Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125963

RESUMO

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Assuntos
Complexos de Coordenação , Cobre , DNA , Simulação de Acoplamento Molecular , Prodigiosina , Soroalbumina Bovina , Zinco , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Cobre/química , Cobre/metabolismo , Zinco/metabolismo , Zinco/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Bovinos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação
2.
Pestic Biochem Physiol ; 202: 105951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879336

RESUMO

The abuse of chemical insecticides has led to strong resistance in cockroaches, and biopesticides with active ingredients based on insect pathogens have good development prospects; however, their slow effect has limited their practical application, and improving their effectiveness has become an urgent problem. In this study, the interaction between Serratia marcescens and Metarhizium anisopliae enhanced their virulence against Blattella germanica and exhibited a synergistic effect. The combination of S. marcescens and M. anisopliae caused more severe tissue damage and accelerated the proliferation of the insect pathogen. The results of high-throughput sequencing demonstrated that the gut microbiota was dysbiotic, the abundance of the opportunistic pathogen Weissella cibaria increased, and entry into the hemocoel accelerated the death of the German cockroaches. In addition, the combination of these two agents strongly downregulated the expression of Imd and Akirin in the IMD pathway and ultimately inhibited the expression of antimicrobial peptides (AMPs). S. marcescens released prodigiosin to disrupted the gut homeostasis and structure, M. anisopliae released destruxin to damaged crucial organs, opportunistic pathogen Weissella cibaria overproliferated, broke the gut epithelium and entered the hemocoel, leading to the death of pests. These findings will allow us to optimize the use of insect pathogens for the management of pests and produce more effective biopesticides.


Assuntos
Baratas , Microbioma Gastrointestinal , Metarhizium , Serratia marcescens , Animais , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Metarhizium/patogenicidade , Metarhizium/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Baratas/microbiologia , Prodigiosina/farmacologia , Micotoxinas/metabolismo , Blattellidae/microbiologia , Controle Biológico de Vetores/métodos , Virulência , Depsipeptídeos
3.
Mol Microbiol ; 122(1): 68-80, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845079

RESUMO

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Ferro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Prodigiosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homeostase , Metabolismo Secundário
4.
Eur J Pharmacol ; 974: 176608, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663542

RESUMO

Prodiginines have been studied extensively for their anticancer activity, however, the majority of the research has focused on prodigiosin. In this study, cycloheptylprodigiosin (S-1) is extracted from marine bacterium Spartinivicinus ruber MCCC 1K03745T, and its anticancer property was investigated. It exhibits remarkable cytotoxicity against a panel of human lung cancer cell lines, with the IC50 values ranging from 84.89 nM to 661.2 nM. After 6 h of treatment, S-1 gradually accumulates on mitochondria and lysosomes. While lower doses of S-1 induce cell cycle arrest, treatment with higher doses results in cell death in apoptotic independent manner in both NCI-H1299 and NCI-H460 cell lines. Interestingly, treatment with S-1 leads to the accumulation of LC3B-II via pathways that vary among different cell lines. In addition to its role as an autophagy inhibitor, S-1 also promotes autophagy initiation as demonstrated by the increment of EGFP fragment in the EGFP-LC3 degradation assay, however, inhibition of autophagy does not rescue cells from death induced by S-1. Mechanistically, S-1 impairs autophagic flux through disrupting acidic lysosomal pH and blocking the maturation of cathepsin D. Moreover, treatment with S-1 enhanced secretion of both pro- and mature forms of cathepsin D, coincident with disintegration of trans-Golgi network. Interestingly, S-1 does not induce ferroptosis, pyroptosis or necroptosis in NCI-H1299 cells. However, treatment of NCI-H460 cells with S-1 induces methuosis, which can be suppressed by Rac1 inhibitor EHT 1864. Our data demonstrate that S-1 is an effective anticancer agent with potential therapeutic application.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Catepsina D , Complexo de Golgi , Neoplasias Pulmonares , Prodigiosina , Humanos , Linhagem Celular Tumoral , Prodigiosina/farmacologia , Prodigiosina/análogos & derivados , Catepsina D/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antineoplásicos/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morte Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
5.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38278554

RESUMO

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Assuntos
Proteínas Serina-Treonina Quinases , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Polímeros/metabolismo , Pirróis , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fosforilação , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta1 , Proteína Smad2/metabolismo
6.
Sci Rep ; 14(1): 181, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168547

RESUMO

Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Zeína , Feminino , Humanos , Celecoxib/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Prodigiosina/farmacologia , Caseínas
7.
Arch Microbiol ; 206(1): 44, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151568

RESUMO

Prodigiosin is a red pigment commonly produced as a secondary metabolite by Serratia marcescens. It exhibits inherent bioactivities, including antimicrobial and anticancer, with low to no toxic effects on normal cells. The present study investigates a bioactive prodigiosin production from an atypical, red-pigmented, potentially novel Janthinobacterium sp. ERMR3:09 isolated from a glacial moraine. Statistically optimized culture parameters, i.e., w/v 1.0% glucose and 0.08% peptone as carbon and nitrogen sources, temperature 20 °C, and media pH 7, resulted in a four-fold increase in the pigment yield. The upscaled production in an 8 L volume resulted in higher pigment production within a shorter period of 48 h. The ultra-performance liquid chromatography (UPLC) analysis validated the identity of the purified pigment as prodigiosin that showed thermostability at 75 °C for 3 h. Evaluation of antimicrobial activity showed potent inhibitory effects (> 50%) against the opportunistic pathogenic fungal and Gram-positive bacterial strains. The pigment showed significant cytotoxicity (p < 0.05) towards A549 and HeLa cell lines with IC50 values of 42.2 µM and 36.11 µM, respectively. The study demonstrated that microbial communities from extreme niches can be ideal sources of bioactive pigments with immense pharmaceutical potential vital for the development of non-synthetic therapeutic agents.


Assuntos
Anti-Infecciosos , Prodigiosina , Humanos , Células HeLa , Serratia marcescens , Temperatura , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo
8.
Arch Microbiol ; 205(12): 364, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906317

RESUMO

Bacterial pigments represent a diverse group of secondary metabolites, which confer fitness advantages to the producers while residing in communities. The bioactive potential of such metabolites, including antimicrobial, anticancer, and immunomodulation, are being explored. Reckoning that a majority of such pigments are produced in response to quorum sensing (QS) mediated expression of biosynthetic gene clusters and, in turn, influence cell-cell communication, systemic profiling of the pigments for possible impact on QS appears crucial. A systemic screening of bacterial pigments for QS-inhibition combined with exploration of antibiofilm and antimicrobial action against Acinetobacter baumannii might offer viable alternatives to combat the priority pathogen. Major bacterial pigments are classified (clustered) based on their physicochemical properties, and representatives of the clusters are screened for QS inhibition. The screen highlighted prodigiosin as a potent quorum quencher, although its production from Serratia marcescens appeared to be QS-independent. In silico analysis indicated potential interactions between AbaI and AbaR, two major QS regulators in A. baumannii, and prodigiosin, which impaired biofilm formation, a major QS-dependent process in the bacteria. Prodigiosin augmented antibiotic action of ciprofloxacin against A. baumannii biofilms. Cell viability analysis revealed prodigiosin to be modestly cytotoxic against HEK293, a non-cancer human cell line. While developing dual-species biofilm, prodigiosin producer S. marcescens significantly impaired the fitness of A. baumannii. Enhanced susceptibility of A. baumannii toward colistin was also noted while growing in co-culture with S. marcescens. Antibiotic resistant isolates demonstrated varied responsiveness against prodigiosin, with two resistant strains demonstrating possible collateral sensitivity. Collectively, the results underpin the prospect of a prodigiosin-based therapeutic strategy in combating A. baumannii infection.


Assuntos
Acinetobacter baumannii , Percepção de Quorum , Humanos , Prodigiosina , Acinetobacter baumannii/metabolismo , Células HEK293 , Biofilmes , Serratia marcescens/metabolismo , Antibacterianos/metabolismo
9.
Cell Commun Signal ; 21(1): 275, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798768

RESUMO

BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.


Assuntos
Complexo de Golgi , Prodigiosina , Humanos , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Autofagossomos/metabolismo , Autofagia
10.
Antonie Van Leeuwenhoek ; 116(11): 1197-1208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728826

RESUMO

Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.


Assuntos
Prodigiosina , Serratia marcescens , Animais , Suínos , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Bases
11.
J Mater Sci Mater Med ; 34(8): 41, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530973

RESUMO

The paper presents the results of the experimental and analytical study of targeted drug-loaded polymer-based microspheres made from blend polymer of polylactic-co-glycolic acid and polycaprolactone (PLGA-PCL) for targeted and localized cancer drug delivery. In vitro sustained release with detailed thermodynamically driven drug release kinetics, over a period of three months using encapsulated targeted drugs (prodigiosin-EphA2 or paclitaxel-EphA2) and control drugs [Prodigiosin (PGS), and paclitaxel (PTX)] were studied. Results from in vitro study showed a sustained and localized drug release that is well-characterized by non-Fickian Korsmeyer-Peppas kinetics model over the range of temperatures of 37 °C (body temperature), 41 °C, and 44 °C (hyperthermic temperatures). The in vitro alamar blue, and flow cytometry assays in the presence of the different drug-loaded polymer formulations resulted to cell death and cytotoxicity that was evidence through cell inhibition and late apoptosis on triple negative breast cancer (TNBC) cells (MDA-MB 231). In vivo studies carried out on groups of 4-week-old athymic nude mice that were induced with subcutaneous TNBC, showed that the localized release of the EphA2-conjugated drugs was effective in complete elimination of residual tumor after local surgical resection. Finally, ex vivo histopathological analysis carried out on the euthanized mice revealed no cytotoxicity and absence of breast cancer metastases in the liver, kidney, and lungs 12 weeks after treatment. The implications of the results are then discussed for the development of encapsulated EphA2-conjugated drugs formulation in the specific targeting, localized, and sustain drug release for the elimination of local recurred TNBC tumors after surgical resection.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prodigiosina , Microesferas , Camundongos Nus , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Polímeros
12.
Bioorg Chem ; 138: 106618, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244231

RESUMO

Triple-Negative Breast Cancer (TNBC) is found to be one of the life-threatening cancer. Poly (ADP-Ribose) Polymerase-1 (PARP-1) is overexpressed by those tumour cells, which become resistant to chemotherapies. Inhibition of PARP-1 has a considerable effect on treating TNBC. Prodigiosin is a valuable pharmaceutical compound that exhibits anticancer properties. The present study aims to virtually evaluate prodigiosin as a potent PARP-1 inhibitor using Molecular docking and Molecular Dynamics (MD) simulation studies. The PASS (Prediction of Activity Spectra for Substances) prediction tool evaluated the biological properties of prodigiosin. Then the drug-likeness and pharmacokinetic properties of prodigiosin were determined using Swiss-ADME software. It was suggested that prodigiosin obeyed Lipinski's rule of five and thus could act as a drug with good pharmacokinetic properties. Moreover, molecular docking was done with AutoDock 4.2 to identify the critical amino acids of the protein-ligand complex. It was indicated that prodigiosin has a docking score of -8.08 kcal/mol, which showed its effective interaction with crucial amino acid, His201A of PARP-1 protein. Further, MD simulation was performed using Gromacs software to validate the stability of the prodigiosin-PARP-1 complex. Prodigiosin was found to have good structural stability and affinity at the active site of PARP-1 protein. Additionally, PCA and MM-PBSA were calculated for the prodigiosin-PARP-1 complex, which revealed that prodigiosin has an excellent binding affinity towards PARP-1 protein. Prodigiosin can possibly be used as oral drug due to its PARP-1 inhibition through high binding affinity, structural stability, and receptor flexibility towards crucial amino acid residue His201A of PARP-1 protein. In-addition, in-vitro cytotoxicity, and apoptosis analysis of prodigiosin-treated TNBC cell line-MDA-MB-231 revealed that prodigiosin exhibited significant anticancer activity in 101.1 µg/mL concentration, when compared to commercially available synthetic drug cisplatin. Thus, prodigiosin could act as a potential candidate for treatment of TNBC than the commercially available synthetic drugs.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerase-1 , Neoplasias de Mama Triplo Negativas/metabolismo , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/química
13.
J Physiol Pharmacol ; 74(1)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37245232

RESUMO

Prodigiosin (PRO) is a natural pigment that possesses multiple activities, covering anti-tumor, anti-bacteria, and immunosuppression. This study is committed to an investigation into the underlying function and the certain mechanism of PRO in acute lung damage followed by rheumatoid arthritis (RA). Cecal ligation and puncture (CLP) method was implemented to trigger a rat lung injury model, and a rat RA model was constructed with the help of rheumatoid arthritis induced by collagen. Prodigiosin was administered to intervene in the rats' lung tissues post-treatment. The expressions of pro-inflammatory cytokines (interleukin-1beta, interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 were determined. Western blot was carried out to detect anti-surfactant protein A (SPA), anti-surfactant protein D (SPD), apoptosis-concerned proteins (Bax, cleaved-caspase-3, Bcl-2, and pro-caspase-3), the nuclear factor-kappaB (NF-κB)/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)/apoptosis-concerned speckle-like protein (ASC)/caspase-1 signaling pathway. The apoptosis of pulmonary epithelial tissues was checked via TUNEL assay, as corresponding kits were adopted to confirm the activity of lactate dehydrogenase (LDH) and the levels of oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Prodigiosin ameliorated the pathological damage of CLP rats. Prodigiosin alleviated the production of inflammatory and oxidative stress mediators. In the RA rats with acute lung injury, prodigiosin hampered apoptosis in the lung. Mechanistically, prodigiosin hinders the activation of the NF-κB/NLRP3 signaling axis. In conclusion: prodigiosin relieves acute lung injury in a rat model of rheumatoid arthritis by exerting anti-inflammatory and anti-oxidative effects through downregulating the NF-κB/NLRP3 signaling axis.


Assuntos
Lesão Pulmonar Aguda , Artrite Reumatoide , Ratos , Animais , NF-kappa B/metabolismo , Leucina , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínio Pirina , Transdução de Sinais , Lesão Pulmonar Aguda/tratamento farmacológico , Nucleotídeos
14.
Appl Biochem Biotechnol ; 195(12): 7236-7254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36988846

RESUMO

Prodigiosin (PG) is chemically formulated as 4-methoxy-5-[(5-methyl-4-pentyl-2H-pyrrol-2ylidene)methyl]-2,2'-bi-1H-pyrrole and it is an apoptotic agent. Only a few protein targets for PG have been identified so far for regulating various diseases; nevertheless, finding more PG targets is crucial for novel drug discovery research. A bioinformatics method was applied in this work to find additional potential PG targets. Initially, a text mining analysis was conducted to determine the relationship between PG and a variety of metabolic processes. One hundred sixteen proteins from the KEGG pathway were selected for the docking study. Inverse virtual screening was performed by Discovery Studio software 4.1 using CHARMm-based docking tool. Twelve proteins are screened out of 116 because their CDOCKER interaction energy is larger than - 40.22 kcal/mol. The best docking score with PG was reported to be - 44.25 kcal/mol, - 44.99 kcal/mol, and - 40.91 kcal/mol for three novel proteins, such as human epidermal growth factor-2 (HER-2), mitogen-activated protein kinase (MEK), and S6 kinase protein (S6K) respectively. The interactions in the S6K/PG complex are predominantly hydrophobic; however, hydrogen bond interactions can be identified in the MEK/PG and HER-2/PG complexes. The root-mean-square deviation (RMSD) and key interaction score system (KISS) were further used to validate the docking approach. The docking approach employed in this work has a low RMSD value (2.44 Å) and a high KISS score (0.5), indicating that it is significant.


Assuntos
Neoplasias , Prodigiosina , Humanos , Simulação de Acoplamento Molecular , Detecção Precoce de Câncer , Ligação Proteica , Fator de Crescimento Epidérmico , Quinases de Proteína Quinase Ativadas por Mitógeno , Simulação de Dinâmica Molecular
15.
Int Immunopharmacol ; 116: 109800, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780827

RESUMO

Prodigiosin (PG) is a secondary metabolite of microorganisms with anticancer, antimalarial, antibacterial and immunomodulatory effects. However, the modulatory effects on gut microbiome and intestinal immune microenvironment have never been explored in the ulcerative colitis (UC) mice model. In this study, 2.5% dextran sulfate sodium (DSS) induced UC mice model was constructed to investigate the effects of PG derived from a chromium-resistant Serratia sp. on the intestinal flora and inflammatory response. The results showed that prodigiosin administration attenuated the DSS-induced UC symptoms, including preventing the reduction of colonic length and DSS-induced mortality. Furthermore, prodigiosin ameliorated the DSS-induced gut microbiota community dysbiosis by restoring the abundance of Bacteroidota. At the genus level, the declined abundance of Bifidobacterium, Allobaculum and Akkermannia in UC mice was elevated by the treatment of PG. Pathological results by H&E staining showed that PG prevented the appearance of distortion and atrophy of crypt and neutrophil infiltration in a dose-dependent manner. RT-PCR revealed that the expression levels of the inflammatory factors IL-1ß, IL-6 and IL-10 were significantly suppressed, and the expression of the intestinal tight junction protein Claudin-1, Occludin and ZO-1 were upregulted in PG-treated UC mice. Conclusively, our results revealed that prodigiosin effectively prevented inflammatory response and protected intestinal barrier integrity of DSS-induced colitis mice via modulating gut microbiota community structure, suppressing inflammatory factors' expression, and accelerating the expression of intestinal tight junction protein. These results will provide new insights into the interaction of prodigiosin with intestinal microbiota homeostasis and its application in clinical against inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Prodigiosina/uso terapêutico , Sulfato de Dextrana/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Proteínas de Junções Íntimas/metabolismo , Homeostase , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768226

RESUMO

The quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The samples were produced in the form of films 115.6-118.8 µm in thickness using the solvent casting method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity and thermal stability) and functionality of the obtained biomaterials were investigated. PG has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and morphology of the films. All samples with PG had a more organized internal structure and higher melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively. Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon cancer) cells, thus advancing PHBV biomedical application potential.


Assuntos
Poliésteres , Poli-Hidroxialcanoatos , Poliésteres/química , Prodigiosina/farmacologia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
17.
Gene ; 857: 147178, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36627092

RESUMO

Janthinobacterium from cold niches has been studied broadly for bioactive violacein production. However, reports on the atypical red-pigmented Janthinobacterium strains are shallow. The bioactive red prodigiosin pigment has immense pharmacological significance, including antioxidant, antimicrobial and anticancer potential. Here, we report the first complete genome of a prodigiosin-producing Janthinobacterium sp. ERMR3:09 from Sikkim Himalaya in an attempt to elucidate its cold adaptation and prodigiosin biosynthesis. Nanopore sequencing and Flye assembly of the ERMR3:09 genome resulted in a single contig of 6,262,330 bp size and 62.26% GC content. Phylogenomic analysis and genome indices indicate that ERMR3:09 is a potentially novel species of the genus Janthinobacterium. The multicopy cold-responsive genes and gene upregulation under cold stress denoted its cold adaptation mechanisms. Genome analysis identified the unique genes, gene cluster and pathway for prodigiosin biosynthesis in ERMR3:09. Considering the notable antioxidant activity, it can be the next powerhouse of bioactive prodigiosin production.


Assuntos
Antioxidantes , Prodigiosina , Prodigiosina/farmacologia , Camada de Gelo , Genômica
18.
Environ Toxicol ; 38(2): 266-277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447373

RESUMO

Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Acetilcolinesterase/metabolismo , Cloreto de Alumínio/toxicidade , Cloreto de Alumínio/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Glutationa/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico
19.
Probiotics Antimicrob Proteins ; 15(5): 1271-1286, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030493

RESUMO

Lactobacillus acidophilus ghosts (LAGs) with the unique safety of a probiotic, inherent tropism for colon cells, and multiple bioactivities offer promise as drug carriers for colon targeting. Our objective was to evaluate LAGs functionalized with prodigiosin (PG), apoptotic secondary bacterial metabolite, as a bioinspired formulation against colorectal cancer (CRC). LAGs were prepared by a chemical method and highly purified by density gradient centrifugation. LAGs were characterized by microscopic and staining techniques as relatively small-sized uniform vesicles (≈1.6 µm), nearly devoid of cytoplasmic and genetic materials and having a negatively charged intact envelope. PG was highly bound to LAGs envelope, generating a physiologically stable bioactive entity (PG-LAGs), as verified by multiple microscopic techniques and lack of PG release under physiological conditions. PG-LAGs were active against HCT116 CRC cells at both the cellular and molecular levels. Cell viability data highlighted the cytotoxicity of PG and LAGs and LAGs-induced enhancement of PG selectivity for HCT116 cells, anticipating dose reduction for PG and LAGs. Molecularly, expression of the apoptotic caspase 3 and P53 biomarkers in HCT116 intracellular proteins was significantly upregulated while that of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) was downregulated by PG-LAGs relative to PG and 5-fluorouracil. PG-LAGs provide a novel bacteria-based combination for anticancer biomedicine.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Probióticos , Humanos , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico , Antineoplásicos/farmacologia , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia
20.
J Antibiot (Tokyo) ; 76(1): 14-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202988

RESUMO

The rph gene cluster for prodigiosin biosynthesis has been identified in Streptomyces griseoviridis 2464-S5, which produces cyclic prodigiosin derivatives including roseophilin (2), prodigiosin R1 (3) and prodigiosin R2 (4). A new cyclic prodigiosin, prodigiosin R3 (1), was produced by the redG redP double disruptant of Streptomyces coelicolor M511 expressing four cyclization gene candidates (rphG, rphG2, rphG3 and rphG4) in the rph cluster. The same compound was isolated from Streptomyces griseoviridis 2464-S5. The molecular formula of 1 was established as C27H33N3O by ESI and FAB mass spectrometry. The structure was determined to be a multicyclic prodigiosin with three alkyl linkages by NMR spectroscopic analysis. Prodigiosin R3 (1) showed cytotoxicity against HeLa human cervical carcinoma cells and HT1080 human fibrosarcoma cells with IC50s of 2.1 µM and 3.2 µM, respectively.


Assuntos
Streptomyces coelicolor , Streptomyces , Humanos , Ciclização , Família Multigênica , Prodigiosina , Streptomyces/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA