ring spot mosaic in N. tabacum cv. SamsunNN. By contrast, strain PVX-BS causes a mild mosaic in N. benthamiana and systemic asymptomatic infection in N. tabacum cv. SamsunNN. To investigate the viral determinant of this difference, we produced various infectious cDNA clones chimeric between these PVX genomes and clones with point mutations introduced by site-directed mutagenesis. Inoculation tests with these clones mapped the symptom determinant in Nicotiana plants to the 1422 amino acid residue in the region of the C-terminus of RNA-dependent RNA polymerase (RdRp). Western blot analysis and local lesion assay indicated that virus accumulation in the infected leaves was similar for these PVX strains, suggesting that the symptom difference was not due to virus accumulation.


Assuntos
Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/enzimologia , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/fisiologia , Substituição de Aminoácidos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Folhas de Planta/virologia , Potexvirus/genética , Potexvirus/patogenicidade , Recombinação Genética , Proteínas Virais/análise , Proteínas Virais/isolamento & purificação
12.
J Virol ; 78(3): 1271-80, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14722282

RESUMO

Open reading frame 1 of Bamboo mosaic virus (BaMV), a Potexvirus in the alphavirus-like superfamily, encodes a 155-kDa replicase responsible for the formation of the 5' cap structure and replication of the viral RNA genome. The N-terminal domain of the viral replicase functions as an mRNA capping enzyme, which exhibits both GTP methyltransferase and S-adenosylmethionine (AdoMet)-dependent guanylyltransferase activities. We mutated each of the four conserved amino acids among the capping enzymes of members within alphavirus-like superfamily and a dozen of other residues to gain insight into the structure-function relationship of the viral enzyme. The mutant enzymes were purified and subsequently characterized. H68A, the mutant enzyme bearing a substitution at the conserved histidine residue, has an approximately 10-fold increase in GTP methyltransferase activity but completely loses the ability to form the covalent m(7)GMP-enzyme intermediate. High-pressure liquid chromatography analysis confirmed the production of m(7)GTP by the GTP methyltransferase activity of H68A. Furthermore, the produced m(7)GTP sustained the formation of the m(7)GMP-enzyme intermediate for the wild-type enzyme in the presence of S-adenosylhomocysteine (AdoHcy), suggesting that the previously observed AdoMet-dependent guanylation of the enzyme using GTP results from reactions of GTP methylation and subsequently guanylation of the enzyme using m(7)GTP. Mutations occurred at the other three conserved residues (D122, R125, and Y213), and H66 resulted in abolition of activities for both GTP methylation and formation of the covalent m(7)GMP-enzyme intermediate. Mutations of amino acids such as K121, C234, D310, W312, R316, K344, W406, and K409 decreased both activities by various degrees, and the extents of mutational effects follow similar trends. The affinity to AdoMet of the various BaMV capping enzymes, except H68A, was found in good correlations with not only the magnitude of GTP methyltransferase activity but also the capability of forming the m(7)GMP-enzyme intermediate. Taken together with the AdoHcy dependence of guanylation of the enzyme using m(7)GTP, a basic working mechanism, with the contents of critical roles played by the binding of AdoMet/AdoHcy, of the BaMV capping enzyme is proposed and discussed.


Assuntos
Guanosina Trifosfato/metabolismo , Metiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Potexvirus/enzimologia , Análogos de Capuz de RNA/química , RNA Polimerase Dependente de RNA/química , Sequência de Aminoácidos , Metilação , Metiltransferases/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nucleotidiltransferases/química , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , S-Adenosilmetionina/metabolismo , Sasa/virologia , Relação Estrutura-Atividade , Replicação Viral
13.
Virology ; 296(2): 321-9, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-12069530

RESUMO

Cell-to-cell and long-distance transport of some plant viruses requires coordinated action of three movement proteins encoded by triple gene block (TGB). The largest of TGB proteins, TGBp1, is a member of the superfamily I of DNA/RNA helicases and possesses a set of conserved helicase sequence motifs necessary for virus movement. A recombinant His-tagged form of TGBp1 of two hordeiviruses and potato virus X, a potexvirus, produced in Escherichia coli had unwinding activity on a partially duplexed RNA, but not DNA substrate. The helicase activity of these proteins was dependent on Mg2+ and ATP. The isolated C-terminal half of the PSLV TGBp1 retaining all helicase motifs was also able to unwind RNA duplex.


Assuntos
Adenosina Trifosfatases/metabolismo , Vírus do Mosaico/enzimologia , RNA Helicases/metabolismo , Vírus de RNA/enzimologia , RNA de Cadeia Dupla/metabolismo , Proteínas Virais/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , DNA/metabolismo , Genes Virais/fisiologia , Dados de Sequência Molecular , Vírus do Mosaico/genética , Proteínas do Movimento Viral em Plantas , Vírus de Plantas/enzimologia , Vírus de Plantas/genética , Potexvirus/enzimologia , Potexvirus/genética , RNA Helicases/genética , Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
14.
Virus Res ; 80(1-2): 41-52, 2001 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-11597747

RESUMO

RNA-dependent RNA polymerases (RdRp) isolated from bamboo mosaic potexvirus (BaMV) and potato virus X infected Nicotiana benthamiana plants and solubilized with the detergent NP-40, generated a full-length genomic and two subgenomic double-stranded RNAs of respective viruses in an in vitro RdRp assay containing endogenous RNA templates. Template-dependent and species-specific RdRp activity could be detected after the removal of endogenous RNA templates. The 3' untranslated regions (UTR) containing a stretch of 40 adenylate residues were shown to be an efficient exogenous RNA template for in vitro RdRp reactions. Solution hybridization and nuclease digestion studies revealed that the products transcribed in vitro were minus-sense. Besides using the 3' UTR for minus-sense RNA synthesis, the BaMV RdRp can also recognize 3' terminal 77 nucleotides of the minus-strand for plus-sense RNA synthesis. Promoter studies with BaMV RdRp showed that domain D containing the potexviral hexamer motif of the 3' UTR would be the major contributor of minus-sense RNA synthesis in vitro. On the other hand, the pseudoknot domain containing the poly(A) sequences would be sufficient for minus-sense RNA synthesis.


Assuntos
Vírus do Mosaico/enzimologia , Nicotiana/virologia , Potexvirus/enzimologia , RNA Polimerase Dependente de RNA/isolamento & purificação , Regiões 3' não Traduzidas/química , Vírus do Mosaico/genética , Conformação de Ácido Nucleico , Potexvirus/genética , RNA Viral/biossíntese , RNA Viral/química , RNA Polimerase Dependente de RNA/genética , Especificidade da Espécie , Moldes Genéticos
15.
J Virol ; 75(2): 782-8, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11134291

RESUMO

Bamboo mosaic virus (BaMV), a member of the potexvirus group, infects primarily members of the Bambusoideae. Open reading frame 1 (ORF1) of BaMV encodes a 155-kDa polypeptide that has long been postulated to be a replicase involved in the replication and formation of the cap structure at the 5' end of the viral genome. To identify and characterize the enzymatic activities associated with the N-terminal domain of the BaMV ORF1 protein, the intact replicase and two C-terminally truncated proteins were expressed in Saccharomyces cerevisiae. All three versions of BaMV ORF1 proteins could be radiolabeled by [alpha-(32)P]GTP, which is a characteristic of guanylyltransferase activity. The presence of S-adenosylmethionine (AdoMet) was essential for this enzymatic activity. Thin-layer chromatography analysis suggests that the radiolabeled moiety linked to the N-terminal domain of the BaMV ORF1 protein is m(7)GMP. The N-terminal domain also exhibited methyltransferase activity that catalyzes the transfer of the [(3)H]methyl group from AdoMet to GTP or guanylylimidodiphosphate. Therefore, during cap structure formation in BaMV, methylation of GTP may occur prior to transguanylation as for alphaviruses and brome mosaic virus. This study establishes the association of RNA capping activity with the N-terminal domain of the replicase of potexviruses and further supports the idea that the reaction sequence of RNA capping is conserved throughout the alphavirus-like superfamily of RNA viruses.


Assuntos
Nucleotidiltransferases/metabolismo , Poaceae/virologia , Potexvirus/enzimologia , RNA Polimerase Dependente de RNA/química , Sequência de Aminoácidos , Cromatografia em Camada Fina/métodos , Guanosina Trifosfato/metabolismo , Metilação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Nucleotidiltransferases/química , Plasmídeos/genética , Potexvirus/genética , Capuzes de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Virology ; 277(2): 336-44, 2000 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-11080481

RESUMO

The TGBp1 of bamboo mosaic potexvirus (BaMV) is encoded by the first overlapping gene of the triple-gene-block (TGB), whose products are thought to play roles in virus movement between plant cells. This protein forms cytoplasmic inclusions associated with virus particles in the BaMV-infected tissues. It has been proposed that the inclusion is one of the active forms of TGBp1. To prove this idea, we purified the TGBp1 inclusions from both the BaMV-infected Chenopodium quinoa and Escherichia coli cells overexpressing this protein to test some of their biochemical activities. We found that the TGBp1 inclusions isolated from the infected plant leaves, but not from E. coli, possess the NTP-binding and NTPase activities. However, they lack the RNA-binding activity possessed by the soluble TGBp1. These results indicate that the TGBp1 proteins in the BaMV-infected tissues assume two different functional forms. Mutational analyses and competition experiments show that the two arginine residues, Arg-16 and Arg-21, essential to RNA binding, are also required for the ATP-utilizing activity of the soluble TGBp1. This indicates that a same-structure motif is required for the two functions of the soluble TGBp1. The location of the two arginine residues outside the seven conserved motifs of the NTP-utilizing superfamily I RNA helicases, to which TGBp1 belongs, suggests that an extra-structure motif, besides the seven conserved ones, is required for the NTP-utilizing activity of the TGBp1 protein of BaMV.


Assuntos
Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Plantas/virologia , Potexvirus/enzimologia , Proteínas Virais/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Arginina/análise , Arginina/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Corpos de Inclusão/virologia , Nucleosídeo-Trifosfatase , Nucleotidiltransferases/metabolismo , Mutação Puntual , RNA Bacteriano/metabolismo , RNA de Plantas/metabolismo , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
17.
Virology ; 270(1): 31-42, 2000 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-10772977

RESUMO

The cell-to-cell movement of the GUS-tagged potato virus X (PVX) coat protein (CP) movement-deficient mutant was restored by potyviral CPs of potato virus A (PVA) and potato virus Y (PVY) in Nicotiana benthamiana leaves in transient cobombardment experiments. Viral cell-to-cell movement of PVX CP mutant was complemented in Nicotiana tabacum cv. SR1 transgenic plants expressing PVY CP: PVX RNA and polymerase were detected in the PVX CP mutant-inoculated leaves of transgenic plants. These findings demonstrated the ability of the PVX CP-deficient mutant to move from cell to cell but not long distances in the transgenic plants and suggest that CPs of potex- and potyviruses display complementary activities in the movement process. Potyviral CP alone is not able to carry out these activities, since the mutated PVX CP is indispensable for restored movement. No trans-encapsidation between potyviral CP and PVX RNA was observed. Therefore, potyviral CP facilitates the PVX CP mutant movement by the mechanism that cannot be explained by coat protein substitution. Our data also suggest that CP functioning in cell-to-cell movement is not restricted to a simple passive role in forming virions.


Assuntos
Proteínas do Capsídeo , Capsídeo/genética , Capsídeo/metabolismo , Potexvirus/fisiologia , Deleção de Sequência/genética , Biolística , Western Blotting , Capsídeo/ultraestrutura , Clonagem Molecular , Genes Virais/genética , Genes Virais/fisiologia , Teste de Complementação Genética , Genoma Viral , Microscopia Imunoeletrônica , Movimento , Folhas de Planta/citologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Plantas Tóxicas , Potexvirus/enzimologia , Potexvirus/genética , Potexvirus/ultraestrutura , Potyvirus/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus
18.
J Virol ; 72(12): 10093-9, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9811749

RESUMO

Bamboo mosaic virus (BaMV), a member of the potexvirus group, infects primarily members of the Bambusoideae. The open reading frame 1 (ORF1) of BaMV encodes a 155-kDa polypeptide that was postulated to be involved in the replication and the formation of cap structure at the 5' end of the viral genome. To characterize the activities associated with the 155-kDa viral protein, it was expressed in Escherichia coli BL21(DE3) cells with thioredoxin, hexahistidine, and S. Tag fused consecutively at its amino terminus, and the fusion protein was purified by metal affinity chromatography. Several RNA fragments, prepared by in vitro transcription, were tested as substrates for the RNA-dependent RNA polymerase (RdRp) activity. Among them, the expressed fusion enzyme was able to generate a 32P-labeled RNA product when 3'-end RNA fragments of the positive strand or negative strand of BaMV were included in the assay mixture. Dot hybridization assay revealed that the reaction products are complementary to their RNA substrates. Taken together, the evidence suggests that the 155-kDa protein encoded by ORF1 of BaMV has an RdRp activity and should be involved in the replication of BaMV. Mutational analyses demonstrate the importance of the GDD motif in the polymerase activity, and deletion studies suggest that the polymerase activity resides in the carboxyl terminus of the 155-kDa viral protein.


Assuntos
Escherichia coli/genética , Potexvirus/enzimologia , Potexvirus/genética , RNA Polimerase Dependente de RNA/genética , Sequência de Bases , Primers do DNA/genética , Expressão Gênica , Mutação , Fases de Leitura Aberta , Poaceae/virologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Especificidade por Substrato
19.
Virus Res ; 58(1-2): 127-36, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9879769

RESUMO

A mutant population of bamboo mosaic potexvirus (BaMV) was isolated after serial passage using Chenopodium quinoa plants. While the wild type inoculum induced indistinct chlorotic lesions, the mutant produced obvious lesions on C. quinoa although RNA accumulation of the mutant in Nicotiana benthamiana protoplasts was significantly reduced compared to wild type. Mutations were identified in the helicase-like domain. One RT-PCR-generated cDNA clone (designated pL1-33) representing the helicase-like region showed four nucleotide mutations encoding three amino acid changes that were shown to result in dramatically decreased viral accumulation. Independent analyses of the effects of these substitutions showed that nucleotide changes at position 1722 resulting in a leucine to proline switch and position 2129 resulting in a histidine to tyrosine switch had the greatest effect on viral accumulation. Combination of these two mutations resulted in a undetectable viral accumulation. We have identified that amino acids within the helicase domain but outside the universally conserved helicase-like motifs that play an important role in viral amplification.


Assuntos
Evolução Molecular , Vírus do Mosaico/genética , Mutação , Potexvirus/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Dados de Sequência Molecular , Vírus do Mosaico/enzimologia , Fases de Leitura Aberta , Poaceae/virologia , Potexvirus/enzimologia , RNA Viral/fisiologia , Homologia de Sequência de Aminoácidos , Replicação Viral
20.
J Gen Virol ; 78 ( Pt 6): 1247-51, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9191915

RESUMO

The RNA-dependent RNA polymerase (RdRp) of potato virus X (PVX) contains a glycine-lysine-serine (GKS) motif. This motif is present in the replication enzyme of many RNA viruses and is thought to be required for nucleoside triphosphate-binding. Three single amino acid changes, glycine to alanine (AKS), lysine to asparagine (GNS) and lysine to glutamate (GES) within the GKS motif of the PVX RdRp were tested for their effect on PVX accumulation. The GNS and GES mutations rendered the virus unable to accumulate in either tobacco plants or protoplasts, whereas substitution of glycine with alanine had only a minor effect on accumulation of PVX. The glycine to alanine mutation reverted to wild-type after passage on Nicotiana clevelandii plants. These findings suggest that the GKS motif is required for PVX replication and that strong selection pressures are active to maintain necessary sequences of the viral RdRp.


Assuntos
Potexvirus/fisiologia , RNA Polimerase Dependente de RNA/fisiologia , Replicação Viral , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Mutação Puntual , Potexvirus/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA