Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Gut ; 73(10): 1618-1631, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38684238

RESUMO

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.


Assuntos
Doença de Alzheimer , Homeostase , Mucosa Intestinal , Presenilina-1 , Presenilina-2 , Animais , Camundongos , Presenilina-2/genética , Presenilina-2/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Presenilina-1/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Microbioma Gastrointestinal/fisiologia , Camundongos Knockout , Células Epiteliais/metabolismo , Transdução de Sinais , Disbiose , Modelos Animais de Doenças
2.
Mol Neurobiol ; 61(8): 5047-5070, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38159198

RESUMO

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, and approximately 10% of AD cases are early-onset familial AD (EOFAD), which is mainly linked to point mutations in genes encoding presenilins (PS1 and PS2). Mutations in PS2 are extremely rare and have not received enough attention. Recently, studies have found that Rho GTPase activity is closely related to the pathogenesis of AD. In this study, we used transcriptome sequencing in PS2 siRNA-transfected SH-SY5Y cells and found a group of differentially expressed genes (DEGs) related to the regulation of GTPase activity. Among those DEGs, the most significantly downregulated was Rho guanine nucleotide exchange factor 5 (ARHGEF5). GTPase activity in PS2 siRNA-transfected cells was significantly decreased. Then, we found that the expression of ARHGEF5 and the GTPase activity of Mitochondrial Rho GTPase 2 (Miro2) in PS2 D439A mutant SH-SY5Y cells were significantly decreased. We found for the first time that PS2 can bind to Miro2, and the PS2 D439A mutation reduced the binding between PS2 and Miro2, reduced the expression of Miro2, and resulted in an imbalance in mitochondrial fusion/fission dynamics. In conclusion, PS2 gene knockdown may participate in the pathogenesis of AD through the regulation of GTPase activity. The imbalance in mitochondrial dynamics mediated by the PS2 D439A mutation through regulation of the expression and GTPase activity of Miro2 may be a potential pathogenic mechanism of AD.


Assuntos
Dinâmica Mitocondrial , Mutação , Presenilina-2 , Humanos , Dinâmica Mitocondrial/genética , Linhagem Celular Tumoral , Mutação/genética , Presenilina-2/genética , Presenilina-2/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Ligação Proteica
3.
Cells ; 10(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440738

RESUMO

Presenilin 2 (PS2), one of the three proteins in which mutations are linked to familial Alzheimer's disease (FAD), exerts different functions within the cell independently of being part of the γ-secretase complex, thus unrelated to toxic amyloid peptide formation. In particular, its enrichment in endoplasmic reticulum (ER) membrane domains close to mitochondria (i.e., mitochondria-associated membranes, MAM) enables PS2 to modulate multiple processes taking place on these signaling hubs, such as Ca2+ handling and lipid synthesis. Importantly, upregulated MAM function appears to be critical in AD pathogenesis. We previously showed that FAD-PS2 mutants reinforce ER-mitochondria tethering, by interfering with the activity of mitofusin 2, favoring their Ca2+ crosstalk. Here, we deepened the molecular mechanism underlying PS2 activity on ER-mitochondria tethering, identifying its protein loop as an essential domain to mediate the reinforced ER-mitochondria connection in FAD-PS2 models. Moreover, we introduced a novel tool, the PS2 loop domain targeted to the outer mitochondrial membrane, Mit-PS2-LOOP, that is able to counteract the activity of FAD-PS2 on organelle tethering, which possibly helps in recovering the FAD-PS2-associated cellular alterations linked to an increased organelle coupling.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Presenilina-2/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Mutagênese , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/química , Presenilina-2/genética , Domínios Proteicos/genética
4.
Biochem Biophys Res Commun ; 552: 128-135, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744760

RESUMO

Previously, we investigated gene expression in a high aldehyde dehydrogenase 1 expression (ALDH1high) population of urothelial carcinoma (UC) cells as UC cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) and found that NRG1 expression was upregulated in ALDH1high cells. NRG1 is a trophic factor that contains an epidermal growth factor (EGF)-like domain that signals by stimulating ERBB receptor tyrosine kinases and the cytoplasmic domain. NRG1 has been determined to be involved in frequent gene fusions with other partners in several malignancies and has a role in carcinogenesis through the NRG1 EGF-like domain and its cognitive receptor ERBBs. We thus aimed to elucidate the function of NRG1 in UC CSCs/CICs in this study. Both NRG1α and NRG1-ß1 were preferentially expressed in ALDH1high cells compared with ALDH1low cells; however, siRNA experiments revealed that NRG1-ß1 but not NRG1-α has a role in sphere formation. The EGF-like domain of NRG1 had a role in sphere formation of UC cells to some extent but was not essential. The intracellular domain of NRG1 did not have a role in sphere-formation. Inhibition of γ-secretase suppressed sphere formation. These findings indicate that cleavage of NRG1-ß1 by γ-secretase plays an important role in UC CSC/CIC proliferation; however, the downstream targets of NRG1-ß1 remain elusive.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Células-Tronco Neoplásicas/metabolismo , Neuregulina-1/genética , Esferoides Celulares/metabolismo , Neoplasias Urológicas/genética , Urotélio/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neuregulina-1/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Urológicas/metabolismo , Urotélio/patologia
5.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494218

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aß) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2-/-) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2-/- neurons show a marked reduction in endoplasmic reticulum-mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2-/- and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sinalização do Cálcio , Mitocôndrias/metabolismo , Presenilina-2/deficiência , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glicólise , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação Oxidativa , Fenótipo , Presenilina-2/metabolismo
6.
Cell Calcium ; 79: 44-56, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822648

RESUMO

An imbalance in Ca2+ homeostasis represents an early event in the pathogenesis of Alzheimer's disease (AD). Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial AD (FAD), have been extensively associated with alterations in different Ca2+ signaling pathways, in particular those handled by storage compartments. However, FAD-PSs effect on organelles Ca2+ content is still debated and the mechanism of action of mutant proteins is unclear. To fulfil the need of a direct investigation of intracellular stores Ca2+ dynamics, we here present a detailed and quantitative single-cell analysis of FAD-PSs effects on organelle Ca2+ handling using specifically targeted, FRET (Fluorescence/Förster Resonance Energy Transfer)-based Ca2+ indicators. In SH-SY5Y human neuroblastoma cells and in patient-derived fibroblasts expressing different FAD-PSs mutations, we directly measured Ca2+ concentration within the main intracellular Ca2+ stores, e.g., Endoplasmic Reticulum (ER) and Golgi Apparatus (GA) medial- and trans-compartment. We unambiguously demonstrate that the expression of FAD-PS2 mutants, but not FAD-PS1, in either SH-SY5Y cells or FAD patient-derived fibroblasts, is able to alter Ca2+ handling of ER and medial-GA, but not trans-GA, reducing, compared to control cells, the Ca2+ content within these organelles by partially blocking SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) activity. Moreover, by using a cytosolic Ca2+ probe, we show that the expression of both FAD-PS1 and -PS2 reduces the Ca2+ influx activated by stores depletion (Store-Operated Ca2+ Entry; SOCE), by decreasing the expression levels of one of the key molecules, STIM1 (STromal Interaction Molecule 1), controlling this pathway. Our data indicate that FAD-linked PSs mutants differentially modulate the Ca2+ content of intracellular stores yet leading to a complex dysregulation of Ca2+ homeostasis, which represents a common disease phenotype of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Organelas/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Cálcio/análise , Humanos , Mutação , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Células Tumorais Cultivadas
7.
Autophagy ; 15(12): 2044-2062, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30892128

RESUMO

PSEN2 (presenilin 2) is one of the 3 proteins that, when mutated, causes early onset familial Alzheimer disease (FAD) cases. In addition to its well-known role within the γ-secretase complex (the enzyme ultimately responsible for Aß peptides formation), PSEN2 is endowed with some γ-secretase-independent functions in distinct cell signaling pathways, such as the modulation of intracellular Ca2+ homeostasis. Here, by using different FAD-PSEN2 cell models, we demonstrate that mutated PSEN2 impairs autophagy by causing a block in the degradative flux at the level of the autophagosome-lysosome fusion step. The defect does not depend on an altered lysosomal functionality but rather on a decreased recruitment of the small GTPase RAB7 to autophagosomes, a key event for normal autophagy progression. Importantly, FAD-PSEN2 action on autophagy is unrelated to its γ-secretase activity but depends on its previously reported ability to partially deplete ER Ca2+ content, thus reducing cytosolic Ca2+ response upon IP3-linked cell stimulations. Our data sustain the pivotal role for Ca2+ signaling in autophagy and reveal a novel mechanism by which FAD-linked presenilins alter the degradative process, reinforcing the view of a causative role for a dysfunctional quality control pathway in AD neurodegeneration.Abbreviations: Aß: amyloid ß; AD: Alzheimer disease; ACTB: actin beta; AMPK: AMP-activated protein kinase; APP: amyloid-beta precursor protein; BafA: bafilomycin A1; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; CFP: cyan fluorescent protein; EGTA-AM: ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester; ER: endoplasmic reticulum; EGFP-HDQ74: enhanced GFP-huntingtin exon 1 containing 74 polyglutamine repeats; FAD: familial Alzheimer disease; FCS: fetal calf serum; FRET: fluorescence/Förster resonance energy transfer; GFP: green fluorescent protein; IP3: inositol trisphosphate; KD: knockdown; LAMP1: lysosomal associated membrane protein 1; MAP1LC3-II/LC3-II: lipidated microtubule-associated protein 1 light chain 3; MCU: mitochondrial calcium uniporter; MICU1: mitochondrial calcium uptake 1; MEFs: mouse embryonic fibroblasts; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; SQSTM1/p62: sequestosome 1; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB7: RAB7A: member RAS oncogene family; RFP: red fluorescent protein; ATP2A/SERCA: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting; siRNA: small interference RNA; V-ATPase: vacuolar-type H+-ATPase; WT: wild type.


Assuntos
Doença de Alzheimer/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Cálcio/metabolismo , Lisossomos/metabolismo , Presenilina-2/metabolismo , Doença de Alzheimer/genética , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Doenças Genéticas Inatas/metabolismo , Homeostase , Humanos , Lisossomos/genética , Fusão de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , Presenilina-2/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
8.
J Cell Mol Med ; 22(9): 4161-4170, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29974997

RESUMO

Oestrogen receptor ɑ (ERɑ) is overexpressed in two-thirds of all breast cancers and involves in development and breast cancer progression. Although ERɑ-positive breast cancer could be effective treated by endocrine therapy, the endocrine resistance is still an urgent clinical problem. Thus, further understanding of the underlying mechanisms ERɑ signalling is critical in dealing with endocrine resistance in breast cancer patients. MCF-7 and T47D breast cancer cell lines are used to carry out the molecular biological experiments. Western blot is used to assess the relative protein level of ERɑ, RNF168 and actin. Real-time PCR is used the measure the relative ERɑ-related gene mRNA level. Luciferase assay is used to measure the relative ERɑ signalling activity. Chromatin immunoprecipitation is used to measure the RNF168 binding affinity to ERɑ promoter regions. WST assay and flow cytometry are used to measure the cell proliferation capacity. We use Student's t test and one-way ANOVA test for statistical data analysis. Here, we report an important role in ERɑ-positive breast cancer cells for RNF168 protein in supporting cell proliferation by driving the transcription of ERɑ. RNF168 is highly expressed in breast cancer samples, compared with normal breast tissue. In patients with breast cancer, RNF168 expression level is correlated with poor endocrine treatment outcome. Depletion of RNF168 causes decreased cell proliferation in MCF-7 and T47D cells. Besides, depletion RNF168 reduced mRNA level of ERɑ and its target genes, such as PS2 and GREB1. Chromatin immunoprecipitation revealed that ERɑ transcription is associated with RNF168 recruitment to ERɑ promoter region, suggesting that transcriptional regulation is one mechanism by which RNF168 regulates ERɑ mRNA level and ERɑ signalling in breast cancer cells. RNF168 is required for ERɑ-positive breast cancer cell proliferation and facilitate ERɑ signalling activity possibly through promoting transcription of ERɑ.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas de Membrana , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
9.
J Alzheimers Dis ; 62(1): 175-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29439343

RESUMO

The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-ß. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-ß pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteína BRCA1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Técnicas de Reprogramação Celular , Biologia Computacional , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Humanos , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/patologia , Fosforilação , Presenilina-1/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Transdução de Sinais , Transcriptoma , Fosfatases cdc25/metabolismo
10.
Breast ; 38: 132-135, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29316513

RESUMO

Important differences have begun to emerge concerning the molecular profile of female and male breast cancer which may prove to be of therapeutic value. This review examined all the available data on the genomics of MBC. Most male cancers are ER+ve but without a corresponding increase in PR positivity and only a weaker association with estrogen-controlled markers such as PS2, HSP27 and Cathepsin-D. HER2 +ve cancers are rare in males and the role of androgen receptor is controversial. Although the Luminal A phenotype was the most frequent in both MBC and FBC, no Luminal B or HER2 phenotypes were found in males and the basal phenotype was very rare. Using hierarchical clustering in FBC, ERα clustered with PR, whereas in MBC, ERα associated with ERß and AR. Based on limited data it appears that Oncotype DX is effective in determining recurrence risk in selected MBC. In future, tailored therapies based on genomics will probably yield the most promising approach for both MBC and FBC.


Assuntos
Neoplasias da Mama Masculina/genética , Neoplasias da Mama/genética , Fatores Sexuais , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama Masculina/química , Catepsina D/metabolismo , Análise por Conglomerados , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares , Fenótipo , Presenilina-2/metabolismo , Receptor ErbB-2/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
11.
Theranostics ; 7(15): 3624-3637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109765

RESUMO

Some epidemiological studies suggest an inverse correlation between cancer incidence and Alzheimer's disease (AD). In this study, we demonstrated experimental evidences for this inverse relationship. In the co-expression network analysis using the microarray data and GEO profile of gene expression omnibus data analysis, we showed that the expression of peroxiredoxin 6 (PRDX6), a tumor promoting protein was significantly increased in human squamous lung cancer, but decreased in mutant presenilin 2 (PS2) containing AD patient. We also found in animal model that mutant PS2 transgenic mice displayed a reduced incidence of spontaneous and carcinogen-induced lung tumor development compared to wildtype transgenic mice. Agreed with network and GEO profile study, we also revealed that significantly reduced expression of PRDX6 and activity of iPLA2 in these animal models. PS2 mutations increased their interaction with PRDX6, thereby increasing iPLA2 cleavage via increased γ-secretase leading to loss of PRDX6 activity. However, knockdown or inhibition of γ-secretase abolished the inhibitory effect of mutant PSs. Moreover, PS2 mutant skin fibroblasts derived from patients with AD showed diminished iPLA2 activity by the elevated γ-secretase activity. Thus, the present data suggest that PS2 mutations suppress lung tumor development by inhibiting the iPLA2 activity of PRDX6 via a γ-secretase cleavage mechanism and may explain the inverse relationship between cancer and AD incidence.


Assuntos
Carcinogênese , Regulação para Baixo , Neoplasias Pulmonares/fisiopatologia , Mutação , Peroxirredoxina VI/biossíntese , Presenilina-2/metabolismo , Doença de Alzheimer/complicações , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Análise em Microsséries , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peroxirredoxina VI/metabolismo , Presenilina-2/genética
12.
Brain Res ; 1662: 57-64, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189560

RESUMO

Neurodegenerative disorders have attracted attention in last decades due to their high incidence in the world. The p53/miR-34a axis triggers apoptosis and suppresses viability in multiple types of cells, but little is known about its role in neurodegenerative diseases. In this study, we showed that presenilin (PS)-2, a major gene associated with familial Alzheimer's disease (AD) could trigger the apoptosis through the p53/miR-34a axis in PC12 cells. First we found that PC12 cell viability was downregulated by PS-2 and mutant PS-2 overexpression, especially by mutant PS-2 overexpression. Then, we established a mutant PS-2-overexpressing PC12 cell line and confirmed that mutant PS-2 induced not only p53 but also miR-34a expression. The transfection of miR-34a inhibitor reversed PS-2-induced effects on cellular viability and apoptosis. Mutant PS-2 overexpression promoted caspase-3 expression, reduced Sirt1 and Bcl-2 expression, all of which were miR-34a downstream genes related with cell apoptosis. Moreover, mutant PS-2 also activated the p53/miR-34a axis and induced apoptosis in AD transgenic mice brain. These results implied that mutant PS-2 might promote the apoptosis of neuronal cells through triggering the p53/miR-34a axis. Altogether our results provide a novel insight into neurodegenerative disease and deepen our understandings of AD pathogenic processes.


Assuntos
MicroRNAs/metabolismo , Presenilina-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Animais , Apoptose/genética , Caspase 3/metabolismo , Genes p53 , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Células PC12 , Presenilina-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
13.
Neurosci Lett ; 636: 40-47, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793699

RESUMO

Paraquat is a neurotoxic agent, and oxidative stress plays an important role in neuronal cell death after paraquat exposure. In this study, we assessed the neuroprotective effect of curcumin against paraquat and explored the underlying mechanisms of curcumin in vitro. Curcumin treatment prevented paraquat-induced reactive oxygen species (ROS) and apoptotic cell death. Curcumin also exerted a neuroprotective effect by increasing the expression of anti-apoptotic and antioxidant genes. The pretreatment of curcumin significantly decreased gene expression and protein production of amyloid precursor protein. The activation of autophagy process was found defective in paraquat-induced cells, indicated by the accumulation and reduction of LC3I/II. Noteworthy, curcumin restored LC3I/II expression after the pretreatment. Collectively, curcumin demonstrated as a prominent suppressor of ROS, and could reverse autophagy induction in SH-SY5Y cells. The consequences of this were the reduction of APP production and prevention of SH-SY5Y cells from apoptosis. Altogether, curcumin potentially serves as a therapeutic agent of neurodegenerative diseases, associated with ROS overproduction and autophagy dysfunction.


Assuntos
Autofagia/efeitos dos fármacos , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Sci Rep ; 6: 38414, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922078

RESUMO

In the complex network of nuclear hormone receptors, the long non-coding RNAs (lncRNAs) are emerging as critical determinants of hormone action. Here we investigated the involvement of selected cancer-associated lncRNAs in Estrogen Receptor (ER) signaling. Prior studies by Chromatin Immunoprecipitation (ChIP) Sequencing showed that in prostate cancer cells ERs form a complex with the endothelial nitric oxide synthase (eNOS) and that in turn these complexes associate with chromatin in an estrogen-dependent fashion. Among these associations (peaks) we focused our attention on those proximal to the regulatory region of HOTAIR and MALAT1. These transcripts appeared regulated by estrogens and able to control ERs function by interacting with ERα/ERß as indicated by RNA-ChIP. Further studies performed by ChIRP revealed that in unstimulated condition, HOTAIR and MALAT1 were present on pS2, hTERT and HOTAIR promoters at the ERE/eNOS peaks. Interestingly, upon treatment with17ß-estradiol HOTAIR recruitment to chromatin increased significantly while that of MALAT1 was reduced, suggesting an opposite regulation and function for these lncRNAs. Similar results were obtained in cells and in an ex vivo prostate organotypic slice cultures. Overall, our data provide evidence of a crosstalk between lncRNAs, estrogens and estrogen receptors in prostate cancer with important consequences on gene expression regulation.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Microtomia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Oligorribonucleotídeos Antissenso/genética , Oligorribonucleotídeos Antissenso/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Prostatectomia/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismo , Técnicas de Cultura de Tecidos
15.
Cell ; 166(1): 193-208, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27293189

RESUMO

γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aß that contains longer Aß; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aß further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aß42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/análise , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-2/análise , Complexo 1 de Proteínas Adaptadoras/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Endossomos/química , Humanos , Lisossomos/química , Camundongos , Presenilina-1/análise , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Ratos , Especificidade por Substrato
16.
Curr Alzheimer Res ; 13(11): 1277-1289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335034

RESUMO

Retinoic acid, the bioactive metabolite of beta-carotene or vitamin A, plays a pleiotropic, multifunctional role in vertebrate development. Studies in rodents revealed that a diet deficient in vitamin A results in a complex neonatal syndrome (the VAD syndrome), manifested in many organs. In humans, the function of retinoic acid (RA) extends into adulthood, where it has important roles in fertility, vision, and suppression of neoplastic growth. In recent years, it has also been suggested that retinoic acid might potentially act as a therapeutically relevant drug in attenuating or even preventing neurodegenerative diseases such as Alzheimer's disease (AD). Here, we report that VAD leads to an increase in A-beta peptide levels while only minor effects were observed on expression levels of the amyloid precursor protein (APP) processing proteinases in wild type mice. In line with these findings, rescue of hypovitaminosis reduced A-beta amount to baseline and induced sApp-alpha secretion in combination with an increase of alpha-secretase Adam10. By comparing retinoic acid treatment starting from a full nutrition status and a "VAD" situation in human neuroblastoma cells, we show that while intensities of differential gene expression were higher in replenished cells, a large overlap in AD-related, regulated genes was observed. Our data suggest that hypovitaminosis A can contribute to onset or progression of AD by increasing synthesis of A-beta peptides and that several AD-related genes such as ADAM10 or BDNF are regulated by retinoic acid. We suggest that dietary supplementation with retinoic acid derivatives is likely to have a beneficial effect on AD-pathology in individuals with hypovitaminosis and patients with normal vitamin A status.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Deficiência de Vitamina A/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Acitretina/química , Acitretina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Ceratolíticos/farmacologia , Camundongos , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Presenilina-2/metabolismo , Ratos Wistar , Tretinoína/química , Tretinoína/metabolismo , Tretinoína/farmacologia
17.
J Alzheimers Dis ; 53(1): 273-87, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27163808

RESUMO

Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Amiloide/metabolismo , Antipsicóticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antipsicóticos/química , Bloqueadores dos Canais de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Neuroblastoma/patologia , Nifedipino/uso terapêutico , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Receptor Notch1/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Transfecção
18.
Neurosci Lett ; 628: 98-104, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27177724

RESUMO

Previously, we reported differential expression of Presenilin (PS)1 and 2 and epigenetic modifications of their gene promoter in the cerebral cortex of mice during development. We identified the crucial role of DNA methylation and H3K9/14 acetylation in stage specific PS expression during brain development. Interestingly, we noted differential DNA methylation in putative binding sites of transcription factors considered pivotal for brain development. This prompted us to study the binding of transcription factors to cis-acting elements of PS1 and PS2 promoter in the cerebral cortex of mice during development. In-silico analysis revealed various cis-acting elements of PS1 and PS2 promoter and their putative transcription factors. We selected those cis-acting elements that were proven by wet lab experiments to interact with the transcription factors crucial for brain development. Electrophoretic mobility shift assay revealed that the binding of nuclear proteins to PS1 promoter cis-acting elements like HSF-1, Cdx1, Ets-1 and Sp1 significantly increased at embryonic day (E) 12.5, postnatal day (P) 45 and 20 weeks (w) as compared to P0. The binding pattern of these factors correlated well with the PS1 expression profile, indicating their cumulative influence on PS1 gene transcription. For PS2 promoter, the binding of Nkx2.2 and HFH-2 was high at prenatal stages (E12.5 and E18.5) while that of Cdx1 and NF-κB was maximum at postnatal stages (P45 and 20w). Taken together, our study shows that the binding of HSF-1, Cdx1, Ets-1 and Sp1 to PS1 promoter and that of Nkx2.2, HFH-2, Cdx1 and NF-κB to PS2 promoter regulate their differential expression during brain development.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição de Choque Térmico , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Camundongos , NF-kappa B/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Proteínas de Peixe-Zebra
19.
Brain Behav Immun ; 53: 113-122, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26593275

RESUMO

Nearly 7-10 million people are living with Alzheimer's disease (AD) worldwide. Senile plaques composed of ß-amyloid (Aß) are a pathological hallmark of Alzheimer's disease. Presenilin 2 (PS2) mutations increase Aß generation in the brains of AD patients. The Aß is generated through the sequential cleavage of amyloid precursor protein by ß- and γ-secretases. Additionally, increasing evidences suggest that estrogen can reduce the development of AD via regulation of ß-secretases activity and beta-site APP-cleaving enzyme (BACE1) expression. But the underlying correlation mechanism of Aß generation by PS2 mutations and estrogen remains to be clarified. To investigate the anti-amyloidogenesis effect of estrogen in a PS2 mutative condition, we examined memory impairment in ovariectomized PS2 mutation (N141I) mice in which cognitive function was assessed by the Morris water maze test and passive avoidance test. In addition, Western blot analysis, immunostaining, immunofluorescence staining, ELISA and enzyme activity assays were used to examine the degree of Aß deposition in the brains. In the present study, Aß accumulated more in the ovariectomized PS2 mutant mice brain, and greatly worsened memory impairment and glial activation as well as neurogenic inflammation. In parallel with increased memory impairment, activity of ß-secretase and expression of the BACE1 increased inovariectomized PS2 mutant mice. Much higher activity of NF-κB was observed by EMSA in ovariectomized PS2 mutant mice. In addition, the Aß level was decreased by treatment of ß-estradiol through inhibiting BACE1 expression in PS2 transfacted PC12 cells. These results suggest that mutation of PS2 can lead to NF-κB mediate amyloidogensis, and this effect can be amplified by the absence of estrogen.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/biossíntese , Estrogênios/deficiência , Transtornos da Memória/metabolismo , NF-kappa B/metabolismo , Presenilina-2/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Estrogênios/metabolismo , Feminino , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Placa Amiloide/metabolismo , Presenilina-2/genética , Transdução de Sinais
20.
Environ Toxicol ; 31(9): 1133-46, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25728338

RESUMO

Arsenic (As) is considered a major environmental health threat worldwide due to its widespread contamination in drinking water. Recent studies reported that arsenic is a potential xenoestrogen as it interfered with the action of estrogen (E2) and estrogen receptor (ER) signaling. The present study investigated the effects of sodium arsenite (NaAsO2 ) on estrogen signaling in human breast cancer cells. The results demonstrated that NaAsO2 dose-dependently increased viability of hormone-dependent breast cancer MCF-7 and T47D cells expressing both ERα and ERß but not hormone-independent MDA-MB-231 cells expressing ERß. These suggested ERα contribution to NaAsO2 -stimulated breast cancer cells growth. NaAsO2 induced down-regulation of ERα but up-regulation of ERß protein expressions in T47D cells. Moreover, NaAsO2 dose-dependently inhibited E2-induced ER transcriptional activity as it decreased E2-mediated ERE-luciferase transcription activation and PgR mRNA transcription but increased pS2 mRNA transcription. However, NaAsO2 induced both rapid and sustained activation of ERK1/2 and increased in phosphorylation of ERα at serine 118 residue, c-fos and c-myc protein expressions. These results indicated that NaAsO2 interferes the genomic estrogen-signaling pathway but induces activation of a rapid nongenomic signal transduction through ERK1/2 pathway which may contribute to its proliferative effect on hormone-dependent breast cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1133-1146, 2016.


Assuntos
Arsenitos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Sódio/toxicidade , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA