Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 132094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705318

RESUMO

This work presents a magnetic purification method of human erythrocyte Acetylcholinesterase (EC 3.1.1.7; AChE) based on affinity binding to procainamide (Proca) as ligand. Acetylcholinesterase is an acetylcholine-regulating enzyme found in different areas of the body and associated with various neurological disorders, such as Parkinson, Alzheymer and Amyotrophic Lateral Sclerosis. AChE from human erythrocyte purification has been attempted in recent years with low degree of purity. Here, magnetic nanoparticles (MNP) were synthesized and coated with polyaniline (PANI) and procainamide (PROCA) was covalently linked to the PANI. The extracted human erythrocyte AChE formed a complex with the MNP@PANI-PROCA and an external magnet separated it from the undesired proteins. Finally, the enzyme was collected by increasing the ionic strength. Experimental Box-Behnken design was developed to optimize this process of human erythrocyte AChE purification protocol. The enzyme was purified in all fifteen experiments. However, the best AChE purification result was achieved, about 2000 times purified, when 100 mg of MNP@PANI-PROCA was incubated for one hour with 4 ml hemolysate extract. The SDS-PAGE of this preparation presented a molecular weight of approximately 70 kDa, corroborating with few previous studies of AChE from erythrocyte purification.


Assuntos
Acetilcolinesterase , Eritrócitos , Nanopartículas de Magnetita , Procainamida , Humanos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/isolamento & purificação , Eritrócitos/enzimologia , Nanopartículas de Magnetita/química , Procainamida/química , Compostos de Anilina/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36493594

RESUMO

BACKGROUND: N-glycans in glycoproteins can affect physicochemical properties of proteins; however, some reported N-glycan structures are inconsistent depending on the type of glycoprotein or the preparation methods. OBJECTIVE: To obtain consistent results for qualitative and quantitative analyses of N-glycans, N-glycans obtained by different preparation methods were compared for two types of mammalian glycoproteins. METHODS: N-glycans are released by peptide-N-glycosidase F (PF) or A (PA) from two model mammalian glycoproteins, bovine fetuin (with three glycosylation sites) and human IgG (with a single glycosylation site), and labeled with a fluorescent tag [2-aminobenzamide (AB) or procainamide (ProA)]. The structure and quantity of each N-glycan were determined using UPLC and LC-MS/MS. RESULTS: The 21 N-glycans in fetuin and another 21 N-glycans in IgG by either PF-ProA or PA-ProA were identified using LC-MS/MS. The N-glycans in fetuin (8-13 N-glycans were previously reported) and in IgG (19 N-glycans were previously reported), which could not be identified by using the widely used PF-AB, were all identified by using PF-ProA or PA-ProA. The quantities (%) of the N-glycans (>0.1 %) relative to the total amount of N-glycans (100 %) obtained by AB- and ProA-labeling using LC-MS/MS had a similar tendency. However, the absolute quantities (pmol) of the N-glycans estimated using UPLC and LC-MS/MS were more efficiently determined with ProA-labeling than with AB-labeling. Thus, PF-ProA or PA-ProA allows for more effective identification and quantification of N-glycans than PF-AB in glycoprotein, particularly bovine fetuin. This study is the first comparative analysis for the identification and relative and absolute quantification of N-glycans in glycoproteins with PF-ProA and PA-ProA using UPLC and LC-MS/MS.


Assuntos
Procainamida , Espectrometria de Massas em Tandem , Animais , Bovinos , Humanos , Cromatografia Líquida/métodos , Glicoproteínas/química , Imunoglobulina G/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Peptídeos , Polissacarídeos/química , Procainamida/análise , Procainamida/química , Espectrometria de Massas em Tandem/métodos
3.
Anal Bioanal Chem ; 410(1): 131-143, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098336

RESUMO

Glycosaminoglycans (GAGs) are a family of linear heteropolysaccharides made up of repeating disaccharide units that are found on the surface and extracellular matrix of animal cells. They are known to play a critical role in a wide range of cellular processes including proliferation, differentiation and invasion. To elucidate the mechanism of action of these molecules, it is essential to quantify their disaccharide composition. Analytical methods that have been reported involve either chemical or enzymatic depolymerisation of GAGs followed by separation of non-derivatised (native) or derivatised disaccharide subunits and detection by either UV/fluorescence or MS. However, the measurement of these disaccharides is challenging due to their hydrophilic and labile nature. Here we report a pre-column LC-MS method for the quantification of GAG disaccharide subunits. Heparan sulphate (HS) was extracted from cell lines using a combination of molecular weight cutoff and anion exchange spin filters and digested using a mixture of heparinases I, II and III. The resulting subunits were derivatised with procainamide, separated using hydrophilic interaction liquid chromatography and detected using electrospray ionisation operated in positive ion mode. Eight HS disaccharides were separated and detected together with an internal standard. The limit of detection was found to be in the range 0.6-4.9 ng/mL. Analysis of HS extracted from all cell lines tested in this study revealed a significant variation in their composition with the most abundant disaccharide being the non-sulphated ∆UA-GlcNAc. Some structural functional relationships are discussed demonstrating the viability of the pre-column method for studying GAG biology. Graphical abstract Extraction and HILIC UPLC-MS analysis of procainamide-labelled heparan sulphate disaccharides.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dissacarídeos/análise , Glicosaminoglicanos/química , Heparitina Sulfato/análise , Procainamida/química , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos
4.
Mol Pharm ; 13(6): 2126-35, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112518

RESUMO

To improve the anticolitic efficacy of 5-aminosalicylic acid (5-ASA), a colon-specific mutual prodrug of 5-ASA was designed. 5-ASA was coupled to procainamide (PA), a local anesthetic, via an azo bond to prepare 5-(4-{[2-(diethylamino)ethyl]carbamoyl}phenylazo)salicylic acid (5-ASA-azo-PA). 5-ASA-azo-PA was cleaved to 5-ASA and PA up to about 76% at 10 h in the cecal contents while remaining stable in the small intestinal contents. Oral gavage of 5-ASA-azo-PA and sulfasalazine, a colon-specific prodrug currently used in clinic, to rats showed similar efficiency in delivery of 5-ASA to the large intestine, and PA was not detectable in the blood after 5-ASA-azo-PA administration. Oral gavage of 5-ASA-azo-PA alleviated 2,4,6-trinitrobenzenesulfonic acid-induced rat colitis. Moreover, combined intracolonic treatment with 5-ASA and PA elicited an additive ameliorative effect. Furthermore, combined treatment with 5-ASA and PA additively inhibited nuclear factor-kappaB (NFκB) activity in human colon carcinoma cells and inflamed colonic tissues. Finally, 5-ASA-azo-PA administered orally was able to reduce inflammatory mediators, NFκB target gene products, in the inflamed colon. 5-ASA-azo-PA may be a colon-specific mutual prodrug acting against colitis, and the mutual anticolitic effects occurred at least partly through the cooperative inhibition of NFκB activity.


Assuntos
Compostos Azo/farmacologia , Colite/tratamento farmacológico , Mesalamina/farmacologia , NF-kappa B/metabolismo , Procainamida/farmacologia , Pró-Fármacos/farmacologia , Animais , Compostos Azo/química , Colo/efeitos dos fármacos , Masculino , Mesalamina/química , Procainamida/química , Pró-Fármacos/química , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/química , Ácido Trinitrobenzenossulfônico/farmacologia
5.
J Biomater Sci Polym Ed ; 24(10): 1260-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23713427

RESUMO

Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 µg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 µg/ml, while free PH exerted the same activity at 100 µg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 µg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Anidridos Maleicos/química , Polímeros/química , Procainamida/química , Inibidores da Angiogênese/síntese química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos
6.
Bioorg Med Chem Lett ; 22(16): 5288-92, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796183

RESUMO

Malignant melanoma displays a highly aggressive metastasis. Thus, early diagnosis of malignant melanoma is important for patient survival. We designed and synthesized a novel (68)Ga-labeled benzamide derivative that specifically binds to melanoma as demonstrated by its ability to bind to melanin. (68)Ga-SCN-DOTA-PCA was synthesized with a radiochemical yield of ~80% and a radiochemical purity of >97% by analytical HPLC. The in vitro binding of (68)Ga-SCN-DOTA-PCA to melanin and its cellular uptake demonstrated the selective uptake in melanin. In addition, the biodistribution and micro-PET imaging of (68)Ga-SCN-DOTA-PCA in B16F10 tumor models showed the specific accumulation in melanoma. These results suggest that (68)Ga-SCN-DOTA-PCA would be a promising agent for melanoma diagnosis.


Assuntos
Benzamidas/química , Compostos Heterocíclicos com 1 Anel/química , Melanoma Experimental/diagnóstico por imagem , Compostos Radiofarmacêuticos/síntese química , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Meia-Vida , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Procainamida/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Transplante Homólogo
7.
Chembiochem ; 13(1): 157-65, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22170584

RESUMO

DNA methyltransferases (DNMTs) are responsible for DNA methylation, an epigenetic modification involved in gene regulation. Families of conjugates of procainamide, an inhibitor of DNMT1, were conceived and produced by rapid synthetic pathways. Six compounds resulted in potent inhibitors of the murine catalytic Dnmt3A/3L complex and of human DNMT1, at least 50 times greater than that of the parent compounds. The inhibitors showed selectivity for C5 DNA methyltransferases. The cytotoxicity of the inhibitors was validated on two tumour cell lines (DU145 and HCT116) and correlated with the DNMT inhibitory potency. The inhibition potency of procainamide conjugated to phthalimide through alkyl linkers depended on the length of the linker; the dodecane linker was the best.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Procainamida/análogos & derivados , Procainamida/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
Chem Res Toxicol ; 24(7): 1031-9, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21671642

RESUMO

Aromatic amine drugs like aminoglutethimide (AG) and related congeners have been shown to produce phenyl radicals through metabolism by myeloperoxidase (MPO)/H(2)O(2), which has been proposed to play a role in drug-induced agranulocytosis. AG has also been shown to induce MPO protein radical formation, but the ultimate fate of these metabolically generated phenyl radicals is still unknown. We tested the reactivity of linoleic acid (LA) and GSH with aniline-based compounds in the presence of horseradish peroxidase (HRP)/H(2)O(2) by measuring oxygen consumption. We found a qualitative correlation between drugs or xenobiotics that formed phenyl radical metabolites with the cooxidation of LA. Most compounds that reacted with LA did not react with GSH. Furthermore, an AG-derived phenyl radical was detected by EPR spin-trapping with MNP (2-methyl-2-nitrosopropane), in a reaction containing AG and HRP/H(2)O(2); these spectra were attenuated in the presence of LA and docosahexaenoic acid (DHA) indicating that phenyl radical scavenging occurred. Since it has been proposed that the phenyl radical metabolite leads to protein radical formation on MPO, we investigated the effect of LA and DHA in immuno-spin trapping experiments with MPO-containing HL-60 cell lysate. Using anti-DMPO, a protein radical was detected on a putative MPO fragment from the reaction of DMPO, AG, and glucose/glucose oxidase. When LA or DHA was included in this reaction, protein radical formation was significantly inhibited. Our results show that certain polyunsaturated fatty acids (PUFAs) act as scavengers of aromatic amine drug-derived phenyl radicals which in turn prevent protein radical formation. However, the interaction of phenyl radical drug metabolites with PUFAs will be dictated by their relative concentrations compared to those of other targets. Most importantly, it is possible to differentiate peroxidase substrates that generate phenyl radical metabolites from N-centered radicals on the basis of their reactivity toward GSH vs PUFAs, and PUFAs are targets for metabolically generated phenyl radicals.


Assuntos
Sequestradores de Radicais Livres/química , Radicais Livres/metabolismo , Glutationa/metabolismo , Ácido Linoleico/química , Preparações Farmacêuticas/química , Aminas/química , Catálise , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Peróxido de Hidrogênio/química , Consumo de Oxigênio , Procainamida/química , Xenobióticos/química
9.
Chem Res Toxicol ; 21(5): 1143-53, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18489081

RESUMO

Procainamide (PA) is a drug that is used to treat tachycardia in postoperative patients or for long-term maintenance of cardiac arrythmias. Unfortunately, its use has also been associated with agranulocytosis. Here, we have investigated the metabolism of PA by myeloperoxidase (MPO) and the formation of an MPO protein free radical. We hypothesized that PA oxidation by MPO/H 2O 2 would produce a PA cation radical that, in the absence of a biochemical reductant, would lead to the free radical oxidation of MPO. We utilized a novel anti-DMPO antibody to detect DMPO (5,5-dimethyl-1-pyrroline N-oxide) covalently bound to protein, which forms by the reaction of DMPO with a protein free radical. We found that PA metabolism by MPO/H 2O 2 induced the formation of DMPO-MPO, which was inhibited by MPO inhibitors and ascorbate. N-acetyl-PA did not cause DMPO-MPO formation, indicating that the unsubstituted aromatic amine was more oxidizable. PA had a lower calculated ionization potential than N-acetyl-PA. The DMPO adducts of MPO metabolism, as analyzed by electron spin resonance spectroscopy, included a nitrogen-centered radical and a phenyl radical derived from PA, either of which may be involved in the free radical formation on MPO. Furthermore, we also found protein-DMPO adducts in MPO-containing, intact human promyelocytic leukemia cells (HL-60). MPO was affinity-purified from HL-60 cells treated with PA/H 2O 2 and was found to contain DMPO using the anti-DMPO antibody. Mass spectrometry analysis confirmed the identity of the protein as human MPO. These findings were also supported by the detection of protein free radicals with electron spin resonance in the cellular cytosolic lysate. The formation of an MPO protein free radical is believed to be mediated by free radical metabolites of PA, which we characterized by spin trapping. We propose that drug-induced free radical formation on MPO may play a role in the origin of agranulocytosis.


Assuntos
Radicais Livres/metabolismo , Granulócitos/patologia , Peroxidase/metabolismo , Procainamida/farmacologia , Acecainida/química , Acecainida/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Humanos , Peróxido de Hidrogênio/farmacologia , Íons/química , Espectrometria de Massas , Estrutura Molecular , Peroxidase/antagonistas & inibidores , Procainamida/química , Procainamida/metabolismo
10.
Chem Res Toxicol ; 18(9): 1384-94, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16167830

RESUMO

Covalent binding of drug reactive metabolites to neutrophils or their precursors is thought to play a role in the development of drug-induced agranulocytosis. In this study, we used immunochemical techniques to compare the covalent binding of clozapine, vesnarinone, and procainamide (three drugs associated with agranulocytosis) to phorbol-12,13-myristate acetate (PMA)-activated human neutrophils in vitro and rat tissues in vivo. In PMA-activated human neutrophils in vitro, clozapine and procainamide modified neutrophil proteins with molecular masses ranging from 30 to 200 kDa, while vesnarinone predominately formed adducts with molecular masses greater than 70 kDa. All three drugs formed adducts at 126, 98, and 58 kDa, and they all covalently bound to human myeloperoxidase when incubated with this enzyme and H2O2 in vitro. Covalent binding to PMA-activated neutrophils was inhibited by nucleophiles, such as glutathione and N-acetylcysteine, but not by N-acetyllysine. In the presence of the PMA, all three drugs covalently bound to activated rat bone marrow cells in vitro, while in its absence only clozapine did. Covalently modified liver proteins were observed in rats treated for 6 weeks with clozapine (25 or 50 mg/kg/day), vesnarinone (300 mg/kg/day), or procainamide (50 mg/kg/day). Clozapine extensively modified proteins in all subcellular fractions; procainamide formed a 99 kDa adduct in a membrane-containing fraction and 57, 47, and 36 kDa adducts in a cytosolic fraction, while vesnarinone formed liver-protein adducts with molecular masses of 82, 62, 49, and 40 kDa in membrane, cytosolic, and S9 fractions. In addition, clozapine and procainamide, but not vesnarinone, formed a 49 kDa drug-protein adduct in the bone marrow of treated rats. Furthermore, procainamide covalently bound to a 58 kDa protein in neutrophils of a patient treated with the drug. We suspect that covalent modification of common targets in the neutrophils by these three drugs plays a role in the development of drug-induced agranulocytosis.


Assuntos
Clozapina/metabolismo , Neutrófilos/metabolismo , Procainamida/metabolismo , Quinolinas/metabolismo , Animais , Medula Óssea/metabolismo , Clozapina/química , Feminino , Hemocianinas/imunologia , Humanos , Soros Imunes/imunologia , Estrutura Molecular , Peso Molecular , Ésteres de Forbol/farmacologia , Procainamida/química , Procainamida/imunologia , Pirazinas , Quinolinas/química , Ratos , Temperatura
11.
Biochem Biophys Res Commun ; 301(1): 204-11, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12535663

RESUMO

In this study we use the N-substituted benzamides declopramide (3-CPA) and N-acetyl declopramide (Na-3-CPA) to investigate the involvement of the transcription factor NF-kappaB in the induction of apoptosis and surface immunoglobulin kappa (Igkappa) expression in the mouse pre-B cell line 70Z/3. We first showed that 3-CPA-induced apoptosis at doses around 500 microM and that the 3-CPA-induced apoptosis could be suppressed by over-expression of the Bcl-2 protein. Na-3-CPA was shown to be non-apoptotic at doses up to 1-2 mM. On the other hand, Na-3-CPA inhibited LPS-induced Igkappa expression while 3-CPA had no effect. Further analysis showed that while 3-CPA inhibited breakdown of IkappaBalpha, Na-3-CPA inhibited breakdown of IkappaBbeta. In addition, we used a 70Z/3 cell line expressing a dominant negative IkappaBalpha (70Z/3(deltaNIkappaBalpha)). The 70Z/3(deltaNIkappaBalpha) cell line was shown to be more sensitive to apoptosis and cytotoxicity induced by 3-CPA as well as by LPS, probably due to a defect in NF-kappaB rescue mechanism. Taken together, our data implicate distinct roles for IkappaBalpha and IkappaBbeta in regulating various NF-kappaB activities.


Assuntos
Apoptose , Regulação da Expressão Gênica , Proteínas I-kappa B/metabolismo , Procainamida/análogos & derivados , Procainamida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos B/fisiologia , Linhagem Celular , Citometria de Fluxo , Proteínas I-kappa B/genética , Imunoglobulinas/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Estrutura Molecular , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Procainamida/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA