Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Autophagy ; 18(9): 2068-2085, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34964690

RESUMO

PSENEN/PEN2 is the smallest subunit of the γ-secretase complex, an intramembrane protease that cleaves proteins within their transmembrane domains. Mutations in components of the γ-secretase underlie familial Alzheimer disease. In addition to its proteolytic activity, supplementary, γ-secretase independent, functions in the macroautophagy/autophagy-lysosome system have been proposed. Here, we screened for PSENEN-interacting proteins and identified CLN3. Mutations in CLN3 are causative for juvenile neuronal ceroid lipofuscinosis, a rare lysosomal storage disorder considered the most common neurodegenerative disease in children. As mutations in the PSENEN and CLN3 genes cause different neurodegenerative diseases, understanding shared cellular functions of both proteins might be pertinent for understanding general cellular mechanisms underlying neurodegeneration. We hypothesized that CLN3 modulates γ-secretase activity and that PSENEN and CLN3 play associated roles in the autophagy-lysosome system. We applied CRISPR gene-editing and obtained independent isogenic HeLa knockout cell lines for PSENEN and CLN3. Following previous studies, we demonstrate that PSENEN is essential for forming a functional γ-secretase complex and is indispensable for γ-secretase activity. In contrast, CLN3 does not modulate γ-secretase activity to a significant degree. We observed in PSENEN- and CLN3-knockout cells corresponding alterations in the autophagy-lysosome system. These include reduced activity of lysosomal enzymes and lysosome number, an increased number of autophagosomes, increased lysosome-autophagosome fusion, and elevated levels of TFEB (transcription factor EB). Our study strongly suggests converging roles of PSENEN and CLN3 in the autophagy-lysosome system in a γ-secretase activity-independent manner, supporting the idea of common cytopathological processes underlying different neurodegenerative diseases.Abbreviations: Aß, amyloid-beta; AD, Alzheimer disease; APP, amyloid precursor protein; ATP5MC, ATP synthase membrane subunit c; DQ-BSA, dye-quenched bovine serum albumin; ER, endoplasmic reticulum; GFP, green fluorescent protein; ICC, immunocytochemistry; ICD, intracellular domain; JNCL, juvenile neuronal ceroid lipofuscinosis; KO, knockout; LC3, microtubule associated protein 1 light chain 3; NCL, neuronal ceroid lipofuscinoses; PSEN, presenilin; PSENEN/PEN2: presenilin enhancer, gamma-secretase subunit; TAP, tandem affinity purification; TEV, tobacco etch virus; TF, transferrin; WB, Western blot; WT, wild type.


Assuntos
Doença de Alzheimer , Lipofuscinoses Ceroides Neuronais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Autofagia/genética , Criança , Humanos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Fatores de Transcrição/metabolismo
2.
Mol Neurobiol ; 58(12): 6647-6669, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608607

RESUMO

The ß-amyloid peptide (Aß) is found as amyloid fibrils in senile plaques, a typical hallmark of Alzheimer's disease (AD). However, intermediate soluble oligomers of Aß are now recognized as initiators of the pathogenic cascade leading to AD. Studies using recombinant Aß have shown that hexameric Aß in particular acts as a critical nucleus for Aß self-assembly. We recently isolated hexameric Aß assemblies from a cellular model, and demonstrated their ability to enhance Aß aggregation in vitro. Here, we report the presence of similar hexameric-like Aß assemblies across several cellular models, including neuronal-like cell lines. In order to better understand how they are produced in a cellular context, we investigated the role of presenilin-1 (PS1) and presenilin-2 (PS2) in their formation. PS1 and PS2 are the catalytic subunits of the γ-secretase complex that generates Aß. Using CRISPR-Cas9 to knockdown each of the two presenilins in neuronal-like cell lines, we observed a direct link between the PS2-dependent processing pathway and the release of hexameric-like Aß assemblies in extracellular vesicles. Further, we assessed the contribution of hexameric Aß to the development of amyloid pathology. We report the early presence of hexameric-like Aß assemblies in both transgenic mice brains exhibiting human Aß pathology and in the cerebrospinal fluid of AD patients, suggesting hexameric Aß as a potential early AD biomarker. Finally, cell-derived hexameric Aß was found to seed other human Aß forms, resulting in the aggravation of amyloid deposition in vivo and neuronal toxicity in vitro.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/metabolismo , Presenilinas/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/patologia
3.
Sci Rep ; 11(1): 15213, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312439

RESUMO

[Formula: see text]-Secretase is an enzyme known to cleave multiple substrates within their transmembrane domains, with the amyloid precursor protein of Alzheimer's Disease among the most prominent examples. The activity of [Formula: see text]-secretase strictly depends on the membrane cholesterol content, yet the mechanistic role of cholesterol in the substrate binding and cleavage remains unclear. In this work, we used all-atom molecular dynamics simulations to examine the role of cholesterol in the initial binding of a direct precursor of [Formula: see text]-amyloid polypeptides by [Formula: see text]-secretase. We showed that in cholesterol-rich membranes, both the substrate and the enzyme region proximal to the active site induce a local membrane thinning. With the free energy methods we found that in the presence of cholesterol the substrate binds favorably to the identified exosite, while cholesterol depletion completely abolishes the binding. To explain these findings, we directly examined the role of hydrophobic mismatch in the substrate binding to [Formula: see text]-secretase, showing that increased membrane thickness results in higher propensity of the enzyme to bind substrates. Therefore, we propose that cholesterol promotes substrate binding to [Formula: see text]-secretase by increasing the membrane thickness, which leads to the negative hydrophobic mismatch between the membrane and binding partners.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Presenilinas/metabolismo
4.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429462

RESUMO

Alzheimer's disease (AD) is the most frequent type of dementia affecting memory, thinking and behaviour. The major hallmark of the disease is pathological neurodegeneration due to abnormal aggregation of Amyloid beta (Aß) peptides generated by ß- and γ-secretases via amyloidogenic pathway. Purpose of the current study was to evaluate the effects of theasaponin E1 on the inhibition of Aß producing ß-, γ-secretases (BACE1, PS1 and NCT) and acetylcholinesterase and activation of the non-amyloidogenic APP processing α-secretase (ADAM10). Additionally, theasaponin E1 effects on Aß degrading and clearing proteins neprilysin and insulin degrading enzyme (IDE). The effect of theasaponin E1 on these crucial enzymes was investigated by RT-PCR, ELISA, western blotting and fluorometric assays using mouse neuroblastoma cells (SweAPP N2a). theasaponin E1 was extracted and purified from green tea seed extract via HPLC, and N2a cells were treated with different concentrations for 24 h. Gene and protein expression in the cells were measured to determine the effects of activation and/or inhibition of theasaponin E1 on ß- and γ-secretases, neprilysin and IDE. Results demonstrated that theasaponin E1 significantly reduced Aß concentration by activation of the α-secretase and neprilysin. The activities of ß- and γ-secretase were reduced in a dose-dependent manner due to downregulation of BACE1, presenilin, and nicastrin. Similarly, theasaponin E1 significantly reduced the activity of acetylcholinesterase. Overall, from the results it is concluded that green tea seed extracted saponin E1 possess therapeutic significance as a neuroprotective natural product recommended for the treatment of Alzheimer's disease.


Assuntos
Camellia sinensis/química , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Insulisina/antagonistas & inibidores , Insulisina/genética , Insulisina/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neprilisina/antagonistas & inibidores , Neprilisina/genética , Neprilisina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Extratos Vegetais/química , Presenilinas/antagonistas & inibidores , Presenilinas/genética , Presenilinas/metabolismo , Saponinas/isolamento & purificação , Sementes/química , Chá/química
5.
Semin Cell Dev Biol ; 105: 12-26, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32146031

RESUMO

γ-Secretase cleavage is essential for many biological processes and its dysregulation is linked to disease, including cancer and Alzheimer's disease. Therefore, understanding the regulation of its activity is of major importance to improve drug design and develop novel therapeutics. γ-Secretase belongs to the family of intramembrane cleaving proteases (i-CLiPs), which cleaves its substrates in a process termed regulated intramembrane proteolysis (RIP). During RIP, type-I transmembrane proteins are first cleaved within their ectodomain by a sheddase and then within their transmembrane domain by γ-secretase. γ-Secretase is composed of four integral membrane proteins that are all essential for its function: presenilin (PSEN), anterior pharynx defective 1 (APH1), nicastrin (NCT) and presenilin enhancer 2 (PEN-2). Given the presence of two PSEN homologues (PSEN1 & 2) and several APH1 isoforms, a heterogeneity exists in cellular γ-secretase complexes. It is becoming clear that each of these complexes has overlapping as well as distinct biological characteristics. This review summarizes our current knowledge on complex formation, trafficking, subcellular localization, interactors and the structure of γ-secretase, with a focus, when possible or known, on the contribution of PSEN1 and PSEN2 herein.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Biologia Celular/normas , Presenilinas/metabolismo , Humanos
6.
Ann N Y Acad Sci ; 1457(1): 41-60, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31460675

RESUMO

The endoplasmic reticulum (ER) and mitochondria are fundamental organelles highly interconnected with a specialized set of proteins in cells. ER-mitochondrial interconnections form specific microdomains, called mitochondria-associated ER membranes, that have been found to play important roles in calcium signaling and lipid homeostasis, and more recently in mitochondrial dynamics, inflammation, and autophagy. It is not surprising that perturbations in ER-mitochondria connections can result in the progression of disease, especially neurological disorders; hence, their architecture and regulation are crucial in determining the fate of cells and disease. The molecular identity of the specialized proteins regulating ER-mitochondrial crosstalk remains unclear. Our discussion here describes the physical and functional crosstalk between these two dynamic organelles and emphasizes the outcome of altered ER-mitochondrial interconnections in neurological disorders.


Assuntos
Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagia , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Progressão da Doença , Estresse do Retículo Endoplasmático , GTP Fosfo-Hidrolases/metabolismo , Homeostase , Humanos , Doença de Huntington/metabolismo , Inflamação , Lipídeos/química , Camundongos , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Presenilinas/metabolismo , Ratos , Proteínas de Transporte Vesicular/metabolismo
7.
Arch Insect Biochem Physiol ; 99(2): e21480, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29978503

RESUMO

Aluminum (Al) is an important environmental metal factor that can be potentially associated with pathological changes leading to neurotoxicity. The silkworm, Bombyx mori, is an important economic insect and has also been used as a model organism in various research areas. However, the toxicity of Al on silkworm physiology has not been reported. Here, we comprehensively investigate the toxic effects of Al on the silkworm, focusing on its effects on viability and development, superoxide dismutase (SOD) activity, and the expression of presenilin and cAMP response element-binding protein (CREB) in BmE cells and silkworm larvae. BmE cell viability decreased after treatment with aluminum chloride (AlCl3 ) in both dose- and time-dependent manners. When AlCl3 solution was injected into newly hatched fifth instar larvae, both larval weight gain and survival rate were significantly decreased in a manner correlating with AlCl3 dose and developmental stage. Furthermore, when BmE cells and silkworm larvae were exposed to AlCl3 , SOD activity decreased significantly relative to the control group, whereas presenilin expression increased more than twofold. Additionally, CREB and phosphorylated CREB (p-CREB) expression in the heads of fifth instar larvae decreased by 28.0% and 50.0%, respectively. These results indicate that Al inhibits the growth and development of silkworms in vitro and in vivo, altering SOD activity and the expressions of presenilin, CREB, and p-CREB. Our data suggest that B. mori can serve as a model animal for studying Al-induced neurotoxicity or neurodegeneration.


Assuntos
Compostos de Alumínio/toxicidade , Alumínio/toxicidade , Bombyx/efeitos dos fármacos , Cloretos/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Insetos/genética , Neurotoxinas/toxicidade , Cloreto de Alumínio , Animais , Peso Corporal/efeitos dos fármacos , Bombyx/enzimologia , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Longevidade/efeitos dos fármacos , Presenilinas/genética , Presenilinas/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587718

RESUMO

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Presenilinas/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Methods Enzymol ; 584: 185-205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28065263

RESUMO

Presenilin is a catalytic subunit of γ-secretase, which hydrolyzes several transmembrane proteins within the lipid bilayer, together with binding cofactors such as nicastrin, Aph-1, and Pen-2. However, the structural basis as well as molecular mechanism of this unusual proteolytic process remains unknown. We have analyzed the structure and function relationships of presenilin using the substituted-cysteine accessibility method (SCAM), which enables identification of the hydrophilic environment by the accessibility of sulfhydryl reagents to cysteine residues introduced at a desired position. In combination with small molecule inhibitors/modulators and cross-linking experiments, we were able to identify certain residues and regions of presenilin that contribute to its intramembrane-cleaving activity. In addition, we revealed the structural dynamics of the transmembrane domains of presenilin during the formation of the complex and its proteolytic process. The SCAM provides new insights into the relationship between the structure and activity of presenilin, and is useful for probing the protein dynamics of the membrane-embedded enzymes.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Biologia Molecular/métodos , Presenilinas/química , Relação Estrutura-Atividade , Substituição de Aminoácidos/genética , Secretases da Proteína Precursora do Amiloide/genética , Domínio Catalítico/genética , Cisteína/química , Cisteína/genética , Inibidores Enzimáticos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Domínios Proteicos/efeitos dos fármacos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/química
10.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 217-230, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27818272

RESUMO

Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.


Assuntos
Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Endossomos/metabolismo , Proteínas de Membrana/genética , Presenilinas/genética , Tetraspaninas/genética , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose , Endossomos/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Presenilinas/metabolismo , Ligação Proteica , Transporte Proteico , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Microbiol Immunol ; 60(11): 740-753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27797115

RESUMO

Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 µM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 µM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.


Assuntos
Alanina/análogos & derivados , Azepinas/farmacologia , Regulação da Expressão Gênica , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Alanina/farmacologia , Antivirais/farmacologia , Carbamatos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Sinergismo Farmacológico , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Presenilinas/antagonistas & inibidores , Presenilinas/metabolismo , Proteólise , Pirrolidinas , Espécies Reativas de Oxigênio/metabolismo , Valina/análogos & derivados , Proteínas do Core Viral/genética
12.
J Biol Chem ; 291(11): 5971-5985, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755728

RESUMO

The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL1/metabolismo , Ativação Enzimática , Deleção de Genes , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Presenilinas/genética , Presenilinas/metabolismo , Proteólise , Transdução de Sinais
13.
Elife ; 42015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26623517

RESUMO

Human γ-secretase is an intra-membrane protease that cleaves many different substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to the known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain.


Assuntos
Dipeptídeos/metabolismo , Presenilinas/química , Presenilinas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Estrutura Secundária de Proteína
14.
J Pineal Res ; 59(3): 308-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26123100

RESUMO

Melatonin is involved in the control of various physiological functions, such as sleep, cell growth and free radical scavenging. The ability of melatonin to behave as an antioxidant, together with the fact that the Alzheimer-related amyloid ß-peptide (Aß) triggers oxidative stress through hydroxyl radical-induced cell death, suggests that melatonin could reduce Alzheimer's pathology. Although the exact etiology of Alzheimer's disease (AD) remains to be established, excess Aß is believed to be the primary contributor to the dysfunction and degeneration of neurons that occurs in AD. Aß peptides are produced via the sequential cleavage of ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) and γ-secretase (PS1/PS2), while α-secretase (ADAM10) prevents the production of Aß peptides. We hypothesized that melatonin could inhibit BACE1 and PS1/PS2 and enhance ADAM10 expression. Using the human neuronal SH-SY5Y cell line, we found that melatonin inhibited BACE1 and PS1 and activated ADAM10 mRNA level and protein expression in a concentration-dependent manner and mediated via melatonin G protein-coupled receptors. Melatonin inhibits BACE1 and PS1 protein expressions through the attenuation of nuclear factor-κB phosphorylation (pNF-κB). Moreover, melatonin reduced BACE1 promoter transactivation and consequently downregulated ß-secretase catalytic activity. The present data show that melatonin is not only a potential regulator of ß/γ-secretase but also an activator of α-secretase expression through the activation of protein kinase C, thereby favoring the nonamyloidogenic pathway over the amyloidogenic pathway. Altogether, our findings suggest that melatonin may be a potential therapeutic agent for reducing the risk of AD in humans.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Melatonina/farmacologia , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Receptores de Melatonina/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Proteínas de Membrana/genética , Neuroblastoma/genética , Presenilinas/genética , Presenilinas/metabolismo , Receptores de Melatonina/genética
15.
PLoS One ; 10(5): e0125897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933409

RESUMO

Alzheimer's disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice-70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Amiloide/metabolismo , Progressão da Doença , Convulsões/complicações , Convulsões/patologia , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cromossomos de Mamíferos/genética , Complemento C5/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microglia/patologia , Mutagênese Insercional , Neurônios/patologia , Fenótipo , Placa Amiloide/patologia , Presenilinas/metabolismo , Transgenes
16.
FEBS Lett ; 588(5): 641-52, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24491999

RESUMO

Although widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of ß-amyloid (Aß) remain to be elucidated. Many evidences are starting to cast doubt on Aß as the primary causative factor in AD. For instance, Aß is deposited in the brain following many different kinds of injury. Also, concentration of Aß needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/patologia , Animais , Sobrevivência Celular , Humanos , Plasticidade Neuronal , Neurônios/fisiologia , Presenilinas/metabolismo , Transporte Proteico , Fatores de Risco , Sinapses/fisiologia , Homólogo LST8 da Proteína Associada a mTOR
17.
Hum Mol Genet ; 23(5): 1121-33, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105467

RESUMO

Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of control and regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. We previously showed that presenilin (PS), a gene involved in Alzheimer's disease (AD), influences kinesin-1 and dynein function in vivo. Here, we show that these PS-mediated effects on motor protein function are via a pathway that involves glycogen synthase kinase-3ß (GSK-3ß). PS genetically interacts with GSK-3ß in an activity-dependent manner. Excess of active GSK-3ß perturbed axonal transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein. These GSK-3ß-mediated axonal defects do not appear to be caused by disruptions or alterations in microtubules (MTs). Excess of non-functional GSK-3ß did not affect axonal transport. Strikingly, GSK-3ß-activity-dependent axonal transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3ß are required for normal motor protein function. Our observations propose a model, in which PS likely plays a role in regulating GSK-3ß activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during the motility of vesicles within axons.


Assuntos
Transporte Axonal/fisiologia , Dineínas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Cinesinas/metabolismo , Presenilinas/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila , Epistasia Genética , Feminino , Genótipo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Atividade Motora/genética , Presenilinas/genética , Transdução de Sinais
18.
Urol Oncol ; 32(1): 36.e19-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23628311

RESUMO

OBJECTIVE: Presenilin (PS)/γ-secretase is a key protease that initiates various biological processes. We investigated the effect of PS/γ-secretase on the expression and inhibition of urothelial cell carcinoma of bladder (UCB) as a potential alternative therapeutic target for UCB. MATERIALS AND METHODS: PS-1 and PS-2 were identified in normal and malignant human bladder transitional cells by immunohistochemistry. We blocked PSs using a PS/γ-secretase inhibitor N-(N-[3,5-difluorophenacetyl]-L-alanyl)-S-phenylglycine-t-butylester (DAPT), and the proliferative and invasive potential of UCB cells SW780, BIU-87, 5637, and T24, and human normal urothelial cell line SV-HUC-1 were analyzed using Western blot, cell viability test, flow cytometry, and transwell assay. All experiments were repeated at least 3 times. RESULTS: Human bladder samples of UCB, SW780, BIU-87, 5637, and T24 cells expressed higher PS-1 compared with normal ones. Cell vitality test demonstrated that DAPT attenuated UCB cell proliferation more than SV-HUC-1. Flow cytometry and transwell assay showed that T24 cells were arrested at G1/S checkpoint and its invasive ability was impaired. Western blot assay markedly showed that protein levels of CD44-intracellular domain, insulinlike growth factor-1Rß, extracellular regulated protein kinase 1/2, cyclin D1, proliferating cell nuclear antigen, and matrix metalloproteinase-9 were downregulated by DAPT, whereas vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-165 were upregulated. CONCLUSIONS: Our study revealed that PS-1 might be implicated in the proliferation and invasion of UCB, and that it may serve as a potential therapeutic target for UCB, but further studies are warranted to verify the effects of inhibition of PS/γ-secretase on angiogenesis.


Assuntos
Presenilinas/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Cistectomia , Feminino , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neovascularização Patológica , Presenilinas/metabolismo , Fase S/efeitos dos fármacos , Neoplasias da Bexiga Urinária/cirurgia
19.
Exp Neurol ; 250: 143-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24029002

RESUMO

Presenilins (PS), endoplasmic reticulum (ER) transmembrane proteins, form the catalytic core of γ-secretase, an amyloid precursor protein processing enzyme. Mutations in PS lead to Alzheimer's disease (AD) by altering γ-secretase activity to generate pathologic amyloid beta and amyloid plaques in the brain. Here, we identified a novel mechanism where binding of a soluble, cytosolic N-terminal domain fragment (NTF) of PS to intracellular Ca(2+) release channels, ryanodine receptors (RyR), controls Ca(2+) release from the ER. While PS1NTF decreased total RyR-mediated Ca(2+) release, PS2NTF had no effect at physiological Ca(2+) concentrations. This differential function and isotype-specificity is due to four cysteines absent in PS1NTF, present, however, in PS2NTF. Site-directed mutagenesis targeting these cysteines converted PS1NTF to PS2NTF function and vice versa, indicating differential RyR binding. This novel mechanism of intracellular Ca(2+) regulation through the PS-RyR interaction represents a novel target for AD drug development and the treatment of other neurodegenerative disorders that critically depend on RyR and PS signaling.


Assuntos
Cisteína/metabolismo , Neurônios/metabolismo , Presenilinas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/metabolismo , Presenilinas/química
20.
PLoS One ; 8(8): e73296, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015300

RESUMO

The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates' ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Presenilinas/metabolismo , Proteólise , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Animais , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/metabolismo , Presenilinas/genética , Estrutura Terciária de Proteína , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA