Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
2.
Viruses ; 12(6)2020 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486377

RESUMO

Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.


Assuntos
Burkholderia/virologia , Lisogenia , Prófagos/patogenicidade , Burkholderia/genética , Infecções por Burkholderia/microbiologia , Cromossomos Bacterianos/genética , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Genoma Bacteriano/genética , Genoma Viral/genética , Humanos , Lisogenia/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Prófagos/genética , Prófagos/fisiologia , Ativação Viral
3.
Arch Microbiol ; 202(5): 1241-1250, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32112122

RESUMO

Genetic stability of bacterium as a starter culture is vital for product quality in fermentation industry. The commercial strain Lactobacillus plantarum NCU116 widely used in fruit and vegetable fermentation was induced with various stressors to investigate the stability of potential prophages. PHAge Search Tool (PHAST) identified three potential prophages in bacterial genome. By spectrophotometric analysis, mitomycin C (MMC), lactic acid, and bile salt were found to inhibit the growth of L. plantarum NCU116 while ethanol and hydrogen peroxide had no notable impacts. Transcriptions of four phage-synthesizing genes (phaR, phacap, phaada, phatail) and four phage-resistant genes (cas116, helR, hsd1, hsd2) under stressors were investigated by quantitative reverse transcription PCR. MMC was found to most significantly upregulated transcriptions of phage-synthesizing genes, followed by lactic acid and bile salt. By transmission electron microscopy, no virus particles from the lysates of strain NCU116 treated by MMC were observed, corresponding to the result that no phage nucleic acids could be extracted from the supernatants of strain NCU116 treated by MMC. This study suggested that no prophages could be induced from L. plantarum NCU116 by strong inducer MMC, indicating its genetic stability, which supports the comprehensive application of strain NCU116 in industry without causing fermentation failure.


Assuntos
Lactobacillus plantarum/virologia , Prófagos/fisiologia , Estresse Fisiológico/fisiologia , Antibióticos Antineoplásicos/farmacologia , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Instabilidade Genômica/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Mitomicina/farmacologia
4.
Cell Syst ; 10(3): 254-264.e9, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32191875

RESUMO

Half of the bacteria in the human gut microbiome are lysogens containing integrated prophages, which may activate in stressful immune environments. Although lysogens are likely to be phagocytosed by macrophages, whether prophage activation occurs or influences the outcome of bacterial infection remains unexplored. To study the dynamics of bacteria-phage interactions in living cells-in particular, the macrophage-triggered induction and lysis of dormant prophages in the phagosome-we adopted a tripartite system where murine macrophages engulf E. coli, which are lysogenic with an engineered bacteriophage λ, containing a fluorescent lysis reporter. Pre-induced prophages are capable of lysing the host bacterium and propagating infection to neighboring bacteria in the same phagosome. A non-canonical pathway, mediated by PhoP, is involved with the native λ phage induction inside phagocytosed E. coli. These findings suggest two possible mechanisms by which induced prophages may function to aid the bactericidal activity of macrophages.


Assuntos
Lisogenia/fisiologia , Imagem Molecular/métodos , Ativação Viral/fisiologia , Animais , Bactérias , Bacteriófago lambda/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal , Engenharia Genética/métodos , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Prófagos/metabolismo , Prófagos/fisiologia , Células RAW 264.7
5.
Sci Rep ; 8(1): 14856, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291266

RESUMO

Phenotypic diversification is key to microbial adaptation. Currently, advanced technological approaches offer insights into cell-to-cell variation of bacterial populations at a spatiotemporal resolution. However, the underlying molecular causes or consequences often remain obscure. In this study, we developed a workflow combining fluorescence-activated cell sorting and RNA-sequencing, thereby allowing transcriptomic analysis of 106 bacterial cells. As a proof of concept, the workflow was applied to study prophage induction in a subpopulation of Corynebacterium glutamicum. Remarkably, both the phage genes and flanking genomic regions of the CGP3 prophage revealed significantly increased coverage upon prophage induction - a phenomenon that to date has been obscured by bulk approaches. Genome sequencing of prophage-induced populations suggested regional replication at the CGP3 locus in C. glutamicum. Finally, the workflow was applied to unravel iron-triggered prophage induction in early exponential cultures. Here, an up-shift in iron levels resulted in a heterogeneous response of an SOS (PdivS) reporter. RNA-sequencing of the induced subpopulation confirmed induction of the SOS response triggering also activation of the CGP3 prophage. The fraction of CGP3-induced cells was enhanced in a mutant lacking the iron regulator DtxR suffering from enhanced iron uptake. Altogether, these findings demonstrate the potential of the established workflow to gain insights into the phenotypic dynamics of bacterial populations.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/virologia , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ferro/metabolismo , Prófagos/fisiologia , Resposta SOS em Genética/genética , Ativação Viral/genética , Proteínas de Bactérias/genética , Variação Biológica da População/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Fenótipo , Prófagos/genética , RNA/genética
6.
Sci Rep ; 8(1): 12772, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143740

RESUMO

In the current report, we describe the identification of three genetically distinct groups of prophages integrated into three different chromosomal sites of human gut-associated Bifidobacterium breve and Bifidobacterium longum strains. These bifidobacterial prophages are distantly related to temperate actinobacteriophages of several hosts. Some prophages, integrated within the dnaJ2 gene, are competent for induction, excision, replication, assembly and lysis, suggesting that they are fully functional and can generate infectious particles, even though permissive hosts have not yet been identified. Interestingly, several of these phages harbor a putative phase variation shufflon (the Rin system) that generates variation of the tail-associated receptor binding protein (RBP). Unlike the analogous coliphage-associated shufflon Min, or simpler Cin and Gin inversion systems, Rin is predicted to use a tyrosine recombinase to promote inversion, the first reported phage-encoded tyrosine-family DNA invertase. The identification of bifidobacterial prophages with RBP diversification systems that are competent for assembly and lysis, yet fail to propagate lytically under laboratory conditions, suggests dynamic evolution of bifidobacteria and their phages in the human gut.


Assuntos
Bifidobacterium/virologia , Microbioma Gastrointestinal , Prófagos/fisiologia , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Bifidobacterium/efeitos dos fármacos , Evolução Biológica , Microbioma Gastrointestinal/efeitos dos fármacos , Genoma Viral , Especificidade de Hospedeiro/efeitos dos fármacos , Especificidade de Hospedeiro/genética , Humanos , Mitomicina/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/genética , Prófagos/ultraestrutura , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
PLoS Pathog ; 13(7): e1006495, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704569

RESUMO

Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.


Assuntos
Inovirus/fisiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Neisseria meningitidis/virologia , Animais , Aderência Bacteriana , Células Epiteliais/microbiologia , Feminino , Fímbrias Bacterianas/fisiologia , Humanos , Camundongos , Camundongos SCID , Nasofaringe/microbiologia , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/fisiologia , Prófagos/fisiologia , Virulência
9.
Nat Microbiol ; 2: 16251, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067906

RESUMO

Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.


Assuntos
Micobacteriófagos/fisiologia , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/virologia , Prófagos/fisiologia , DNA Viral/genética , Variação Genética , Genoma Bacteriano , Genoma Viral , Ligases/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Prófagos/enzimologia , Prófagos/genética , Proteínas Virais/genética
10.
Nature ; 540(7632): 288-291, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27929021

RESUMO

Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but are specifically activated by superinfection with CroV, which induces the production of infectious mavirus particles. Virophages can inhibit the replication of mimivirus-like giant viruses and an anti-viral protective effect of provirophages on their hosts has been hypothesized. We find that provirophage-carrying cells are not directly protected from CroV; however, lysis of these cells releases infectious mavirus particles that are then able to suppress CroV replication and enhance host survival during subsequent rounds of infection. The microbial host-parasite interaction described here involves an altruistic aspect and suggests that giant-virus-induced activation of provirophages might be ecologically relevant in natural protist populations.


Assuntos
Genoma/genética , Vírus Gigantes/fisiologia , Interações Hospedeiro-Parasita , Estramenópilas/genética , Estramenópilas/virologia , Virófagos/crescimento & desenvolvimento , Integração Viral , Elementos de DNA Transponíveis/genética , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/crescimento & desenvolvimento , Mimiviridae/crescimento & desenvolvimento , Prófagos/genética , Prófagos/fisiologia , Estramenópilas/crescimento & desenvolvimento , Superinfecção , Vírion/crescimento & desenvolvimento , Virófagos/genética , Liberação de Vírus , Replicação Viral
11.
Benef Microbes ; 7(2): 289-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26689226

RESUMO

The human intestinal microbiota plays an important role in human health. While adhesion to gastrointestinal mucosa is a prerequisite for colonisation, inhibition of adhesion is a property which may prevent or reduce infections by food borne pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus represent the two lactic bacteria constituting the yoghurt culture. These starter cultures have been claimed to be probiotic. In our study we compared two S. thermophilus strains (i.e. lysogenic strain J34 and corresponding non-lysogenic [prophage-cured] strain J34-6), with respect to (1) their in vitro adhesion properties to HT29 cells and (2) their cell surface hydrophobicities. Effects of the two strains on inhibition of adhesion of the pathogens Listeria monocytogenes Scott A, Staphylococcus aureus 6732 and Salmonella enteritidis S489 were studied in vitro with HT29 cell cultures. Lysogenic strain J34 was shown to be considerably more effective than the non-lysogenic derivative strain J34-6.


Assuntos
Células Epiteliais/microbiologia , Intestinos/microbiologia , Listeria monocytogenes/fisiologia , Prófagos/fisiologia , Staphylococcus aureus/fisiologia , Streptococcus thermophilus/fisiologia , Streptococcus thermophilus/virologia , Aderência Bacteriana , Células HT29 , Humanos , Intestinos/citologia , Lisogenia , Iogurte/microbiologia
12.
Water Res ; 81: 1-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024959

RESUMO

Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems.


Assuntos
Bacteriófagos/efeitos dos fármacos , Reatores Biológicos/microbiologia , Ciprofloxacina/farmacologia , Cobre/farmacologia , Fósforo/metabolismo , Cianeto de Potássio/farmacologia , Proteobactérias/virologia , Antibacterianos/farmacologia , Genoma Bacteriano , Polifosfatos/metabolismo , Prófagos/fisiologia , Águas Residuárias/microbiologia
13.
Nucleic Acids Res ; 43(10): 5002-16, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25916847

RESUMO

In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.


Assuntos
Actinas/metabolismo , Corynebacterium glutamicum/virologia , Replicação do DNA , DNA Viral/biossíntese , Prófagos/genética , Proteínas Virais/metabolismo , Replicação Viral , Actinas/genética , Actinas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Corynebacterium glutamicum/genética , DNA Viral/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Guanosina Trifosfato/metabolismo , Prófagos/fisiologia , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
14.
J Med Microbiol ; 63(Pt 3): 331-342, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24324031

RESUMO

Comparison of the publicly available genomes of the virulent Salmonella enterica serovar Typhimurium (S. Typhimurium) strains SL1344, 14028s and D23580 to that of the virulence-attenuated isolate LT2 revealed the absence of a full sequence of bacteriophage ST64B in the latter. Four selected ST64B regions of unknown function (sb7-sb11, sb46, sb49-sb50 and sb54) were mapped by PCR in two strain collections: (i) 310 isolates of S. Typhimurium from human blood or stool samples, and from food, animal and environmental reservoirs; and (ii) 90 isolates belonging to other serovars. The region sb49-sb50 was found to be unique to S. Typhimurium and was strongly associated with strains isolated from blood samples (100  and 28.4 % of the blood and non-blood isolates, respectively). The region was cloned into LT2 and knocked out in SL1344, and these strains were compared to wild-type isogenic strains in in vitro assays used to predict virulence association. No difference in invasion of the Int407 human cell line was observed between the wild-type and mutated strains, but the isolate carrying the whole ST64B prophage was found to have a slightly better survival in blood. The study showed a high prevalence and a strong association between the prophage ST64B and isolates of S. Typhimurium collected from blood, and may indicate that such strains constitute a selected subpopulation within this serovar. Further studies are indicated to determine whether the slight increase in blood survival observed in the strain carrying ST64B genes is of paramount importance for systemic infections.


Assuntos
Genoma Bacteriano/genética , Prófagos/fisiologia , Fagos de Salmonella/fisiologia , Salmonella typhimurium/patogenicidade , Animais , Bacteriemia/microbiologia , Linhagem Celular , Biologia Computacional , Primers do DNA/genética , Células Epiteliais/microbiologia , Fezes/microbiologia , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos/genética , Genes Virais/genética , Humanos , Viabilidade Microbiana , Prófagos/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Salmonella typhimurium/virologia , Especificidade da Espécie , Virulência
15.
BMC Microbiol ; 12: 216, 2012 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998633

RESUMO

BACKGROUND: Pseudomonas aeruginosa is the most common bacterial pathogen infecting the lungs of patients with cystic fibrosis (CF). The Liverpool Epidemic Strain (LES) is transmissible, capable of superseding other P. aeruginosa populations and is associated with increased morbidity. Previously, multiple inducible prophages have been found to coexist in the LES chromosome and to constitute a major component of the accessory genome not found in other sequenced P. aerugionosa strains. LES phages confer a competitive advantage in a rat model of chronic lung infection and may, therefore underpin LES prevalence. Here the infective properties of three LES phages were characterised. RESULTS: This study focuses on three of the five active prophages (LESφ2, LESφ3 and LESφ4) that are members of the Siphoviridae. All were induced from LESB58 by norfloxacin. Lytic production of LESφ2 was considerably higher than that of LESφ3 and LESφ4. Each phage was capable of both lytic and lysogenic infection of the susceptible P. aeruginosa host, PAO1, producing phage-specific plaque morphologies. In the PAO1 host background, the LESφ2 prophage conferred immunity against LESφ3 infection and reduced susceptibility to LESφ4 infection. Each prophage was less stable in the PAO1 chromosome with substantially higher rates of spontaneous phage production than when residing in the native LESB58 host. We show that LES phages are capable of horizontal gene transfer by infecting P. aeruginosa strains from different sources and that type IV pili are required for infection by all three phages. CONCLUSIONS: Multiple inducible prophages with diverse infection properties have been maintained in the LES genome. Our data suggest that LESφ2 is more sensitive to induction into the lytic cycle or has a more efficient replicative cycle than the other LES phages.


Assuntos
Prófagos/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/virologia , Adulto , Animais , Antibacterianos/metabolismo , Criança , Pré-Escolar , Fibrose Cística/complicações , Fímbrias Bacterianas/fisiologia , Humanos , Lisogenia , Norfloxacino/metabolismo , Prófagos/isolamento & purificação , Prófagos/fisiologia , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Transdução Genética , Ensaio de Placa Viral , Ativação Viral/efeitos dos fármacos , Internalização do Vírus
16.
Int Microbiol ; 13(3): 113-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20890845

RESUMO

The prophage Lv1, harbored by a vaginal Lactobacillus jensenii isolate, was induced by several different anticancer, antimicrobial, and antiseptic agents, suggesting that they contribute to the adverse vaginal effects associated with their therapeutic use. Of special interest with respect to its novelty was the inducing effect of nonoxynol-9, a non-ionic detergent commonly used as a spermicide. The Lv1 genome consists of a 38,934-bp dsDNA molecule with cohesive ends, in which 48 ORFs were recognized, and is organized into functional modules. Lv1 belongs to the family Siphoviridae and, more precisely, to the proposed Sfi21-like genus. The capsid-tail junction of the Lv1 virions is fragile such that most particles become disrupted, suggesting that the virus is defective and thus unable to generate fertile progeny. However, genome analysis did not provide evidence of the defective nature of the prophage, other than the finding that its genome is shorter than those of other, related, phages. Further analysis indicated that prophage Lv1 suffered deletions in its right half to the extent that it no longer fulfill the minimum packaging limits, thereby generating the observed unstable particles.


Assuntos
Genoma Viral , Lactobacillus/virologia , Prófagos/isolamento & purificação , Ativação Viral/efeitos dos fármacos , Anti-Infecciosos Locais/metabolismo , Antineoplásicos/metabolismo , DNA Viral/química , DNA Viral/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Ordem dos Genes , Humanos , Lactobacillus/isolamento & purificação , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Nonoxinol/metabolismo , Fases de Leitura Aberta , Prófagos/classificação , Prófagos/genética , Prófagos/fisiologia , Análise de Sequência de DNA , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Espermicidas/metabolismo , Sintenia , Vagina/microbiologia , Proteínas Virais/isolamento & purificação , Vírion/isolamento & purificação , Vírion/ultraestrutura , Replicação Viral/efeitos dos fármacos
17.
Water Res ; 44(15): 4550-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20630557

RESUMO

Bacteriophages are viruses that infect bacteria and contribute significant changes in the overall bacterial community. Prophages are formed when temperate bacteriophages integrate their DNA into the bacterial chromosome during the lysogenic cycle of the phage infection to bacteria. The prophage (phage DNA integrated into bacterial genome) on the bacterial genome remains dormant, but can cause cell lysis under certain environmental conditions. This research examined the effect of various environmental stress factors on the ammonia oxidation and prophage induction in a model ammonia oxidizing bacteria Nitrosospira multiformis ATCC 25196. The factors included in the study were pH, temperature, organic carbon (COD), the presence of heavy metal in the form of chromium (VI) and the toxicity as potassium cyanide (KCN). The selected environmental factors are commonly encountered in wastewater treatment processes, where ammonia oxidizing bacteria play a pivotal role of converting ammonia into nitrite. All the factors could induce prophage from N. multiformis demonstrating that cell lysis due to prophage induction could be an important mechanism contributing to the frequent upset in ammonia oxidation efficiency in full scale treatment plants. Among the stress factors considered, pH in the acidic range was the most detrimental to the nitrification efficiency by N. multiformis. The number of virus like particles (VLPs) increased by 2.3E+10 at pH 5 in 5h under acidic pH conditions. The corresponding increases in VLPs at pH values of 7 and 8 were 9.67E+9 and 1.57E+10 in 5h respectively. Cell lysis due to stress resulting in phage induction seemed the primary reason for deteriorated ammonia oxidation by N. multiformis at lower concentrations of Cr (VI) and potassium cyanide. However, direct killing of N. multiformis due to the binding of Cr (VI) and potassium cyanide with cell protein as demonstrated in the literature at higher concentrations of these toxic compounds was the primary mechanism of cell lysis of N. multiformis. Organics represented by the chemical oxygen demand (COD) did not have any effect on the phage induction in N. multiformis. This AOB remained dormant at low temperature (4 degrees C) without any phage induction. Significant decrease in the number of live N. multiformis cells with a corresponding increase in the number of VLPs was recorded when the temperature was increased to 35 degrees C. Death of N. multiformis at 45 degrees C was attributed to the destruction of cell wall rather than to the phage induction.


Assuntos
Nitrosomonadaceae/virologia , Prófagos/fisiologia , Vírion/fisiologia , Poluentes Químicos da Água/toxicidade , Amônia/metabolismo , Antibióticos Antineoplásicos/toxicidade , Bacteriólise/efeitos dos fármacos , Cromo/química , Cromo/toxicidade , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Microscopia de Fluorescência , Mitomicina/toxicidade , Nitrosomonadaceae/metabolismo , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Oxirredução/efeitos dos fármacos , Cianeto de Potássio/química , Cianeto de Potássio/toxicidade , Temperatura , Vírion/ultraestrutura , Ativação Viral/efeitos dos fármacos
18.
J Bacteriol ; 191(7): 2169-76, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181810

RESUMO

Peptide inhibitors of phage lambda site-specific recombination were previously isolated by screening synthetic combinatorial peptide libraries. These inhibitors cause the accumulation of complexes between the recombinase and the Holliday junction intermediate of several highly divergent tyrosine recombinases. Peptide WRWYCR and its d-amino acid derivative bind to the center of protein-free junctions and prevent their resolution either by site-specific recombinases or by junction resolvases or helicases. With lesser affinity, the peptides also bind to branched DNA molecules that mimic replication forks. The peptides are bactericidal to both gram-positive and gram-negative bacteria, presumably because they can interfere with DNA repair and with chromosome dimer resolution by the XerC and XerD tyrosine recombinases. In order to test the correspondence between their mechanism in vivo and in vitro, we have tested and shown peptide wrwycr's ability to inhibit the excision of several prophages (lambda, P22, Gifsy-1, Gifsy-2, Fels-1, Fels-2) and to trap Holliday junction intermediates of phage lambda site-specific recombination in vivo. In addition, we found that the peptide inhibits replication of the Salmonella prophage Fels-1 while integrated in the chromosome. These findings further support the proposed mechanistic basis for the antimicrobial activity of the peptide and its use as a tool to dissect strand exchange-dependent DNA repair within cells.


Assuntos
Bactérias/virologia , DNA Cruciforme/genética , DNA Viral/genética , Peptídeos/farmacologia , Prófagos/efeitos dos fármacos , Sítios de Ligação Microbiológicos , Bactérias/genética , Prófagos/genética , Prófagos/fisiologia , Recombinação Genética/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
19.
Mikrobiol Z ; 71(5): 72-8, 2009.
Artigo em Russo | MEDLINE | ID: mdl-20458941

RESUMO

The method of quantitative determination of bacteriocinogenicity in Erwinia carotovora dissociants has been suggested. It is based on the application of indicator bacterial mutants that are resistant to nalidixic acid. It has been revealed that population dissociation destabilizes a defective lysogeny of pectolytic Erwinia. In particular, a decrease of cell indicator survivability due to an increase of active bacteriocins yield has been found under lysogenic induction of defective prophages. The reverse dependence between the indicator cell survivability caused by dissociants bacteriocins induction and the reaction of hypersensitivity on leaves of the resistant plant Nicotiana tabacum, has been revealed. Similar dependence has been determined between dissociation and activity of pectate lyase. It has been hypothesized, that viable erwiniophages, being involved in the process of lysogenicity and induction, could play the role of 'switches' of bacterial phenotype raising adaptive phytopathogene reactions. The paper is presented in Russian. K e y w o r d s: Erwinia carotovora, defective lysogeny, population dissociation, reaction of hypersensitivity, activity of pectate lyase.


Assuntos
Bacteriocinas/biossíntese , Lisogenia , Nicotiana/microbiologia , Pectobacterium carotovorum/crescimento & desenvolvimento , Prófagos/fisiologia , Bacteriocinas/metabolismo , Farmacorresistência Bacteriana , Ácido Nalidíxico/farmacologia , Pectobacterium carotovorum/enzimologia , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Pectobacterium carotovorum/virologia , Folhas de Planta/microbiologia , Polissacarídeo-Liases/biossíntese , Prófagos/genética
20.
Virology ; 373(2): 298-309, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18191977

RESUMO

The virulent lactococcal phage 1706, isolated in 1995 from a failed cheese production in France, represents a new lactococcal phage species of the Siphoviridae family. This phage has a burst size of 160 and a latent period of 85 min. Its linear double-stranded DNA genome was composed of 55,597 bp with a 33.7% G+C content. Its deduced proteome (76 ORFs) shared limited similarities to other known phage proteins. SDS-PAGE coupled with LC-MS/MS analyses led to the identification of 15 structural proteins. The most striking feature of the 1706 proteome was that 22 ORFs shared similarities with proteins deduced from the genome of either Ruminococcus torques and/or Clostridium leptum. Both are Firmicutes bacteria found in the gut flora of humans. We also identified a four-gene module in phage 1706, most likely involved in host recognition that shared similarities with lactococcal prophages. We propose that the virulent phage 1706 infected another bacterial genus before picking up a lactococcal host recognition module.


Assuntos
Lactococcus lactis/virologia , Siphoviridae/patogenicidade , Sequência de Aminoácidos , Sequência de Bases , DNA Viral/genética , Genoma Viral , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Prófagos/genética , Prófagos/fisiologia , Proteoma , Siphoviridae/genética , Siphoviridae/fisiologia , Siphoviridae/ultraestrutura , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/isolamento & purificação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA