Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.265
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622793

RESUMO

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/fisiologia , Pressão Hidrostática , Diferenciação Celular/fisiologia , Fatores de Transcrição/metabolismo , Células Cultivadas , Células da Medula Óssea
2.
PLoS One ; 19(4): e0300548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578740

RESUMO

Biomechanical cue within the tissue microenvironment is known to play a critical role in regulating cell behaviors and maintaining tissue homeostasis. As hydrostatic pressure often increases in biliary system under pathological states, we investigated the effect of the moderate elevation of the hydrostatic pressure on biliary epithelial cells, especially on the epithelial-mesenchymal transition (EMT). Human intrahepatic biliary epithelial cells were loaded to hydrostatic pressure using a commercial device. We found that loading the cells to 50 mmHg hydrostatic pressure induced obvious morphological changes and significantly upregulated vimentin, ZEB1, and pSmad2/3, fibronectin, and collagen 1α. All changes induced by hydrostatic pressure loading were effectively mitigated by either ROCK inhibitor (Y-27632) or ALK5 inhibitor (SB-431542). Our in vitro experimental data suggests that hydrostatic pressure loading induces EMT of cholangiocytes through RhoA/ROCK and TGF-ß/Smad pathways. Elevated hydrostatic pressure in biliary duct system under pathological states may promote the biliary epithelial cells shifting to profibrotic and mesenchymal characteristics.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Pressão Hidrostática , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
FASEB J ; 38(1): e23324, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019188

RESUMO

As an independent risk factor of atrial fibrillation (AF), hypertension (HTN) can induce atrial fibrosis through cyclic stretch and hydrostatic pressure. The mechanism by which high hydrostatic pressure promotes atrial fibrosis is unclear yet. p300 and p53/Smad3 play important roles in the process of atrial fibrosis. This study investigated whether high hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway. Biochemical experiments were used to study the expression of p300/p53/Smad3 pathway in left atrial appendage (LAA) tissues of patients with sinus rhythm (SR), AF, AF + HTN, and C57/BL6 mice, hypertensive C57/BL6 mice and atrial fibroblasts of mice. To investigate the roles of p300 and p53 in the process of atrial fibrosis, p300 and p53 in mice atrial fibroblasts were knocked in or knocked down, respectively. The expression of p300/p53/Smad3 and fibrotic factors was higher in patients with AF and AF + HTN than those with SR only. The expressions of p300/p53/Smad3 and fibrotic factors increased in hypertensive mice. Curcumin (Cur) and knocking down of p300 reversed the expressions of these factors. 40 mmHg hydrostatic pressure/overexpression of p300 upregulated the expressions of p300/p53/Smad3 and fibrotic factors in mice LAA fibroblasts. While Cur or knocking down p300 reversed these changes. Knocking down/overexpression of p53, the expressions of p53/Smad3 and fibrotic factors also decreased/increased, correspondingly. High hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway, which further increases the susceptibility to AF.


Assuntos
Fibrilação Atrial , Hipertensão , Animais , Humanos , Camundongos , Fibrilação Atrial/etiologia , Curcumina , Fibrose , Átrios do Coração , Pressão Hidrostática , Proteína Supressora de Tumor p53/genética
4.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005328

RESUMO

Diverse enzymatic reactions taking place after the killing of green vanilla beans are involved in the flavor and color development of the cured beans. The effects of high hydrostatic pressure (HHP) at 50-400 MPa/5 min and blanching as vanilla killing methods were evaluated on the total phenolic content (TPC), polyphenoloxidase (PPO), and peroxidase (POD) activity and the color change at different curing cycles of sweating-drying (C0-C20) of vanilla beans. The rate constants describing the above parameters during the curing cycles were also obtained. The TPC increased from C1 to C6 compared with the untreated green beans after which it started to decrease. The 400 MPa samples showed the highest rate of phenolic increase. Immediately after the killing (C0), the highest increase in PPO activity was observed at 50 MPa (46%), whereas for POD it was at 400 MPa (25%). Both enzymes showed the maximum activity at C1, after which the activity started to decrease. As expected, the L* color parameter decreased during the entire curing for all treatments. An inverse relationship between the rate of TPC decrease and enzymatic activity loss was found, but the relationship with L* was unclear. HHP appears to be an alternative vanilla killing method; nevertheless, more studies are needed to establish its clear advantages over blanching.


Assuntos
Vanilla , Pressão Hidrostática , Manipulação de Alimentos/métodos , Fenóis , Catecol Oxidase
5.
mBio ; 14(4): e0095823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37551978

RESUMO

Wall-less bacteria are broadly distributed in diverse habitats. They evolved from a common ancestor within the Firmicutes phylum through reductive evolution. Here, we report the cultivation, characterization, and polyphasic taxonomic analysis of the novel free-living wall-less bacterium, Hujiaoplasma nucleasis zrk29. We demonstrated that strain zrk29 had a strong ability to degrade DNA and RNA both under laboratory conditions and in the deep sea. We found that nucleic acids induced strain zrk29 to release chronic bacteriophages which supported strain zrk29 and other marine bacteria to metabolize nucleic acids without lysing host cells. We also showed that strain zrk29 tolerated high hydrostatic pressure via two pathways: (i) by transporting cations into its cells to increase intracellular osmotic pressure and (ii) by adjusting the unsaturated fatty acid chain content in its cell membrane phospholipids to increase cell membrane fluidity. This study extends our understanding of free-living wall-less bacteria and provides a useful model to explore the unique adaptation mechanisms of deep-sea microbes. IMPORTANCE The unique physiology and survival strategies of the Tenericutes bacterium-a typical wall-less bacterium-have fascinated scientists and the public, especially in extreme deep-sea environments where there is high hydrostatic pressure (HHP) and limited availability of nutrients. Here, we have isolated a novel free-living Tenericutes strain from deep-sea sediment and have found that it metabolizes nucleic acids with the support of chronic bacteriophages. This Tenericutes strain tolerates HHP stress by increasing intracellular osmotic pressure and the unsaturated fatty acid chain content of phospholipids in its cell membrane. Our results provide insights into the unique physiology of deep-sea free-living Tenericutes bacteria and highlight the significant role that chronic bacteriophages play in assisting wall-less bacteria to adapt to harsh conditions.


Assuntos
Ácidos Nucleicos , Pressão Hidrostática , Bactérias/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo
6.
Environ Sci Pollut Res Int ; 30(36): 86072-86083, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395884

RESUMO

Over the years, solar desalination is a renewable energy-driven method to produce freshwater from saline/ brackish water. Since solar radiation is available only in the daytime, many studies have been undertaken to store solar energy using phase change material (PCM). The aim of this study is to compare the two solar stills (still I as a conventional solar still and still II as a PCM-integrated solar still). In still II, using low-pressure water as thermal energy storage, PCM in a copper tube with a 1 liter capacity has been additionally installed than still I. Five trials have been conducted to compare the performance and yield between stills I and II, with various factors during the experiment. Remarkably, three distinct vacuum pressures - 712 mmHg (for trials 1, 2, and 3), - 690 mmHg (for trial 4), and - 660 mmHg (for trial 5) were used for the investigation to compare the performance of PCM-based solar still with conventional solar still among five trials. Finally, at a vacuum of -712 mmHg and 175 ml of water poured inside the low-pressure system, the distillate yield obtained from still II is 9.375% higher than the yield of still I.


Assuntos
Energia Solar , Água , Temperatura Alta , Pressão Hidrostática , Água Doce
7.
Food Chem ; 428: 136703, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423103

RESUMO

The synergistic effect of the initial state of the enzyme and pressure level on the denaturation of PPO has not been clear yet, but it significantly affects the application of high hydrostatic pressure (HHP) in the enzyme-containing food processing. Solid (S-) and low/high concentration liquid (LL-/HL-) polyphenol oxidase (PPO) was used as the study object, and the microscopic conformation, molecular morphology and macroscopic activity of PPO under HHP treatments (100-400 MPa, 25 °C/30 min) were investigated by spectroscopic techniques. The results show that the initial state has a significant effect on the activity, structure, active force and substrate channel of PPO under pressure. The effec can be ranked as follows: physical state > concentration > pressure, S-PPO > LL-PPO > HL-PPO. High concentration has a weakening effect on the pressure denaturation of the PPO solution. Under high pressure, the α-helix and concentration factors play a crucial role in stabilizing the structure.


Assuntos
Catecol Oxidase , Manipulação de Alimentos , Catecol Oxidase/química , Manipulação de Alimentos/métodos , Pressão Hidrostática
8.
Afr J Paediatr Surg ; 20(3): 171-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470551

RESUMO

Introduction: Intussusception is a common cause of intestinal obstruction in infants and children. Ultrasound-guided hydrostatic reduction (USGHR) with saline is considered the gold standard with a success rate of more than 90%. Hydrostatic reduction with laparoscopic assistance has its own advantage of direct visualisation, assessment of bowel vascularity and controlled distension. The choice of procedure depends on available resources and surgeon's preference. This study aims to compare the outcomes of the two methods, i.e., laparoscopic-assisted hydrostatic reduction (LAHR) and USGHR under general anaesthesia (GA). Materials and Methods: This was a prospective study carried out at two different centres over a 3-year period. All patients of intussusception were managed by either hydrostatic reduction with saline under ultrasound guidance or hydrostatic reduction with laparoscopic assistance. Both the procedures were done in operation theatre under GA. The operating time and amount of fluid used for reduction were noted. Results: There were 27 patients in Group 1 (USGHR) and 20 patients in Group 2 (LAHR). The two groups were similar in terms of demographic parameters. The various outcomes such as number of attempts for reduction, fluid required for reduction, time to start oral feeds, complication and length of stay were similar in both the groups. The mean operating time for Group 1 was 19.4 ± 4.5 min and for Group 2 was 34.9 ± 4.8 min (P < 0.001). Conclusion: Both the procedures fare equally in terms of outcome except mean operating time, therefore, LAHR is a good alternative to USGHR in resource-poor nations where logistics of intraoperative ultrasound may not be present.


Assuntos
Intussuscepção , Laparoscopia , Lactente , Humanos , Criança , Intussuscepção/diagnóstico por imagem , Intussuscepção/cirurgia , Estudos Prospectivos , Enema/métodos , Ultrassonografia , Solução Salina , Estudos Retrospectivos , Pressão Hidrostática , Resultado do Tratamento
9.
J Biomech ; 154: 111590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163962

RESUMO

Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-ß3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Condrogênese/fisiologia , Pressão Hidrostática , Engenharia Tecidual/métodos , Diferenciação Celular , Hidrogéis , Fibrina , Células Cultivadas
10.
Carbohydr Polym ; 299: 120175, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876790

RESUMO

The effects of the high hydrostatic pressure (HPP) pre-treatment on the alginate extraction were seen to greatly depend on the recalcitrant nature of two algae species. Alginates were deeply characterized in terms of composition, structure (HPAEC-PAD, FTIR, NMR, SEC-MALS), functional and technological properties. The pre-treatment significantly increased the alginate yield in the less recalcitrant A. nodosum (AHP) also favoring the extraction of sulphated fucoidan/fucan structures and polyphenols. Although the molecular weight was significantly lower in AHP samples, neither the M/G ratio nor the M and G sequences were modified. In contrast, a lower increase in alginate extraction yield was observed for the more recalcitrant S. latissima after the HPP pre-treatment (SHP), but it significantly affected the M/G values of the resulting extract. The gelling properties of the alginate extracts were also explored by external gelation in CaCl2 solutions. The mechanical strength and nanostructure of the hydrogel beads prepared were determined using compression tests, synchrotron small angle X-ray scattering (SAXS), and cryo-scanning electron microscopy (Cryo-SEM). Interestingly, the application of HPP significantly improved the gel strength of SHP, in agreement with the lower M/G values and the stiffer rod-like conformation obtained for these samples.


Assuntos
Alginatos , Pressão Hidrostática , Espalhamento a Baixo Ângulo , Difração de Raios X , Microscopia Crioeletrônica
11.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902460

RESUMO

Findings from experiments that used hydrostatic pressure changes to analyse the process of skeletal muscle contraction are re-examined. The force in resting muscle is insensitive to an increase in hydrostatic pressure from 0.1 MPa (atmospheric) to 10 MPa, as also found for force in rubber-like elastic filaments. The force in rigour muscle rises with increased pressure, as shown experimentally for normal elastic fibres (e.g., glass, collagen, keratin, etc.). In submaximal active contractions, high pressure leads to tension potentiation. The force in maximally activated muscle decreases with increased pressure: the extent of this force decrease in maximal active muscle is sensitive to the concentration of products of ATP hydrolysis (Pi-inorganic phosphate and ADP-adenosine diphosphate) in the medium. When the increased hydrostatic pressure is rapidly decreased, the force recovered to the atmospheric level in all cases. Thus, the resting muscle force remained the same: the force in the rigour muscle decreased in one phase and that in active muscle increased in two phases. The rate of rise of active force on rapid pressure release increased with the concentration of Pi in the medium, indicating that it is coupled to the Pi release step in the ATPase-driven crossbridge cycle in muscle. Pressure experiments on intact muscle illustrate possible underlying mechanisms of tension potentiation and causes of muscle fatigue.


Assuntos
Contração Muscular , Músculos , Pressão Hidrostática , Músculos/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Adenosina Trifosfatases , Contração Isométrica/fisiologia , Trifosfato de Adenosina
12.
BMC Urol ; 23(1): 46, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978025

RESUMO

BACKGROUND: We evaluated the hydrostatic pressure of the renal pelvis (RPP) as a radiation-free alternative to fluoroscopic nephrostogram to assess ureteral patency after percutaneous nephrolithotomy (PCNL). METHODS: Retrospective non-inferiority study analyzing 248 PCNL-patients (86 female (35%) and 162 males (65%)) between 2007 and 2015. Postoperatively, RPP was measured using a central venous pressure manometer in cmH2O. The primary endpoint was to assess RPP depending on the patency of the ureter and the nephrostomy tube removal. Secondary, the upper limit of normal RPP of [Formula: see text] 20 cmH2O was assessed as an indicator of an unobstructed patency. RESULTS: The median procedure duration was 141 min (112-171.5) with a stone free rate of 82% (n = 202). RPP was significantly higher in patients with obstructive nephrostogram with 25.0 mmH2O (21.0-32.0) versus 20.0 mmH2O (16.0-24.0; p < 0.001). The pressure was lower in successful nephrostomy removal with 18 cmH2O (15-21) versus 23 cmH2O (20-29) in the leakage group (p < 0.001). The analysis of a cut-off of [Formula: see text] 20 cmH2O showed a sensitivity of 76.9% (95% CI [60.7%; 88.9%]) and a specificity of 61.5% (95% CI [54.6%; 68.2%]). The negative predictive value was 93.4% (95% CI: [87.9%; 97.0%]) and the positive predictive value 27.3% (95% CI [19.2%; 36.6%]). The accuracy of the model showed an AUC = 0.795 (95% CI [0.668; 0.862]). CONCLUSION: The hydrostatic RPP seems to allow a bedside evaluation of ureteral patency after PCNL.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Nefrostomia Percutânea , Masculino , Humanos , Feminino , Nefrolitotomia Percutânea/métodos , Pressão Hidrostática , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/cirurgia , Estudos Retrospectivos , Pelve Renal/diagnóstico por imagem , Pelve Renal/cirurgia , Nefrostomia Percutânea/métodos
13.
Biomater Adv ; 147: 213329, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801795

RESUMO

During nozzle-based bioprinting, like inkjet and microextrusion, cells are subjected to hydrostatic pressure for up to several minutes. The modality of the bioprinting-related hydrostatic pressure is either constant or pulsatile depending on the technique. We hypothesized that the difference in the modality of hydrostatic pressure affects the biological response of the processed cells differently. To test this, we used a custom-made setup to apply either controlled constant or pulsatile hydrostatic pressure on endothelial and epithelial cells. Neither bioprinting procedure visibly altered the distribution of selected cytoskeletal filaments, cell-substrate adhesions, and cell-cell contacts in either cell type. In addition, pulsatile hydrostatic pressure led to an immediate increase of intracellular ATP in both cell types. However, the bioprinting-associated hydrostatic pressure triggered a pro-inflammatory response in only the endothelial cells, with an increase of interleukin 8 (IL-8) and a decrease of thrombomodulin (THBD) transcripts. These findings demonstrate that the settings adopted during nozzle-based bioprinting cause hydrostatic pressure that can trigger a pro-inflammatory response in different barrier-forming cell types. This response is cell-type and pressure-modality dependent. The immediate interaction of the printed cells with native tissue and the immune system in vivo might potentially trigger a cascade of events. Our findings, therefore, are of major relevance in particular for novel intra-operative, multicellular bioprinting approaches.


Assuntos
Bioimpressão , Células Endoteliais , Bioimpressão/métodos , Pressão Hidrostática , Células Epiteliais , Adesão Celular
14.
Int J Biol Macromol ; 231: 123184, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634802

RESUMO

Due to functional and physicochemical properties, starch in its native state has limited range of applications. Simultaneously, information on effects of different sugars and their interactions with modified starch on gluten-free model dough is also limited. To better overcome these restrictions, the effects of sucrose, trehalose, maltose and xylose on rheology, water mobility and microstructure of gluten-free dough prepared with high hydrostatic pressure (HHP) treated maize (MS), potato (PS) and sweet potato starch (SS) were investigated. MS, PS and SS dough with trehalose exhibited a lower degree of dependence of G' on frequency sweep (z'), higher strength (K) and relative elastic part of maximum creep compliance (Je/Jmax), suggesting stable network structure formation. Total gas production (VT) of MS dough with maltose, PS dough with sucrose and SS dough with trehalose was increased from 588 to 1454 mL, 537 to 1498 mL and 637 to 1455 mL respectively. Higher weakly bound water (T22) was found in the dough with trehalose at 60 min of fermentation, suggesting more hydrogen bonds and stable network. Thus, trehalose might be a potential improver in HHP treated starch-based gluten-free products.


Assuntos
Maltose , Trealose , Xilose , Sacarose , Água/química , Pressão Hidrostática , Amido/química , Reologia , Glutens/química , Farinha
15.
Food Sci Technol Int ; 29(5): 518-528, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35491658

RESUMO

Blueberry juice has been found to undergo severe browning after treatment and cold storage, such as processing by high hydrostatic pressure (HHP) at 550 MPa/10 min/25 °C followed storage at 4 °C for 4 days. This browning may be due to the degradation of anthocyanin (AC) in the berries. Therefore, in this study, gallic acid (GA), ferulic acid (FA), ascorbic acid (VC), citric acid (CA), tea polyphenol (TP) and α-tocopherol (VE) were compared to determine their ability to improve the stability of the AC in HHP-treated blueberry juice. The juice was combined with the six abovementioned antioxidants at different concentrations, then treated by HHP at 550 MPa/10 min/25 °C and stored at 4 °C for 20 days. Thereafter, the pH levels, degrees °Brix, color parameters, total AC content and polyphenol oxidase (PPO) activity of the blueberry juice blend were measured and compared. Gallic acid at 2 g/L was found to be the most effective antioxidant to protect against AC degradation. After storage at 4 °C for 20 days, the AC content of the juice with no added antioxidants had decreased by 62.27% with a PPO relative activity of 50.78%, while the AC content of juice supplemented with 2 g/L GA had decreased by 13.42% with a PPO relative activity of 28.13%. The results of this study, thus, suggest that GA can stabilize the structure of AC in blueberry juice and reduce PPO activity, which may be beneficial in guiding the production of blueberry juice with high AC retention.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Antioxidantes/análise , Antocianinas/análise , Pressão Hidrostática , Mirtilos Azuis (Planta)/química , Frutas/química , Ácido Gálico/análise , Cor
16.
J Food Drug Anal ; 31(4): 552-582, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526817

RESUMO

Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.


Assuntos
Fenóis , Polifenóis , Extratos Vegetais , Solventes , Pressão Hidrostática
17.
Ultrason Sonochem ; 91: 106232, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435086

RESUMO

Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and ß-turn) accompanied with an increase in disordered secondary structures (α-helix and ß-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.


Assuntos
Chenopodium quinoa , Pressão Hidrostática
18.
Ultrason Sonochem ; 90: 106219, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36371874

RESUMO

Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.


Assuntos
Gases em Plasma , Ziziphus , Frutas/química , Dióxido de Carbono , Pressão Hidrostática , Dessecação/métodos , Cor , Ácido Ascórbico/análise
19.
Biomed Res Int ; 2022: 3215461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968240

RESUMO

The study of chondrogenic progenitor cells (CPCs) as seed cells has become a new focus of cartilage regeneration. The inflammatory environment of osteoarthritis (OA) inhibits the repair ability of CPCs. But the OA patients' CPCs showed an excellent regeneration ability with intermittent hydrostatic pressure (IHP). However, the mechanism is unclear. We compared the expression of the Hippo signaling effect factor YAP between OA and normal cartilages. Then, the relationship between the Kellgren-Lawrence (K-L) score of OA and the rate of YAP-positive cells was analyzed. The changes of CPCs after IHP and IL-1ß applications were observed. The OA model was established by cutting the anterior cruciate ligament of rats. The knee joint of the OA rats was distracted by hinged external fixator to create suitable IHP, named as the IHP group. The IHP group plus intra-articular injection of Verteporfin (VP) was named as the IHP+VP group, and the untreated rat group was named as the CON group. Four and 8 weeks after the operation, the reparative effect was evaluated by MASSON staining and immunohistochemical staining. Lower levels of YAP1 and higher expressions of p-YAP1 were found in the OA group as compared to the normal group. IHP inhibited the Hippo signaling in an inflammatory environment and promoted the proliferation of CPCs. The cartilage deterioration in the CON group progressed more significantly than that in the IHP+VP group. The best reparative effect was observed in the IHP group with increased expression of YAP1 and decreased p-YAP1. These results hint that mechanical stress can activate CPCs and promote cartilage repair in an inflammatory environment through inhibiting Hippo signaling.


Assuntos
Condrócitos , Osteoartrite , Animais , Carcinoma , Cartilagem , Condrócitos/metabolismo , Neoplasias do Plexo Corióideo , Pressão Hidrostática , Osteoartrite/metabolismo , Ratos , Transdução de Sinais , Verteporfina
20.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014342

RESUMO

The effects of high hydrostatic pressure (treated with 200, 400 and 600 MPa) and storage temperatures (4 °C and −20 °C) on the fatty acids and flavor compounds of red claw crayfish were studied. HHP decreased the PUFA, GMP, IMP and AMP, citric and lactic acids, and PO43− contents, but the FAA, Ca2+ and Cl− contents increased in HHP-treated crayfish compared to untreated crayfish at 0 d. Storage at −20 °C could restrain the fatty acids and flavor contents compared to those stored at 4 °C. The GMP, AMP, citric acid and PO43− contents decreased, and Ca2+ and Cl− contents increased after storage at 4 °C for 15 d (p < 0.05). HHP at 200 and 400 MPa increased EUC on 0 d. No significant changes in EUC were observed after storage at −20 °C for 15 d, significant decreases were noted at 4 °C than the crayfish stored for 0 d (p < 0.05), except for the untreated group. Generally, HHP at 200 or 400 MPa, and storage at −20 °C is beneficial according to the shelling rates and EUC of crayfish.


Assuntos
Astacoidea , Paladar , Monofosfato de Adenosina , Animais , Ácidos Graxos , Pressão Hidrostática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA