Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
Life Sci ; 336: 122286, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007144

RESUMO

AIMS: Transient receptor potential vanilloid 2 (TRPV2) channels are expressed in both smooth muscle and endothelial cells and participate in vascular mechanotransduction and sensing of high temperatures and lipids. Nevertheless, the impact of TRPV2 channel activation by agonists on the coordinated and cell-type specific modulation of vasoreactivity is unknown. MAIN METHODS: Aorta from 2- to 4-months-old male Oncins France 1 mice was dissected and mounted in tissue baths for isometric tension measurements. TRPV2 channel expression was assessed by immunofluorescence and western blot in mice aortas and in cultured A7r5 rat aortic smooth muscle cells. KEY FINDINGS: TRPV2 channels were expressed in all three mouse aorta layers. Activation of TRPV2 channels with probenecid evoked endothelium-dependent relaxations through a mechanism that involved activation of smooth muscle Kir and Kv channels. In addition, TRPV2 channel inhibition with tranilast increased endothelium-independent relaxations to probenecid and this effect was abrogated by the KATP channel blocker glibenclamide, revealing that smooth muscle TRPV2 channels induce negative feedback on probenecid relaxations mediated via KATP channel inhibition. Exposure to the NO donor sodium nitroprusside increased TRPV2 channel translocation to the plasma membrane in cultured smooth muscle cells and enhanced negative feedback on probenecid relaxations. SIGNIFICANCE: In conclusion, we present the first evidence that TRPV2 channels may modulate vascular tone through a balance of opposed inputs from the endothelium and the smooth muscle leading to net vasodilation. The fact that TRPV2 channel-induced activity can be amplified by NO emphasizes the pathophysiological relevance of these findings.


Assuntos
Células Endoteliais , Probenecid , Camundongos , Ratos , Masculino , Animais , Probenecid/farmacologia , Mecanotransdução Celular , Aorta/metabolismo , Vasodilatação , Trifosfato de Adenosina/metabolismo , Endotélio Vascular/fisiologia
2.
Inflammopharmacology ; 32(1): 715-731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994991

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, whereas the underlying molecular trails involved in its pathogenesis are not fully elucidated. Hence, the current study aimed to investigate the role of miRNA-373/P2X7/NLRP3/NF-κB trajectory in its pathogenesis as well as the possible anti-inflammatory effects of probenecid and l-carnitine in ameliorating osteoarthritis via modulating this pathway. In the current study, male Sprague Dawley rats were used and monoiodoacetate (MIA)-induced knee osteoarthritis model was adopted. Probenecid and/or L-carnitine treatments for 14 days succeeded in reducing OA knee size and reestablishing motor coordination and joint mobility assessed by rotarod testing. Moreover, different treatments suppressed the elevated serum levels of IL-1ß, IL-18, IL-6, and TNF-α via tackling the miRNA-373/P2X7/NLRP3/NF-κB, witnessed as reductions in protein expressions of P2X7, NLRP3, cleaved caspase-1 and NF-κB. These were accompanied by increases in procaspase-1 and IκB protein expression and in miRNA-373 gene expression OA knee to various extents. In addition, different regimens reversed the abnormalities observed in the H and E as well as Safranin O-Fast green OA knees stained sections. Probenecid or l-carnitine solely showed comparable results on the aforementioned parameters, whereas the combination therapy had the most prominent effect on ameliorating the aforementioned parameters. In conclusion, l-carnitine augmented the probenecid's anti-inflammatory effect to attenuate MIA-induced osteoarthritis in rats by provoking the miRNA-373 level and inhibiting the P2X7/NLRP3/NF-κB milieu, leading to the suppression of serum inflammatory cytokines: IL-1ß, IL-18, IL-6, and TNF-α. These findings suggest the possibility of using probenecid and l-carnitine as a useful therapeutic option for treatment of osteoarthritis.


Assuntos
Carnitina , MicroRNAs , Osteoartrite do Joelho , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-18 , Interleucina-6 , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Probenecid/farmacologia , Probenecid/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Carnitina/farmacologia , Carnitina/uso terapêutico
3.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101600

RESUMO

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Vimblastina/farmacologia , Vimblastina/metabolismo , Vimblastina/uso terapêutico , Probenecid/farmacologia , Probenecid/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Estresse Oxidativo , Aminoácidos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
4.
Biochem Pharmacol ; 218: 115867, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866801

RESUMO

Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.


Assuntos
Transportadores de Ânions Orgânicos , Ratos , Animais , Transportadores de Ânions Orgânicos/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação Renal , Furosemida/farmacologia , Furosemida/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/farmacologia , Ácido Piridóxico/metabolismo , Ácido Piridóxico/farmacologia , Interações Medicamentosas , Biomarcadores/metabolismo , Rim/metabolismo
5.
Neurotherapeutics ; 20(6): 1529-1537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596428

RESUMO

N-Acetylcysteine (NAC) has shown promise as a putative neurotherapeutic for traumatic brain injury (TBI). Yet, many such promising compounds have limited ability to cross the blood-brain barrier (BBB), achieve therapeutic concentrations in brain, demonstrate target engagement, among other things, that have hampered successful translation. A pharmacologic strategy for overcoming poor BBB permeability and/or efflux out of the brain of organic acid-based, small molecule therapeutics such as NAC is co-administration with a targeted or nonselective membrane transporter inhibitor. Probenecid is a classic ATP-binding cassette and solute carrier inhibitor that blocks transport of organic acids, including NAC. Accordingly, combination therapy using probenecid as an adjuvant with NAC represents a logical neurotherapeutic strategy for treatment of TBI (and other CNS diseases). We have completed a proof-of-concept pilot study using this drug combination in children with severe TBI-the Pro-NAC Trial (ClinicalTrials.gov NCT01322009). In this review, we will discuss the background and rationale for combination therapy with probenecid and NAC in TBI, providing justification for further clinical investigation.


Assuntos
Lesões Encefálicas Traumáticas , Probenecid , Criança , Humanos , Probenecid/uso terapêutico , Probenecid/farmacologia , Acetilcisteína/uso terapêutico , Acetilcisteína/farmacologia , Projetos Piloto , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica
6.
Drug Metab Dispos ; 51(7): 844-850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059471

RESUMO

Organic anion transporters 1 and 3 (OAT1/3) occupy a key role in mediating renal elimination. Kynurenic acid (KYNA) was previously discovered as an effective endogenous biomarker to assess drug-drug interaction (DDI) for OAT inhibitors. Here, further in vitro and in vivo investigation was performed to characterize the elimination routes and feasibility of KYNA, along with other reported endogenous metabolites, as biomarkers of Oat1/3 inhibition in bile duct-cannulated (BDC) cynomolgus monkeys. Our results suggested that KYNA is a substrate of OAT1/3 and OAT2, but not OCT2, MATE1/2K, or NTCP, and that it shares comparable affinities between OAT1 and OAT3. Renal and biliary excretions and plasma concentration-time profiles of KYNA, pyridoxic acid (PDA), homovanillic acid (HVA), and coproporphyrin I (CP-I) were assessed in BDC monkeys dosed with either probenecid (PROB) at 100 mg/kg or the control vehicle. Renal excretion of KYNA, PDA, and HVA was determined to be the major elimination route. The maximum concentration and the area under the plasma concentration-time curve (Cmax and AUC0-24h) of KYNA were about 11.6- and 3.7-fold higher in the PROB group than in the vehicle group. Renal clearance of KYNA decreased by 3.2-fold, but biliary clearance (CLbile) was not altered after PROB administration. A similar trend was observed for PDA and HVA. Interestingly, an elevation of plasma concentration and reduction of CP-I CLbile were observed after PROB treatment, which suggested inhibition of the CP-I Oatp-Mrp2 transport axis by PROB. Overall, our results indicated that KYNA could potentially facilitate early and reliable assessment of DDI liabilities of Oat inhibition in monkeys. SIGNIFICANCE STATEMENT: This work reported renal excretion as the major elimination pathway for kynurenic acid, pyridoxic acid, and homovanillic acid. Administration of probenecid reduced renal clearance and increased plasma exposure of these biomarkers in monkeys, consistent with the observation in humans. These endogenous biomarkers discovered in monkeys could be potentially used to evaluate the clinical drug-drug interactions in the early phase of drug development.


Assuntos
Transportadores de Ânions Orgânicos , Probenecid , Humanos , Animais , Macaca fascicularis/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Piridóxico , Ácido Homovanílico , Estudos de Viabilidade , Ácido Cinurênico , Transportadores de Ânions Orgânicos/metabolismo , Biomarcadores/metabolismo , Interações Medicamentosas , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo
7.
J Inorg Biochem ; 243: 112201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003189

RESUMO

This article describes the in vitro antibacterial and ß-lactamase inhibition of a novel silver(I) complex with the sulfonamide probenecid (Ag-PROB). The formula Ag2C26H36N2O8S2·2H2O for the Ag-PROB complex was proposed based on elemental analysis. High-resolution mass spectrometric studies revealed the existence of the complex in its dimeric form. Infrared, nuclear magnetic resonance spectroscopies and Density Functional Theory calculations indicated a bidentate coordination of probenecid to the silver ions by the oxygen atoms of the carboxylate. In vitro antibacterial activities of Ag-PROB showed significant growth inhibitory activity over Mycobacterium tuberculosis, S. aureus, and P. aeruginosa PA01biofilm-producers, B. cereus, and E. coli. The Ag-PROB complex was active over multi-drug resistant of uropathogenic E. coli extended spectrum ß-lactamases (ESBL) producing (EC958 and BR43), enterohemorrhagic E. coli (O157:H7) and enteroaggregative E. coli (O104:H4). Ag-PROB was able to inhibit CTX-M-15 and TEM-1B ESBL classes, at concentrations below the minimum inhibitory concentration for Ag-PROB, in the presence of ampicillin (AMP) concentration in which EC958 and BR43 bacteria were resistant in the absence of Ag-PROB. These results indicate that, in addition to ESBL inhibition, there is a synergistic antibacterial effect between AMP and the Ag-PROB. Molecular docking results revealed potential key residues involved in interactions between Ag-PROB, CTX-M-15 and TEM1B, suggesting the molecular mechanism of the ESBL inhibition. The obtained results added to the absence of mutagenic activity and low cytotoxic activity over non-tumor cell of the Ag-PROB complex open a new perspective for future in vivo tests demonstrating its potential of use as an antibacterial agent.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Infecções por Escherichia coli/microbiologia , Probenecid/farmacologia , Prata/farmacologia , Simulação de Acoplamento Molecular , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases , Testes de Sensibilidade Microbiana
8.
Artigo em Inglês | MEDLINE | ID: mdl-37087614

RESUMO

OBJECTIVES: To evaluate the effect of tartaric acid (TTA) on Madin-Darby canine kidney (MDCK) cells compared to human kidney (HK)-2 cells. Secondarily, to evaluate the effects of probenecid, an organic anion transporter (OAT)-1 inhibitor, as well as human (h)OAT-4 transfection into MDCK cells to prevent TTA-induced cytotoxicity through decreasing accumulation via OAT-1 uptake inhibition or increasing OAT-4-mediated TTA efflux. DESIGN: Seventy-two-hour TTA concentration response and inhibitor studies in immortalized cell lines. SETTING: School of Pharmacy biomedical research laboratory and tissue culture facility. ANIMALS/SAMPLES: MDCK and HK-2 immortalized cell lines. INTERVENTIONS: Both cell lines were treated with increasing concentrations of TTA for 72 hours. Additionally, MDCK cells were co-incubated with TTA and increasing concentrations of probenecid or had been transfected with hOAT-4 and subsequently treated with TTA for 72 hours. MEASUREMENTS AND MAIN RESULTS: Media and samples were collected and lactate dehydrogenase (LDH) release was measured. LDH release was measured to assess TTA-induced cytotoxicity after 72 hours. LDH was not significantly increased in the HK-2 cells at any concentration but was significantly increased in the MDCK cells from 10 to 100 mM. LDH concentrations were significantly decreased (61%) in MDCK cells incubated with 50 mM TTA and probenecid when compared to TTA alone. hOAT-4 MDCK cell transfection also significantly reduced LDH release (57%) when comparing the transfected MDCK cells to the nontransfected MDCK cells treated with 50 mM TTA. CONCLUSIONS: TTA is a species-specific nephrotoxicant in dogs due to an interspecies difference in OAT-4 expression. Inhibiting TTA uptake in MDCK cells in vitro using the OAT-specific inhibitor, probenecid, prevents TTA-induced cytotoxicity.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Animais , Cães , Células Madin Darby de Rim Canino , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Avena , Probenecid/farmacologia , Probenecid/metabolismo , Rim/metabolismo , Transfecção/veterinária
9.
Physiol Rep ; 11(7): e15652, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024297

RESUMO

Development of autosomal dominant polycystic kidney disease (ADPKD) involves renal epithelial cell abnormalities. Cystic fluid contains a high level of ATP that, among other effects, leads to a reduced reabsorption of electrolytes in cyst-lining cells, and thus results in cystic fluid accumulation. Earlier, we demonstrated that Pkd1RC/RC mice, a hypomorphic model of ADPKD, exhibit increased expression of pannexin-1, a membrane channel capable of ATP release. In the current study, we found that human ADPKD cystic epithelia have higher pannexin-1 abundance than normal collecting ducts. We hypothesized that inhibition of pannexin-1 function with probenecid can be used to attenuate ADPKD development. Renal function in male and female Pkd1RC/RC and control mice was monitored between 9 and 20 months of age. To test the therapeutic effects of probenecid (a uricosuric agent and a pannexin-1 blocker), osmotic minipumps were implanted in male and female Pkd1RC/RC mice, and probenecid or vehicle was administered for 42 days until 1 year of age. Probenecid treatment improved glomerular filtration rates and slowed renal cyst formation in male mice (as shown in histopathology). The mechanistic effects of probenecid on sodium reabsorption and fluid transport were tested on polarized mpkCCDcl4 cells subjected to short-circuit current measurements, and in 3D cysts grown in Matrigel. In the mpkCCDcl4 epithelial cell line, probenecid elicited higher ENaC currents and attenuated in vitro cyst formation, indicating lower sodium and less fluid retention in the cysts. Our studies open new avenues of research into targeting pannexin-1 in ADPKD pathology.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Masculino , Feminino , Humanos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Probenecid/uso terapêutico , Modelos Animais de Doenças , Rim/metabolismo , Progressão da Doença , Trifosfato de Adenosina/metabolismo , Cistos/metabolismo , Cistos/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/farmacologia
10.
Biol Pharm Bull ; 46(2): 170-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724945

RESUMO

Uricosuric agents lower serum uric acid levels by increasing urinary excretion via inhibition of urate transporter 1 (URAT1), urate reabsorption transporter in the renal proximal tubules. Probenecid and benzbromarone have been used as uricosurics, but these drugs inhibit organic anion transporters (OATs) in addition to URAT1. In this study, we investigated whether uricosuric agents interacted with adefovir, known as a substrate for OAT1, using Sprague-Dawley (SD) rats. Furthermore, involvement of other transporters, multi-drug resistance protein 2 (MRP2) in this interaction was examined using Mrp2-deficient rats. Probenecid and lesinurad increased plasma adefovir concentrations and decreased kidney-to-plasma partition coefficient (Kp) in these rats, presumably by inhibiting Oat1. Although benzbromarone had no effect on plasma adefovir concentration, it increased the Kp to 141% in SD rats. Since this effect was abolished in Mrp2-deficient rats, together with the MRP2 inhibition study, it is suggested that benzbromarone inhibits Mrp2-mediated adefovir excretion from the kidney. In contrast, dotinurad, a novel uricosuric agent that selectively inhibits URAT1, had no effect on the plasma and kidney concentrations of adefovir. Therefore, due to the lack of interaction with adefovir, dotinurad is expected to have low drug-drug interaction risk mediated by OAT1, and also by MRP2.


Assuntos
Transportadores de Ânions Orgânicos , Uricosúricos , Ratos , Animais , Uricosúricos/farmacologia , Benzobromarona , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Úrico , Ratos Sprague-Dawley , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
11.
J Neuroinflammation ; 19(1): 244, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195881

RESUMO

BACKGROUND: Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS: A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS: CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION: In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.


Assuntos
Carbenoxolona , Neuralgia , Trifosfato de Adenosina/farmacologia , Animais , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Conexinas/genética , Conexinas/metabolismo , Citocinas/metabolismo , Etídio/metabolismo , Etídio/farmacologia , Etídio/uso terapêutico , Hiperalgesia/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , RNA Interferente Pequeno/metabolismo , Células de Schwann
12.
Mol Vis ; 28: 245-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284672

RESUMO

Purpose: Purinergic signaling pathways activated by extracellular ATP have been implicated in the regulation of lens volume and transparency. In this study, we investigated the location of ATP release from whole rat lenses and the mechanism by which osmotic challenge alters such ATP release. Methods: Three-week-old rat lenses were cultured for 1 h in isotonic artificial aqueous humor (AAH) with no extracellular Ca2+, hypotonic AAH, or hypertonic AAH. The hypotonic AAH-treated lenses were also cultured in the absence or presence of connexin hemichannels and the pannexin channel blockers carbenoxolone, probenecid, and flufenamic acid. The ATP concentration in the AAH was determined using a Luciferin/luciferase bioluminescence assay. To visualize sites of ATP release induced by hemichannel and/or pannexin opening, the lenses were cultured in different AAH solutions, as described above, and incubated in the presence of Lucifer yellow (MW = 456 Da) and Texas red-dextran (MW = 10 kDa) for 1 h. Then the lenses were fixed, cryosectioned, and imaged using confocal microscopy to visualize areas of dye uptake from the extracellular space. Results: The incubation of the rat lenses in the AAH that lacked Ca2+ induced a significant increase in the extracellular ATP concentration. This was associated with an increased uptake of Lucifer yellow but not of Texas red-dextran in a discrete region of the outer cortex of the lens. Hypotonic stress caused a similar increase in ATP release and an increase in the uptake of Lucifer yellow in the outer cortex, which was significantly reduced by probenecid but not by carbenoxolone or flufenamic acid. Conclusions: Our data suggest that in response to hypotonic stress, the intact rat lens is capable of releasing ATP. This seems to be mediated via the opening of pannexin channels in a specific zone of the outer cortex of the lens. Our results support the growing evidence that the lens actively regulates its volume and therefore, its optical properties, via puerinergic signaling pathways.


Assuntos
Carbenoxolona , Probenecid , Ratos , Animais , Probenecid/farmacologia , Carbenoxolona/farmacologia , Ácido Flufenâmico , Dextranos , Conexinas/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Life Sci ; 308: 120933, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075473

RESUMO

Renal ischemia/reperfusion injury (RI/RI) is one of the main driving causes of acute kidney injury. However, effective treatment to limit injury and promote recovery and/or survival is still unavailable. Probenecid (PBN), a drug indicated for refractory gout, exhibits protective activities against several preclinical diseases including cerebral and myocardial I/RI via Pannexin 1 (Panx1) and P2X7 receptors' (P2X7R) inhibition. However, its protective role against RI/RI has not been previously addressed. Accordingly, we subjected rats to bilateral RI/RI with/or without PBN treatment. Twenty-four hours post-reperfusion, PBN showed mild tubular injury and reduced serum nephrotoxicity indices, gene and protein expression levels of Panx 1 and P2X7R, and ATP and pro-inflammatory cytokines' levels. The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome signaling was also downregulated, as demonstrated by reduced gene and protein expression of NLRP3 and caspase-1, along with suppressed IL-1ß maturation. Furthermore, PBN enhanced Tregs activity as indicated by elevated FoxP3 gene expression, IL-10, and TGF-ß renal levels. On day 5 post-reperfusion, PBN noticeably enhanced renal recovery, as demonstrated by intact tubular epithelium and restored nephrotoxicity indices, Panx 1 and P2X7R gene and protein expression levels, ATP and pro-inflammatory cytokine levels, and NLRP3 inflammasome signaling. Besides, renal Tregs activity was also significantly increased. Our study elaborates for the first time the effectiveness of PBN in recovering post-ischemic renal injury through synergistic inhibition in Panx1/P2X7R axis leading to inactivation of NLRP3 inflammasome signaling and activation of Tregs in ischemic renal tissues. Therefore, PBN can be considered a promising drug for RI/RI treatment.


Assuntos
Inflamassomos , Traumatismo por Reperfusão , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Conexinas/metabolismo , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamassomos/metabolismo , Interleucina-10/metabolismo , Isquemia , Rim/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleotídeos/metabolismo , Probenecid/farmacologia , Ratos , Receptores Purinérgicos P2X7 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563213

RESUMO

The channel protein Panx-1 is involved in some pathologies, such as epilepsy, ischemic stroke, cancer and Parkinson's disease, as well as in neuropathic pain. These observations make Panx-1 an interesting biological target. We previously published some potent indole derivatives as Panx-1 blockers, and as continuation of the research in this field we report here the studies on additional chemical scaffolds, naphthalene and pyrazole, appropriately substituted with those functions that gave the best results as in our indole series (sulphonamide functions and one/two carboxylic groups) and in Panx-1 blockers reported in the literature (sulphonic acid). Compounds 4 and 13, the latter being an analogue of the drug Probenecid, are the most potent Panx-1 blockers obtained in this study, with I = 97% and I = 93.7% at 50 µM, respectively. Both compounds, tested in a mouse model of oxaliplatin-induced neuropathic pain, showed a similar anti-hypersensitivity profile and are able to significantly increase the mouse pain threshold 45 min after the injection of the doses of 1 nmol and 3 nmol. Finally, the molecular dynamic studies and the PCA analysis have made it possible to identify a discriminating factor able to separate active compounds from inactive ones.


Assuntos
Conexinas , Neuralgia , Animais , Conexinas/metabolismo , Indóis , Camundongos , Simulação de Dinâmica Molecular , Neuralgia/tratamento farmacológico , Probenecid/farmacologia
15.
Clin Pharmacol Ther ; 112(3): 653-664, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490380

RESUMO

Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.


Assuntos
Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Animais , Ânions/metabolismo , Ânions/farmacologia , Humanos , Rim/metabolismo , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Probenecid/farmacologia
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 543-548, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37088767

RESUMO

OBJECTIVE: To investigate whether probenecid (PROB) could improve the proliferation and migration ability of rats' pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB). METHODS: Primary pulmonary artery smooth muscle cells (PASMCs) of SD rats were cultured in vitro, and were randomly divided into control group (CON group), PDGF-BB group (10 ng/ml PDGF-BB treatment for 24 h) and PDGF-BB+PROB group (10 ng/ml PDGF-BB and 200 µmol/L PROB treatment for 24 h, PROB is a specific blocker of pannexin-1). CCK-8 method was used to select the suitable intervention concentrations of PROB and PDGF-BB, and to detect the proliferation of PASMCs in each group. The migration ability of PASMCs was detected by TranswellTM assay and cell scratch test. Immunofluorescence cytochemistry and Western blot were used to detect the protein expressions and distribution of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) in PASMCs. RESULTS: Compared with CON group, the migration and proliferation ability of PASMCs in PDGF-BB group were enhanced (P<0.05). After treated with PROB, the migration and proliferation ability of PASMCs in PDGF-BB+PROB group were decreased significantly (P<0.05). Compared with CON group, the expression and protein levels of OPN and PCNA in PDGF-BB group were increased significantly (P<0.05), while the expression and protein levels of OPN and PCNA in PDGF-BB+PROB were decreased significantly (P<0.05). CONCLUSION: Probenecid inhibits the migration and proliferation of PDGF-BB-induced PASMCs by blocking Pannexin-1.


Assuntos
Probenecid , Artéria Pulmonar , Ratos , Animais , Becaplermina/metabolismo , Becaplermina/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proliferação de Células , Ratos Sprague-Dawley , Miócitos de Músculo Liso , Células Cultivadas
17.
Oxid Med Cell Longev ; 2022: 1837278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589679

RESUMO

A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson's disease (PD). However, its effectiveness and mechanism are still unknown. This study intends to evaluate plumbagin's effectiveness against PD in vitro and in vivo. Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1ß mRNA expression in PD mice induced by MPTP or MPTP/probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling pathway, is a promising treatment agent for treating Parkinson's disease (PD). However, to confirm plumbagin's anti-PD action more thoroughly, other animal and cell PD models must be used in future studies.


Assuntos
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Neuroblastoma/metabolismo , Transdução de Sinais , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Naftoquinonas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Modelos Animais de Doenças
18.
Sci Rep ; 11(1): 18085, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508172

RESUMO

Effective vaccines are slowing the COVID-19 pandemic, but SARS-CoV-2 will likely remain an issue in the future making it important to have therapeutics to treat patients. There are few options for treating patients with COVID-19. We show probenecid potently blocks SARS-CoV-2 replication in mammalian cells and virus replication in a hamster model. Furthermore, we demonstrate that plasma concentrations up to 50-fold higher than the protein binding adjusted IC90 value are achievable for 24 h following a single oral dose. These data support the potential clinical utility of probenecid to control SARS-CoV-2 infection in humans.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Probenecid/farmacologia , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Pulmão/virologia , Células Vero
19.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34117866

RESUMO

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Superfície Celular/metabolismo , Adolescente , Adulto , Idoso , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Estudos de Casos e Controles , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamassomos/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais , Sus scrofa , Células THP-1 , Função Ventricular Esquerda , Adulto Jovem
20.
Cancer Chemother Pharmacol ; 88(4): 607-617, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129075

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor in children. Interference with the polyamine biosynthesis pathway by inhibition of MYCN-activated ornithine decarboxylase (ODC) is a validated approach. The ODC inhibitor α-difluoromethylornithine (DFMO, or Eflornithine) has been FDA-approved for the treatment of trypanosomiasis and hirsutism and has advanced to clinical cancer trials including NB as well as cancer-unrelated human diseases. One key challenge of DFMO is its rapid renal clearance and the need for high and frequent drug dosing during treatment. METHODS: We performed in vivo pharmacokinetic (PK), antitumorigenic, and molecular studies with DFMO/probenecid using NB patient-derived xenografts (PDX) in mice. We used LC-MS/MS, HPLC, and immunoblotting to analyze blood, brain tissue, and PDX tumor tissue samples collected from mice. RESULTS: The organic anion transport 1/3 (OAT 1/3) inhibitor probenecid reduces the renal clearance of DFMO and significantly increases the antitumor activity of DFMO in PDX of NB (P < 0.02). Excised tumors revealed that DFMO/probenecid treatment decreases polyamines putrescine and spermidine, reduces MYCN protein levels and dephosphorylates retinoblastoma (Rb) protein (p-RbSer795), suggesting DFMO/probenecid-induced cell cycle arrest. CONCLUSION: Addition of probenecid as an adjuvant to DFMO therapy may be suitable to decrease overall dose and improve drug efficacy in vivo.


Assuntos
Antineoplásicos/farmacologia , Eflornitina/farmacologia , Neuroblastoma/tratamento farmacológico , Probenecid/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida , Eflornitina/administração & dosagem , Eflornitina/farmacocinética , Feminino , Humanos , Rim/metabolismo , Camundongos , Camundongos Nus , Neuroblastoma/patologia , Inibidores da Ornitina Descarboxilase/administração & dosagem , Inibidores da Ornitina Descarboxilase/farmacocinética , Inibidores da Ornitina Descarboxilase/farmacologia , Probenecid/administração & dosagem , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA