Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
Mol Pain ; 20: 17448069241254201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670551

RESUMO

It has been widely recognized that electroacupuncture (EA) inducing the release of ß-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC. However, the specific mechanisms how EA facilitates the release of ß-endorphin within the ARC, eliciting analgesic effects are yet to be elucidated. In this study, we conducted in vivo and in vitro experiments by transcriptomics, microdialysis, photogenetics, chemical genetics, and calcium imaging, combined with transgenic animals. Firstly, we detected 2 Hz EA at the Zusanli (ST36) increased the level of ß-endorphin and transcriptional level of proopiomelanocortin (POMC). Our transcriptomics profiling demonstrated that 2 Hz EA at the ST36 modulates the expression of c-Fos and Jun B in ARC brain nuclear cluster, and the transcriptional regulation of 2 Hz EA mainly occur in POMC neurons by Immunofluorescence staining verification. Meaning while, 2 Hz EA specifically activated the cAMP-PKA-CREB signaling pathway in ARC which mediating the c-Fos and Jun B transcription, and 2 Hz EA analgesia is dependent on the activation of cAMP-PKA-CREB signaling pathway in ARC. In order to investigate how the ß-endorphin produced in ARC transfer to integration center PAG, transneuronal tracing technology was used to observe the 2 Hz EA promoted the neural projection from ARC to PAG compared to 100 Hz EA and sham mice. Inhibited PAGGABA neurons, the transfer of ß-endorphin from the ARC nucleus to the PAG nucleus through the ARCPOMC-PAGGABA neural circuit. Furthermore, by manipulating the excitability of POMC neurons from ARCPOMC to PAGGABA using inhibitory chemogenetics and optogenetics, we found that this inhibition significantly reduced transfer of ß-endorphin from the ARC nucleus to the PAG nucleus and the effectiveness of 2 Hz EA analgesia in neurological POMC cyclization recombination enzyme (Cre) mice and C57BL/6J mice, which indicates that the transfer of ß-endorphin depends on the activation of POMC neurons prefect from ARCPOMC to PAGGABA. These findings contribute to our understanding of the neural circuitry underlying the EA pain-relieving effects and maybe provide valuable insights for optimizing EA stimulation parameters in clinical pain treatment using the in vivo dynamic visual investigating the central analgesic mechanism.


Assuntos
Núcleo Arqueado do Hipotálamo , Eletroacupuntura , Substância Cinzenta Periaquedutal , Pró-Opiomelanocortina , beta-Endorfina , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Substância Cinzenta Periaquedutal/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Eletroacupuntura/métodos , beta-Endorfina/metabolismo , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo
2.
Behav Brain Res ; 461: 114863, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224819

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is an epigenetic factor associated with the neurodevelopmental disorders Rett Syndrome and MECP2 duplication syndrome. Previous studies have demonstrated that knocking out MeCP2 globally in the central nervous system leads to an obese phenotype and hyperphagia, however it is not clear if the hyperphagia is the result of an increased preference for food reward or due to an increase in motivation to obtain food reward. We show that mice deficient in MeCP2 specifically in pro-opiomelanocortin (POMC) neurons have an increased preference for high fat diet as measured by conditioned place preference but do not have a greater motivation to obtain food reward using a progressive ratio task, relative to wildtype littermate controls. We also demonstrate that POMC-Cre MeCP2 knockout (KO) mice have increased body weight after long-term high fat diet exposure as well as elevated plasma leptin and corticosterone levels compared to wildtype mice. Taken together, these results are the first to show that POMC-specific loss-of-function Mecp2 mutations leads to dissociable effects on the rewarding/motivational properties of food as well as changes to hormones associated with body weight homeostasis and stress.


Assuntos
Dieta Hiperlipídica , Pró-Opiomelanocortina , Animais , Camundongos , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Hiperfagia/genética , Camundongos Knockout , Fenótipo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
3.
Steroids ; 203: 109367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266463

RESUMO

While the effects of progesterone on body weight and appetite in pre-menopausal conditions have been well elucidated, its effects in post-menopausal conditions have not been clarified. On the contrary, the effects of estrogen on body weight and appetite in post-menopausal conditions have been well established. In this study, the effects of progesterone treatment on body weight, appetite, and fat mass in ovariectomized rats were evaluated. In addition, the central and/or peripheral levels of oxytocin (OT), leptin, and their receptors, which are potent anorectic factors, were examined. Female rats were ovariectomized and divided into control, progesterone-treated, and estrogen-treated groups. Body weight, food intake, and subcutaneous fat mass were lower in both the progesterone and estrogen groups than in the control group. The estrogen group exhibited higher serum OT levels than the control group, whereas the OT levels of the progesterone and control groups did not differ. The serum leptin levels of both the progesterone and estrogen groups were lower than those of the control group. Gene expression analysis of OT, leptin, and their receptors in the hypothalamus and adipose tissue found few significant differences among the groups. Hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA levels involved in appetite regulation were slightly altered in the progesterone and estrogen groups. These findings suggest that progesterone treatment may have favorable effects on body weight, appetite, and fat mass regulation in post-menopausal conditions and that the mechanisms underlying these effects of progesterone differ from those underlying the effects of estrogen.


Assuntos
Leptina , Progesterona , Ratos , Animais , Feminino , Leptina/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Ingestão de Alimentos , Peso Corporal , Hipotálamo , Proteínas de Transporte , Estrogênios/farmacologia , Estrogênios/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
4.
Nutrition ; 120: 112333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271759

RESUMO

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Assuntos
Resistência à Insulina , Neuropeptídeos , Ratos , Animais , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Relacionada com Agouti/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , DNA Metiltransferase 3A , Ratos Sprague-Dawley , Obesidade/genética , Obesidade/metabolismo , Hiperfagia/complicações , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Superóxido Dismutase/metabolismo , Angiotensinas/metabolismo
5.
Peptides ; 173: 171138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147963

RESUMO

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Assuntos
Glucagon , Neuropeptídeos , Peptídeos , Camundongos , Animais , Masculino , Proteína Relacionada com Agouti , Glucagon/metabolismo , Camundongos Obesos , Pró-Opiomelanocortina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo
6.
Int J Obes (Lond) ; 47(12): 1278-1285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714902

RESUMO

BACKGROUND: DNA methylation is an epigenetic mechanism through which environmental factors including nutrition and inflammation influence health. Obesity is a major modifiable risk factor for many common diseases including cardiovascular diseases and cancer. In particular, obesity-induced inflammation resulting from aberrantly-methylated inflammatory genes may drive risk of several non-communicable diseases including colorectal cancer (CRC). This study is the first to investigate the effects of weight loss induced by bariatric surgery (BS) on DNA methylation in the rectum and in cell-free DNA (cfDNA) from blood. SUBJECTS AND METHODS: DNA methylation was quantified in rectal mucosal biopsies and cfDNA from serum of 28 participants with obesity before and 6 months after BS, as well as in 12 participants without obesity (control group) matched for age and sex from the Biomarkers Of Colorectal cancer After Bariatric Surgery (BOCABS) Study. DNA methylation of LEP, IL6, POMC, LINE1, MAPK7 and COX2 was quantified by pyrosequencing. RESULTS: BMI decreased significantly from 41.8 kg/m2 pre-surgery to 32.3 kg/m2 at 6 months after BS. Compared with the control group, obesity was associated with lower LEP methylation in both the rectal mucosa and in cfDNA from serum. BS normalised LEP methylation in DNA from the rectal mucosa but not in cfDNA. BS decreased methylation of some CpG sites of LINE1 in the rectal mucosal DNA and in cfDNA to levels comparable with those in participants without obesity. Methylation of POMC in rectal mucosal DNA was normalised at 6 months after BS. CONCLUSION: BS reversed LINE1, POMC and LEP methylation in the rectal mucosa of patients with obesity to levels similar to those in individuals without obesity. These findings support current evidence of effects of BS-induced weight loss on reversibility of DNA methylation in other tissues. The DNA methylation changes in the rectal mucosa shows promise as a biomarker for objective assessment of effects of weight loss interventions on risk of cancer and other diseases.


Assuntos
Cirurgia Bariátrica , Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Reto , Pró-Opiomelanocortina/genética , Obesidade/genética , Obesidade/cirurgia , Obesidade/complicações , Cirurgia Bariátrica/métodos , Metilação de DNA/genética , Biomarcadores , Inflamação/complicações , Neoplasias Colorretais/genética , DNA , Mucosa , Redução de Peso/genética
7.
Virchows Arch ; 483(5): 635-643, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726450

RESUMO

Extra-pituitary ACTH secretion is associated with a variety of neoplastic conditions and may cause the so-called ectopic ACTH-dependent Cushing syndrome (CS). The clarification of the mechanisms of extra-pituitary ACTH expression would provide potential therapeutic targets for this complex and severe disease. In the adenohypophysis, the transcription factor TPIT, co-operating with other molecules, induces POMC expression and ACTH production. However, no data are currently available on the presence and role of TPIT expression in extra-pituitary ACTH-producing neoplasms. This study was designed to explore TPIT expression in a series of pulmonary and pancreatic ACTH-producing tumors, either CS-associated or not. Forty-one extra-pituitary ACTH-producing neuroendocrine tumors (NETs) were included in the study, encompassing 32 NETs of the lung (LuNETs), 7 of the pancreas (PanNETs), and 2 pheochromocytomas. Of these, 9 LuNETs, all PanNETs, and the two pheochromocytomas were CS-associated. For comparison, 6 NETs of the pituitary gland (PitNETs; 3 ACTH-secreting and 3 ACTH-negative) and 35 ACTH-negative extra-pituitary NETs (15 Lu-NETs and 20 PanNETs) were analyzed. Immunohistochemistry with specific anti-TPIT antibodies and quantitative real-time PCR (qRT-PCR) were performed using standard protocols. TPIT expression was completely absent (protein and mRNA) in PanNETs, pheochromocytomas, and all ACTH-negative NETs. In contrast, it was expressed in 16/32 LuNETs, although with lower levels than in PitNETs. No definite relationship was found between immunohistochemistry TPIT expression and NET grade or the presence of Cushing syndrome. This study further highlights the clinical and biological heterogeneity of extra-pituitary ACTH secretion and suggests that the differences between ACTH-secreting PanNETs and LuNETs may mirror distinct molecular mechanisms underlying POMC expression. Our results point towards the recognition of a real corticotroph-like phenotype of ACTH-producing LuNETs, that is not a feature of ACTH-producing PanNETs.


Assuntos
Neoplasias das Glândulas Suprarrenais , Carcinoma Neuroendócrino , Síndrome de Cushing , Neoplasias Pulmonares , Tumores Neuroendócrinos , Feocromocitoma , Doenças da Hipófise , Neoplasias Hipofisárias , Humanos , Hormônio Adrenocorticotrópico/metabolismo , Neoplasias Pulmonares/metabolismo , Pâncreas/patologia , Hipófise/patologia , Neoplasias Hipofisárias/patologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
8.
Pituitary ; 26(5): 597-610, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642928

RESUMO

PURPOSE: Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS: To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS: In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION: NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hipersecreção Hipofisária de ACTH , Animais , Humanos , Camundongos , Adenoma Hipofisário Secretor de ACT/tratamento farmacológico , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Ciclina E , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores da Bombesina/metabolismo , Receptores Acoplados a Proteínas G , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Endocrinol Invest ; 46(12): 2609-2616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37233978

RESUMO

PURPOSE: Clinical control of corticotroph tumors is difficult to achieve since they usually persist or relapse after surgery. Pasireotide is approved to treat patients with Cushing's disease for whom surgical therapy is not an option. However, Pasireotide seems to be effective only in a sub-set of patients, highlighting the importance to find a response marker to this approach. Recent studies demonstrated that the delta isoform of protein kinase C (PRKCD) controls viability and cell cycle progression of an in vitro model of ACTH-secreting pituitary tumor, the AtT-20/D16v-F2 cells. This study aims at exploring the possible PRKCD role in mediating Pasireotide effects. METHODS: It was assessed cell viability, POMC expression and ACTH secretion in AtT20/D16v-F2 cells over- or under-expressing PRKCD. RESULTS: We found that Pasireotide significantly reduces AtT20/D16v-F2 cell viability, POMC expression and ACTH secretion. In addition, Pasireotide reduces miR-26a expression. PRKCD silencing decreases AtT20/D16v-F2 cell sensitivity to Pasireotide treatment; on the contrary, PRKCD overexpression increases the inhibitory effects of Pasireotide on cell viability and ACTH secretion. CONCLUSION: Our results provide new insights into potential PRKCD contribution in Pasireotide mechanism of action and suggest that PRKCD might be a possible marker of therapeutic response in ACTH-secreting pituitary tumors.


Assuntos
Hipersecreção Hipofisária de ACTH , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/patologia , Corticotrofos/metabolismo , Corticotrofos/patologia , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-delta/farmacologia , Proteína Quinase C-delta/uso terapêutico , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Hormônio Adrenocorticotrópico/metabolismo , Recidiva Local de Neoplasia/patologia , Linhagem Celular , Hipersecreção Hipofisária de ACTH/metabolismo , Linhagem Celular Tumoral
10.
Anim Biotechnol ; 34(9): 4837-4850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37071507

RESUMO

This study was conducted to assess the association between proopiomelanocortin (POMC) gene and growth traits in Awassi and Karakul sheep. PCR-single strand conformation polymorphism (SSCP) method was utilized to assess the polymorphism of POMC PCR amplicons with body weight and length, wither and rump height, chest and abdominal circumference measured at birth, 3, 6, 9, and 12 months intervals. Only one missense SNP (rs424417456:C > A) was detected in exon-2, in which glycine was converted to cysteine in the 65th position in POMC (p.65Gly > Cys). rs424417456 SNP showed significant associations with all growth traits in the third, sixth, ninth, and twelfth months. At the age of 3 months onward, lambs with CC genotype showed higher body weight, body length, wither and rump heights, and chest and abdominal circumferences than lambs with CA and AA genotypes, respectively. Prediction analyses indicated a deleterious effect of p.65Gly > Cys on POMC structure, function, and stability. Owing to the strong correlation between rs424417456:CC and better growth characteristics, this genotype is proposed as a promising marker to enhance growth traits in Awassi and Karakul sheep. The predicted damaging effects caused by rs424417456:CA and rs424417456:AA genotypes may entail a putative mechanism through which lambs with these genotypes exhibit lower growth traits.


Assuntos
Pró-Opiomelanocortina , Carneiro Doméstico , Ovinos/genética , Animais , Pró-Opiomelanocortina/genética , Carneiro Doméstico/genética , Fenótipo , Genótipo , Peso Corporal/genética , Polimorfismo Conformacional de Fita Simples , Polimorfismo de Nucleotídeo Único/genética
11.
Expert Rev Endocrinol Metab ; 18(2): 209-219, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864747

RESUMO

OBJECTIVE: Hyperphagia and early-onset, severe obesity are clinical characteristics of rare melanocortin-4 receptor (MC4R) pathway diseases due to loss-of-function (LOF) variants in genes comprising the MC4R pathway. In vitro functional characterization of 12,879 possible exonic missense variants from single-nucleotide variants (SNVs) of LEPR, POMC, and PCSK1 was performed to determine the impact of these variants on protein function. METHODS: SNVs of the three genes were transiently transfected into cell lines, and each variant was subsequently classified according to functional impact. We validated three assays by comparing classifications against functional characterization of 29 previously published variants. RESULTS: Our results significantly correlated with previously published pathogenic categories (r = 0.623; P = 3.03 × 10-4) of all potential missense variants arising from SNVs. Of all observed variants identified through available databases and a tested cohort of 16,061 patients with obesity, 8.6% of LEPR, 63.2% of PCSK1, and 10.6% of POMC variants exhibited LOF, including variants currently classified as a variant of uncertain significance (VUS). CONCLUSIONS: The functional data provided here can assist in the reclassification of several VUS in LEPR, PCSK1, and POMC and highlight their impact in MC4R pathway diseases.


Assuntos
Obesidade , Pró-Opiomelanocortina , Humanos , Hiperfagia , Nucleotídeos , Obesidade/genética , Obesidade/patologia , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 1/genética
12.
Curr Opin Endocrinol Diabetes Obes ; 30(2): 136-140, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722447

RESUMO

PURPOSE OF REVIEW: Examine Setmelanotide use in patients with rare genetic variants that disrupt the melanocortin pathway. RECENT FINDINGS: Between February 2017 and September 2018, 10 participants with pro-opiomelanocortin (POMC)/ proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency and 11 participants with leptin receptor (LEPR) deficiency were enrolled in open-label, phase 3 trials at 10 centers in the United States and internationally to assess the efficacy and safety of the melanocortin-4 receptor (MC4R) agonist Setmelanotide. 80% of POMC participants and 45% of LEPR participants achieved at least 10% weight loss at 1 year. Significant changes in hunger scores were seen for both cohorts as well. Setmelanotide was well tolerated with injection site reactions and hyperpigmentation being the most common adverse events reported. As a result, Setmelanotide was approved by the U.S. FDA in 2020 for chronic weight management in adult and pediatric patients ≥6 years of age with POMC, LEPR, or PCSK1 deficiency. In 2022, its approval was extended to include patients with Bardet-Biedel syndrome (BBS) after phase 3 trial data showed that, on average, Setmelanotide treatment resulted in a BMI loss of 7.9% for the 44 BBS participants. SUMMARY: Rare genetic variants such as POMC, LEPR, and PCSK1 deficiency disrupt MC4R pathway signaling, resulting in severe early-onset obesity, hyperphagia, and increased risk for metabolic co-morbidities. Patients with BBS also demonstrate severe early-onset obesity and hyperphagia, due in part to defective MC4R signaling. Setmelanotide has shown promising benefits in improving satiety scores and weight-related outcomes in patients with these early-life genetic obesity conditions, although longer-term studies are needed.


Assuntos
Obesidade Infantil , Pró-Opiomelanocortina , Criança , Humanos , Hiperfagia , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ensaios Clínicos Fase III como Assunto
13.
Altern Ther Health Med ; 29(1): 238-244, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36150015

RESUMO

Context: Pituitary adenoma is a clinical syndrome in which excessive production of pituitary corticotropin (ACTH). For ACTH tumor cells, researchers know little about the influence of the cell-cycle process on ACTH production and cell proliferation. Some research has shown that imatinib can induce apoptosis of tumor cells. Objective: The study intended to explore the effects and molecular mechanisms of imatinib combined with everolimus on AtT-20 cells in AtT-20 mouse pituitary tumors. Design: The research team performed a laboratory study using murine corticotropin tumor AtT-20 cells. Setting: The study took place at the Department of Neurosurgery at Renmin Hospital of the Hubei University of Medicine in Shiyan, Hubei, China. Intervention: The research team cultured the cells in AtT-20-cell-specific medium containing 100 µg/mL of streptomycin, 100 U/mL of penicillin, and 10% fetal bovine serum at 37°C and 5% CO2. The team divided the cells into a control group, a normal culture without the drug, and an intervention group, incubated for 24 hours with 1 µM of imatinib and 3 µM of everolimus when the cells grew to 40% confluence. Outcome Measures: The research team: (1) determined the effects of the combined drugs on cell viability using a methyl thiazolyl tetrazolium (MTT) assay; (2) detected the cell's mitochondrial membrane potential and LDH leakage using "sytox blue, 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide," CBIC2(3) or JC-1, and lactate dehydrogenase (LDH) assay kits, respectively; (3) detected AtT-20 cell apoptosis using a "terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling" (TUNEL) kit; (4) analyzed the expression of protein kinase B (p-Akt), cAMP-response element binding protein (p-CREB), p27, p53, and cyclin E using a Western blot test; (5) detected the mRNA expression of opioid melanin procorticotropin (POMC)), caspase-3, and pituitary tumor transforming gene 1 (PTTG1) using reverse transcription-polymerase chain reaction (RT-PCR); (6) measure the concentration of adreno-cortico-tropic-hormone (ACTH) in the supernatant using an enzyme-linked immunoassay (ELISA) kit; and (7) assessed the cell cycle distribution using flow cytometry. Results: No differences existed in cell viability between the groups at the baseline (0 h) of the culture period (P > .05). Compared to the control group, the intervention group's: (1) cell viability was significantly lower at 4, 8, and 12 hours and postintervention at 16 hours (P < .001); (2) LDH concentration was significantly higher (P < .001); (3) mitochondrial membrane potential was significantly lower (P < .001); (4) apoptosis rate of TUNEL was significantly higher (P < .001 ); (5) expression of p-Akt, p-CREB phosphorylation, and cyclin E was significantly lower (P < .001), (6) expression of p27 and p53 protein was significantly higher (P < .001); (7) mRNA expression of POMC and PTTG1 were significantly lower (P < .001); (8) mRNA expression of caspase-3 was significantly higher (P < .001); (9) concentration of ACTH was lower (P < .001); and (10) percentage of cells in the G0/G1 phase was significantly higher, while the percentage of cells in the S phase was significantly lower (P < .05). Conclusions: Imatinib combined with everolimus can affect the AtT-20 cell cycle through the signaling pathway of the phosphatidylin-ositol-3-kinase (PI3K)/Akt/ protein kinase A (PKA) system and can inhibit cell proliferation and induce cell apoptosis. Therefore, Imatinib and everolimus may be an effective combination of candidates for drugs for mouse pituitary tumor.


Assuntos
Neoplasias Hipofisárias , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Everolimo/farmacologia , Mesilato de Imatinib/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Ciclina E/metabolismo , Ciclina E/farmacologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Linhagem Celular Tumoral , Hormônio Adrenocorticotrópico/metabolismo , Apoptose , RNA Mensageiro/farmacologia , Proliferação de Células
14.
Mol Metab ; 66: 101645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442744

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons are the key anorexigenic hypothalamic neuron for integrating metabolic cues to generate the appropriate output for maintaining energy homeostasis and express the requisite channels as a perfect synaptic integrator in this role. Similar to the metabolic hormones leptin and insulin, glutamate also excites POMC neurons via group I metabotropic glutamate receptors (mGluR1 and 5, mGluR1/5) that activate Transient Receptor Potential Canonical (TRPC 5) Channels to cause depolarization. A key modulator of TRPC 5 channel activity is stromal interaction molecule 1 (STIM1), which is involved in recruitment of TRPC 5 channels from receptor-operated to store-operated calcium entry following depletion of calcium from the endoplasmic reticulum. METHODS: We used a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas) and a single guide RNA (sgRNA) to mutate Stim1 in POMCCre neurons in male mice, verified by qPCR of Stim1 mRNA expression in single POMC neurons. Whole-cell patch clamp experiments were conducted to validate the effects of Stim1 mutagenesis. Body weight and food intake were measured in male mice to assess disruptions in energy balance. RESULTS: Reduced Stim1 expression augmented the efficacy of the mGluR1/5 agonist 3, 5-Dihydroxyphenylglycine (DHPG) to depolarize POMC neurons via a Gαq-coupled signaling pathway, which is an essential part of excitatory glutamatergic input in regulating energy homeostasis. The TRPC 5 channel blockers HC070 and Pico145 antagonized the excitatory effects of DHPG. As proof of principle, mutagenesis of Stim1 in POMC neurons reduced food intake, attenuated weight gain, reduced body fat and fat pad mass in mice fed a high fat diet. CONCLUSIONS: Using CRISPR technology we have uncovered a critical role of STIM1 in modulating glutamatergic activation of TRPC 5 channels in POMC neurons, which ultimately is important for maintaining energy balance.


Assuntos
Neurônios , Obesidade , Molécula 1 de Interação Estromal , Animais , Masculino , Camundongos , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mutagênese , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 932761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387867

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a newly discovered antagonist of the growth hormone secretagogue receptor (GHSR) and is considered the first endogenous peptide that can antagonize the metabolic actions of ghrelin. The effects of ghrelin administration on feeding behavior, body weight, and energy metabolism involve the activation of orexigenic neurons in the arcuate nucleus (ARC) of the hypothalamus. It is unclear, however, if LEAP2 applied directly to the ARC of the hypothalamus affects these metabolic processes. Here, we show that overexpression of LEAP2 in the ARC through adeno-associated virus (AAV) reduced food intake and body weight in wild-type (WT) mice fed chow and a high-fat diet (HFD) and improved metabolic disorders. LEAP2 overexpression in the ARC overrides both central and peripheral ghrelin action on a chow diet. Interestingly, this AAV-LEAP2 treatment increased proopiomelanocortin (POMC) expression while agouti-related peptide (AGRP)/neuropeptide Y (NPY) and GHSR levels remained unchanged in the hypothalamus. Additionally, intracerebroventricular (i.c.v.) administration of LEAP2 decreased food intake, increased POMC neuronal activity, and repeated LEAP2 administration to mice induced body weight loss. Using chemogenetic manipulations, we found that inhibition of POMC neurons abolished the anorexigenic effect of LEAP2. These results demonstrate that central delivery of LEAP2 leads to appetite-suppressing and body weight reduction, which might require activation of POMC neurons in the ARC.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Ingestão de Alimentos , Grelina , Pró-Opiomelanocortina , Animais , Camundongos , Peso Corporal , Grelina/farmacologia , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Comportamento Alimentar
16.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36007929

RESUMO

Hyperphagia and obesity profoundly affect the health of children with Prader-Willi syndrome (PWS). The Magel2 gene among the genes in the Prader-Willi syndrome deletion region is expressed in proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC). Knockout of the Magel2 gene disrupts POMC neuronal circuits and functions. Here, we report that loss of the Magel2 gene exclusively in ARCPOMC neurons innervating the medial amygdala (MeA) causes a reduction in body weight in both male and female mice fed with a high-fat diet. This anti-obesity effect is associated with an increased locomotor activity. There are no significant differences in glucose and insulin tolerance in mice without the Magel2 gene in ARCPOMC neurons innervating the MeA. Plasma estrogen levels are higher in female mutant mice than in controls. Blockade of the G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ER-α), reduces locomotor activity in female mutant mice. Hence, our study provides evidence that knockdown of the Magel2 gene in ARCPOMC neurons innervating the MeA reduces susceptibility to diet-induced obesity with increased locomotor activity through activation of central GPER.


Assuntos
Antígenos de Neoplasias/genética , Síndrome de Prader-Willi , Pró-Opiomelanocortina , Proteínas/genética , Tonsila do Cerebelo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Obesidade/genética , Síndrome de Prader-Willi/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
17.
J Transl Med ; 20(1): 368, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974370

RESUMO

Primary hyperparathyroidism (PHPT) is mainly caused by parathyroid adenoma, which produces excess parathyroid hormones. Its pathogenic mechanisms have not yet been fully understood. To investigate the mechanism in the pathogenesis of PHPT, the transcriptome and genome-wide DNA methylation profiles of parathyroid adenoma were analyzed. The candidate genes that may be involved in the PHPT were verified via qRT-PCR, immunohistochemistry, western blot, and methylation-specific PCR. A total of 1650 differentially expressed genes and 2373 differentially methylated regions were identified. After the integration of its transcriptome and DNA methylation data, IL6, SYP, GNA01, and pro-opiomelanocortin (POMC) were the candidate genes that demonstrated a similar pattern between their mRNA expression and DNA methylation status. Of the 4 candidate genes, POMC, a pro-peptide which is processed to a range of bioactive peptide products like ACTH, was further confirmed to be expressed at low levels at both the mRNA and protein levels, which may be due to POMC promoter hypermethylation. Hypermethylation of the POMC promoter may contribute to its low expression, which may be involved in the pathogenesis of PHPT.


Assuntos
Metilação de DNA , Neoplasias das Paratireoides , Pró-Opiomelanocortina , Expressão Gênica , Humanos , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
BMC Med Genomics ; 15(1): 177, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941638

RESUMO

BACKGROUND: Increasing evidence indicates that the immune microenvironment plays a key role in the genesis and progression of colorectal cancer (CRC). This study aimed to establish an immune-related gene (IRG) signature and determine its clinical prognostic value in patients with CRC. METHODS: The RNA sequencing and associated clinical data of CRC were downloaded from The Cancer Genome Atlas (TCGA) database. We then screened for differentially expressed IRGs by intersecting with IRGs obtained from the Immunology Database and Analysis Portal. Functional enrichment analyses were carried out to determine the potential biological functions and pathways of the IRGs. We also explored the specific molecular mechanisms of the IRGs by constructing regulatory networks. Prognostic IRGs were obtained by LASSO regression analysis, and subsequently, gene models were constructed in the TCGA dataset to confirm the predictive capacity of these IRGs. Finally, we used the TIMER tool to assess the immune properties of prognostic IRGs and correlate them with immune cells. RESULTS: We identified 409 differentially expressed IRGs in patients with CRC. Kyoto Encyclopaedia of Genes and Genomes and Gene Ontology enrichment analyses suggested that these differentially expressed IRGs were significantly related to 102 cancer signalling pathways and various biological functions. Based on the prediction and interaction results, we obtained 59 TF-IRG, 48 miRNA-IRG, and 214 drug-IRG interaction networks for CRC. Four prognostic genes (POMC, TNFRSF19, FGF2, and SCG2) were developed by integrating 47 survival-related IRGs and 42 characteristic CRC genes. The results of gene model showed that patients in the low risk group had better survival outcomes compared to those in the high risk group. The expression of POMC, TNFRSF19, FGF2, and SCG2 was significantly correlated with immune cells. CONCLUSION: This study identified some valid IRGs, and these findings can provide strong evidence for precision immunotherapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Detecção Precoce de Câncer , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoterapia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Prognóstico , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transcriptoma , Microambiente Tumoral
19.
Peptides ; 155: 170841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868568

RESUMO

Growth differentiation factor-15 (GDF15) is a stress-responsive cytokine that plays important roles in regulation of inflammatory responses, cell growth, and cell differentiation. However, the nature of these roles remains unclear. Here, we aimed to examine the regulatory effects of dexamethasone on Gdf15 expression in murine AtT-20 corticotroph cells. Human Gdf15 promoter-driven luciferase reporter constructs were transfected into corticotroph cells to analyze their promoter activity. The effects of time and concentration of dexamethasone on Gdf15 and proopiomelanocortin (Pomc) mRNA levels were assessed using quantitative real-time polymerase chain reaction. Dexamethasone induced Gdf15 transcription and mRNA levels as well as GDF15 production in transfected cells, whereas reduced the Pomc mRNA levels. GDF15 modulated adrenocorticotropic hormone (ACTH) synthesis, and the dexamethasone-mediated reduction in Pomc mRNA levels were partially relieved upon Gdf15 knockdown. We concluded that GDF15 modulated ACTH production in pituitary corticotrophs in an autocrine manner by suppressing Pomc expression and subsequently mediating the negative feedback effect of glucocorticoids, thereby contributing to pituitary stress response and homeostasis.


Assuntos
Hormônio Adrenocorticotrópico , Corticotrofos , Fator 15 de Diferenciação de Crescimento , Hormônio Adrenocorticotrópico/metabolismo , Animais , Corticotrofos/química , Corticotrofos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Dexametasona/farmacologia , Expressão Gênica , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Camundongos , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Neuroendocrinol ; 34(7): e13165, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833423

RESUMO

Glucocorticoids (GC) are prescribed for periods > 3 months to 1%-3% of the UK population; 10%-50% of these patients develop hypothalamus-pituitary-adrenal (HPA) axis suppression, which may last over 6 months and is associated with morbidity and mortality. Recovery of the pituitary and hypothalamus is necessary for recovery of adrenal function. We developed a mouse model of dexamethasone (DEX)-induced HPA axis dysfunction aiming to further explore recovery in the pituitary. Adult male wild-type C57BL6/J or Pomc-eGFP transgenic mice were randomly assigned to receive DEX (approximately 0.4 mg kg-1 bodyweight day-1 ) or vehicle via drinking water for 4 weeks following which treatment was withdrawn and tissues were harvested after another 0, 1, and 4 weeks. Corticotrophs were isolated from Pomc-eGFP pituitaries using fluorescence-activated cell sorting, and RNA extracted for RNA-sequencing. DEX treatment suppressed corticosterone production, which remained partially suppressed at least 1 week following DEX withdrawal. In the adrenal, Hsd3b2, Cyp11a1, and Mc2r mRNA levels were significantly reduced at time 0, with Mc2r and Cyp11a1 remaining reduced 1 week following DEX withdrawal. The corticotroph transcriptome was modified by DEX treatment, with some differences between groups persisting 4 weeks following withdrawal. No genes supressed by DEX exhibited ongoing attenuation 1 and 4 weeks following withdrawal, whereas only two genes were upregulated and remained so following withdrawal. A pattern of rebound at 1 and 4 weeks was observed in 14 genes that increased following suppression, and in six genes that were reduced by DEX and then increased. Chronic GC treatment may induce persistent changes in the pituitary that may influence future response to GC treatment or stress.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hormônio Adrenocorticotrópico/metabolismo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol , Corticosterona , Corticotrofos/metabolismo , Dexametasona/farmacologia , Glucocorticoides , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Pró-Opiomelanocortina/genética , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA