Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Rep ; 14(1): 9342, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653763

RESUMO

Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.


Assuntos
Cicer , Produtos Agrícolas , Germinação , Sementes , Cicer/crescimento & desenvolvimento , Cicer/efeitos dos fármacos , Cicer/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Germinação/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/metabolismo , Malondialdeído/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163530

RESUMO

Harvested water bamboo shoots can be stored for only a few days before they lose weight and become soft. Nitrogen oxide (NO) and modified atmosphere packaging (MAP) have previously been used to prolong horticultural crop storage. In the present study, we analyzed the joint effect of these two methods on extending the postharvest quality of water bamboo shoots. Water bamboo shoots were treated with (1) 30 µL L-1 NO, (2) MAP, and (3) a combination of NO and MAP. The NO treatment delayed the softness and weight loss through maintaining the integrity of the mitochondrial ultrastructure and enhancing the ATP level by activating the expressions and activities of succinic dehydrogenase, malic acid dehydrogenase, and cytochrome oxidase. MAP improved the effect of NO on the mitochondrial energy metabolism. These results indicate that NO and MAP treatments are effective at suppressing the quality deterioration of water bamboo shoots, MAP improves the effect of NO in extending postharvest life, and NO may be the main effective factor in the combination of NO and MAP.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/farmacologia , Poaceae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Succinato Desidrogenase/metabolismo
3.
BMC Plant Biol ; 22(1): 31, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027009

RESUMO

BACKGROUND AND OBJECTIVE: Salt stress is one of the most important abiotic stresses affecting the yield and quality of tobacco (Nicotiana tabacum). Thymol (a natural medicine) has been widely used in medical research because of its antibacterial and anti-inflammatory activities. However, the influence of thymol on the root growth of tobacco is not fully elucidated. In this study, the regulatory effects of different concentrations of thymol were investigated. METHODOLOGY: Here, histochemical staining and biochemical methods, non-invasive micro-test technology (NMT), and qPCR assay were performed to investigate the effect of thymol and mechanism of it improving salinity tolerance in tobacco seedlings. RESULTS: In this study, our results showed that thymol rescued root growth from salt stress by ameliorating ROS accumulation, lipid peroxidation, and cell death. Furthermore, thymol enhanced contents of NO and GSH to repress ROS accumulation, further protecting the stability of the cell membrane. And, thymol improved Na+ efflux and the expression of SOS1, HKT1, and NHX1, thus protecting the stability of Na+ and K+. CONCLUSION: Our study confirmed the protecting effect of thymol in tobacco under salt stress, and we also identified the mechanism of it, involving dynamic regulation of antioxidant system and the maintenance of Na+ homeostasis. It can be a new method to improve salinity tolerance in plants.


Assuntos
Glutationa/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Óxido Nítrico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Sódio/metabolismo , Timol/metabolismo , Timol/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Transporte de Íons/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nicotiana/efeitos dos fármacos
4.
PLoS One ; 16(12): e0260960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928963

RESUMO

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10-67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Assuntos
Brassica napus/fisiologia , Secas , Fertilizantes , Reguladores de Crescimento de Plantas/farmacologia , Brassica napus/química , Brassica napus/efeitos dos fármacos , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Estresse Fisiológico
5.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500803

RESUMO

This review considers potential approaches to solve an important problem concerning the impact of applied pesticides of various classes on living organisms, mainly agricultural crops used as food. We used the method of multi-residual determination of several pesticides in agricultural food products with its practical application for estimating pesticides in real products and in model experiments. The distribution of the pesticide between the components of the soil-plant system was studied with a pesticide of the sulfonylureas class, i.e., rimsulfuron. Autoradiography showed that rimsulfuron inhibits the development of plants considered as weeds. Cereals are less susceptible to the effects of pesticides such as acetamiprid, flumetsulam and florasulam, while the development of legume shoots was inhibited with subsequent plant death.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Praguicidas/farmacologia , Poluentes do Solo/farmacologia , Produtos Agrícolas/crescimento & desenvolvimento , Praguicidas/análise , Poluentes do Solo/análise
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209014

RESUMO

Elevated concentrations of heavy metals such as cadmium (Cd) have a negative impact on staple crop production due to their ability to elicit cytotoxic and genotoxic effects on plants. In order to understand the relationship between Cd stress and plants in an effort to improve Cd tolerance, studies have identified genetic mechanisms which could be important for conferring stress tolerance. In recent years epigenetic studies have garnered much attention and hold great potential in both improving the understanding of Cd stress in plants as well as revealing candidate mechanisms for future work. This review describes some of the main epigenetic mechanisms involved in Cd stress responses. We summarize recent literature and data pertaining to chromatin remodeling, DNA methylation, histone acetylation and miRNAs in order to understand the role these epigenetic traits play in cadmium tolerance. The review aims to provide the framework for future studies where these epigenetic traits may be used in plant breeding and molecular studies in order to improve Cd tolerance.


Assuntos
Cádmio/toxicidade , Produtos Agrícolas/crescimento & desenvolvimento , Resistência a Medicamentos , Epigênese Genética/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética
7.
Sci Rep ; 11(1): 12428, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127751

RESUMO

Sugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70-76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer's field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Controle de Pragas/métodos , Plantas Geneticamente Modificadas/genética , Saccharum/genética , Animais , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/parasitologia , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas/genética , Larva , Mariposas , Proteínas de Plantas/genética , Plantas Daninhas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/parasitologia , Saccharum/efeitos dos fármacos , Saccharum/parasitologia , Glifosato
8.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903235

RESUMO

Since the commercialization of transgenic glyphosate-tolerant (GT) crops in the mid-1990s, glyphosate has become the dominant herbicide to control weeds in corn, soybean, and other crops in the United States and elsewhere. However, recent public concerns over its potential carcinogenicity in humans have generated calls for glyphosate-restricting policies. Should a policy to restrict glyphosate use, such as a glyphosate tax, be implemented? The decision involves two types of tradeoffs: human health and environmental (HH-E) impacts versus market economic impacts, and the use of glyphosate versus alternative herbicides, where the alternatives potentially have more serious adverse HH-E effects. Accounting for farmers' weed management choices, we provide empirical evaluation of the HH-E welfare and market economic welfare effects of a glyphosate use restriction policy on US corn production. Under a glyphosate tax, farmers would substitute glyphosate for a combination of other herbicides. Should a 10% glyphosate tax be imposed, then the most conservative welfare estimate is a net HH-E welfare gain with a monetized value of US$6 million per annum but also a net market economic loss of US$98 million per annum in the United States, which translates into a net loss in social welfare. This result of overall welfare loss is robust to a wide range of tax rates considered, from 10 to 50%, and to multiple scenarios of glyphosate's HH-E effects, which are the primary sources of uncertainties about glyphosate's effects.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Zea mays/crescimento & desenvolvimento , Animais , Glicina/efeitos adversos , Glicina/economia , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Humanos , Plantas Daninhas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Estados Unidos , Controle de Plantas Daninhas/normas , Zea mays/efeitos dos fármacos , Glifosato
9.
Bioengineered ; 12(1): 527-539, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33535880

RESUMO

The effects of polyaspartic acid and different controlled-release fertilizers with urea on dry matter accumulation and distribution, nitrogen absorption and accumulation, and the activities of enzymes involved nitrogen metabolism and yield of corn were studied by using xianyu (XY688), a maize nitrogen efficient cultivar, and Jifeng NO.2 (JF2), a maize nitrogen-inefficient cultivar, as experimental materials and through random blocks experimental design in 2019. For XY688, polyaspartic acid chelated nitrogen fertilizer (PASPN) had the highest yield, which was 21.34% higher than N0 treatment. For JF2, it also had the highest yield under PASPN combined urea treatment, which was 23.44% higher than N0 (no nitrogen fertilizer), and JF2 had a 9.7% lower yield under XY688 treatment. For XY688, PASPN treatment had the largest nitrogen uptake in grain, up to 3.14 kg/hm2, and PASPN treatment increased 17.4% compared with N0. For JF2, grain nitrogen uptake was also the highest under PASPN treatment, which was significantly different from other treatments. Nitrogen uptake was 3.16 kg/hm2, which increased 37.4% compared with N0. Compared with JF2, XY688 showed higher nitrogen uptake efficiency, nitrogen utilization efficiency, and partial nitrogen productivity. For XY688, the highest nitrogen absorption efficiency was SU3 (slow-release urea and ordinary urea) treatment (0.36 kg/kg). The partial nitrogen productivity and harvest index of PASPN treatment were the highest and significantly different from other treatments. The partial nitrogen productivity of PASPN treatment was 57.02 kg/kg. These results can provide help for the further researches of the rational utilization and absorption of nitrogen fertilizer.


Assuntos
Fertilizantes , Nitrogênio/metabolismo , Peptídeos/farmacologia , Zea mays , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
10.
PLoS One ; 15(10): e0235526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33022005

RESUMO

Since broflanilide is a newly developed pesticide, analytical methods are required to determine the corresponding pesticide residues in diverse crops and foods. In this study, a pesticide residue analysis method was optimized for the detection and quantification of broflanilide and its two metabolites, DM-8007 and S(PFH-OH)-8007, in brown rice, soybean, apple, green pepper, mandarin, and kimchi cabbage. Residue samples were extracted from the produce using QuEChERS acetate and citrate buffering methods and were purified by dispersive solid-phase extraction (d-SPE) using six different adsorbent compositions with varying amounts of primary secondary amine (PSA), C18, and graphitized carbon black. All the sample preparation methods gave low-to-medium matrix effects, as confirmed by liquid chromatography-tandem mass spectrometry using standard solutions and matrix-matched standards. In particular, the use of the citrate buffering method, in combination with purification by d-SPE using 25 mg of PSA and a mixture of other adsorbents, consistently gave low matrix effects that in the range from -18.3 to 18.8%. Pesticide recoveries within the valid recovery range 70-120% were obtained both with and without d-SPE purification using 25 mg of PSA and other adsorbents. Thus, the developed residue analysis method is viable for the determination of broflanilide and its metabolites in various crops.


Assuntos
Benzamidas/análise , Cromatografia Líquida/métodos , Produtos Agrícolas/metabolismo , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Acetatos/química , Citratos/química , Produtos Agrícolas/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas
11.
Bull Environ Contam Toxicol ; 105(6): 921-926, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104817

RESUMO

Commercial-scale recycling of agricultural and municipal wastes into organic soil amendments facilitates safe disposal of waste and reduces environmental contamination. However, phytotoxicity of commercial organic amendments to crops is a major concern to farmers. Consistent with this, commercial chicken manure and Milorganite (recycled from municipal waste) were found to be phytotoxic. Chicken manure aqueous extract contains 10.8 ppm Cu and 0.7 ppm Ni. The level of Cu and Ni in Milorganite is lower. The current study identified an aqueous solution containing 5 ppm Cu, lower than in chicken manure aqueous extract, was highly phytotoxic to mustard seeds germination. Therefore, phytotoxicity of chicken manure is in part due to Cu. An aqueous solution containing 1 ppm Ni was not phytotoxic; whereas 0.125 ppm Ni was phytotoxic when 62.5 ppm Na, which is nontoxic, was added to the solution. Therefore, synergistic effects of chemicals in the organic amendments may induce phytotoxicity.


Assuntos
Cobre/análise , Níquel/análise , Poluentes do Solo/análise , Agricultura , Animais , Produtos Agrícolas/efeitos dos fármacos , Poluição Ambiental , Fazendeiros , Fazendas , Esterco , Aves Domésticas , Reciclagem , Sementes/efeitos dos fármacos , Solo
12.
Plant Physiol Biochem ; 155: 952-964, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32971509

RESUMO

Toxic metals cause substantial reduction in crop yields every year. Therefore, worldwide scientific efforts are being made to reduce such losses in crop productivity by using certain chemical protectants such as nutrients like sulfur (S), hydrogen sulfide (H2S), glutathione (GSH), etc. Therefore in this study, we have tested potential of additional S, along with probable involvement of H2S and GSH in mitigating hexavalent chromium (CrVI) toxicity in tomato, pea and brinjal seedlings. Chromium (VI) decreased shoot and root length, endogenous H2S, and cell viability due to greater Cr accumulation that led to cell death in roots. Chromium (VI) enhanced oxidative stress markers i.e. superoxide radical, hydrogen peroxide, lipid peroxidation and protein oxidation due to down-regulation in ascorbate-glutathione cycle. However, additional S reversed toxic effect of Cr(VI). Chromium (VI) slightly stimulated enzymes of glutathione biosynthesis. Besides this, the results also showed that addition of buthionine sulphoximine (BSO, synthetic inhibitor of glutathione biosynthesis) interestingly further enhanced Cr(VI) toxicity even in the presence of additional S. But this effect of BSO was reversed by the addition of GSH. Interestingly, hydroxylamine (HA, synthetic inhibitor of cysteine desulfhydrase) had also further increased Cr(VI) toxicity even in the presence of additional S but sodium hydrosulfide (NaHS, an H2S donor) reversed this effect. Furthermore, ameliorative behaviour of NaHS against Cr(VI) toxicity was reversed by the hypotaurine (HT, a H2S scavenger). All together results suggested that additional S involved GSH and H2S in mitigating Cr(VI) toxicity in studied vegetables, in which GSH acted downstream of H2S signal.


Assuntos
Cromo/toxicidade , Produtos Agrícolas/metabolismo , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Enxofre/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Verduras
13.
Ecotoxicol Environ Saf ; 200: 110748, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470678

RESUMO

Cadmium (Cd) is an inauspicious abiotic traction that not only influences crop productivity and its growth parameters, but also has adverse effects on human health if these crops are consumed. Among crops, leafy vegetables which are the good source of mineral and vitamins accumulate more Cd than other vegetables. It is thus important to study photosynthetic variables, amino acid composition, and ultrastructural localization of Cd differences in response to Cd accumulation between two low and high Cd accumulating Brassica rapa ssp. chinensis L. (pak choi) cultivars, differing in Cd accumulation ability. Elevated Cd concentrations significantly lowered plant growth rate, biomass, leaf gas exchange and concentrations of amino acids collated to respective controls of both cultivars. Electron microscopy indicated that the impact of high Cd level on ultrastructure of leaf cells was associated to affecting cell functionalities, i.e. irregular cell wall, withdrawal of cell membrane, and chloroplast structure which has negative impact on photosynthetic activities, thus causing considerable plant growth suppression. Damage in root cells were observed in the form of enlargement of vacuole. The energy dispersive micro X-ray spectroscopy of both cultivars leaves indicated that cellular structure exhibited exudates of Cd-dense material. Ultrastructural damages and phytotoxicity were more pronounced in high accumulator cultivar as compared to the low accumulator cultivar. These findings are useful in determining the mechanisms of differential Cd-tolerance among cultivars with different Cd tolerance abilities at cellular level.


Assuntos
Brassica rapa/efeitos dos fármacos , Brassica rapa/metabolismo , Cádmio/toxicidade , Aminoácidos/análise , Biomassa , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/ultraestrutura , Cádmio/farmacocinética , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura
14.
J Agric Food Chem ; 68(12): 3729-3741, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32125836

RESUMO

To seek new protoporphyrinogen oxidase (PPO) inhibitors with better biological activity, a series of novel diphenyl ether derivatives containing tetrahydrophthalimide were designed based on the principle of substructure splicing and bioisomerization. PPO inhibition experiments exhibited that 6c is the most potential compound, with the half-maximal inhibitory concentration (IC50) value of 0.00667 mg/L, showing 7 times higher activity than Oxyfluorfen (IC50 = 0.0426 mg/L) against maize PPO and similar herbicidal activities to Oxyfluorfen in weeding experiments in greenhouses and field weeding experiments. In view of the inspected bioactivities, the structure-activity relationship (SAR) of this series of compounds was also discussed. Crop selection experiments demonstrate that compound 6c is safe for soybeans, maize, rice, peanuts, and cotton at a dose of 300 g ai/ha. Accumulation analysis experiments showed that the accumulation of 6c in some crops (soybeans, peanuts, and cotton) was significantly lower than Oxyfluorfen. Current work suggests that compound 6c may be developed as a new herbicide candidate in fields.


Assuntos
Herbicidas/química , Herbicidas/toxicidade , Éteres Fenílicos/química , Éteres Fenílicos/toxicidade , Plantas Daninhas/efeitos dos fármacos , Captana/síntese química , Captana/química , Captana/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Éteres Difenil Halogenados/toxicidade , Herbicidas/síntese química , Simulação de Acoplamento Molecular , Éteres Fenílicos/síntese química , Ftalimidas/síntese química , Ftalimidas/química , Ftalimidas/toxicidade , Plantas Daninhas/enzimologia , Plantas Daninhas/fisiologia , Protoporfirinogênio Oxidase/antagonistas & inibidores
15.
J Hazard Mater ; 383: 121088, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31518806

RESUMO

Hydrogen peroxide (H2O2) is a strong oxidizer and bleaching agent included in the list of substances requiring accident preparedness by the National Chemical Information System, Korea. Although chemical accidents related to H2O2 frequently occur globally, few studies have evaluated its toxicity and risk to soil ecosystems. Herein, accidental exposure to H2O2 was simulated in a microcosm including crop plant mung bean (Vigna radiata), and its long-term effects on photosynthetic activities and polyphenolic compounds were measured. Plants were evaluated based on the concentration and amount of H2O2 exposure, distance from H2O2 source, and duration post exposure. Plants exposed to high concentrations and large amounts of H2O2 at a close distance were most damaged; their photosynthetic activities and polyphenolic compound levels significantly decreased compared to the controls. H2O2 consistently damaged plants and affected their activities, but plants with minor damage recovered their photosynthetic activities and polyphenolic compound levels. Additionally, moderate oxidative stress from H2O2 exposure induced the synthesis of polyphenolic antioxidants including flavonol and anthocyanin. Thus, we suggest that flavonol and anthocyanin levels are the most sensitive indicators of adverse effects of H2O2 exposure in V. radiata. Our results highlight the risk of H2O2 and serve as a reference for chemical accidents.


Assuntos
Antioxidantes/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Fotossíntese/efeitos dos fármacos , Polifenóis/metabolismo , Vigna/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Solo , Vigna/metabolismo
16.
Molecules ; 24(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387317

RESUMO

BACKGROUND: essential oils are well known for their pharmacological effectiveness as well as their repellent, insecticide, and herbicide activities. The emergence of resistant weeds, due to the overuse of synthetic herbicides, makes it necessary to find natural alternatives for weed control. The aim of this study was to evaluate the phytotoxic effects of Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris, three common commercial essential oils, on weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli), food crops (tomato and cucumber), and the invasive species Nicotiana glauca. Methods: to determine herbicidal effects, essential oils were tested at different concentrations (0.125-1µL/mL). The index of germination and seedling length data were recorded over 14 days. RESULTS: the in vitro assays showed that L. angustifolia with linalool (38.7 ± 0.1%), 1,8-cineole (26.5 ± 0.1%), and camphor (14.2 ± 0.1%) as the main compounds showed the most phytotoxic effects affecting seed germination in weeds and tomato, and the aforementioned invasive species. L. multiflorum was the most sensitive weed, particularly to lavender essential oil, which decreased the growth of its hypocotyl and radicle by 87.8% and 76.7%, respectively, at a dose of 1 µL/mL. Cucumber was the most resistant food crop, with no significant reduction observed in seed germination and hypocotyl growth with E. citriodora and L. angustifolia essential oils. CONCLUSIONS: lavender essential oil represents a promising candidate for the development of effective and safe herbicides in the management of L. multiflorum affecting cucumber crops.


Assuntos
Eucalyptus/química , Lavandula/química , Óleos Voláteis/farmacologia , Pinus sylvestris/química , Produtos Agrícolas/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Espécies Introduzidas , Óleos Voláteis/química , Plantas Daninhas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Controle de Plantas Daninhas
17.
Environ Sci Pollut Res Int ; 26(26): 27014-27022, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31313227

RESUMO

Cadmium contamination of agricultural soils has aroused worldwide concern because of the threats posed to human health through accumulation in food chains. A greenhouse pot experiment was conducted with in situ Cd-contaminated soil to study the influence of different potassium fertilizers (KCl, K2SO4, and KNO3) on Cd accumulation in rice, wheat, and pak choi as well as the NH4NO3-extractable Cd (NEX-Cd) content in soils. In our study, rice and wheat biomass increased in the presence of K fertilizers, whereas pak choi biomass remained stable. Moreover, our experiment demonstrated that Cl- increased Cd uptake by crops more effectively than SO42- or NO3-. The KCl treatments increased the Cd content of all three crops; as the KCl dose was increased, the Cd content of rice grains, wheat grains, and pak choi shoots increased by 10.8-192.8%, 17.1-67.7%, and 15.1-40.4%, respectively. The KNO3 treatment also increased the Cd content of all three crops; however, the K2SO4 treatment only slightly increased the Cd content of wheat and pak choi and greatly decreased the Cd content of rice. In addition, both of the NEX-Cd content of wheat soil and pak choi soil were much higher than that of rice paddy soil. The KCl treatment resulted in a significant increase in the NEX-Cd content of rice paddy soil, but there were no significant differences in the NEX-Cd content of wheat soil or pak choi soil, regardless of which types or doses of K fertilizers were supplied. Based on these results, when K fertilizers are applied to Cd-contaminated soils, both types and doses should be carefully considered to mitigate Cd accumulation in crops, especially the edible part.


Assuntos
Cádmio/farmacocinética , Produtos Agrícolas/efeitos dos fármacos , Fertilizantes , Potássio/farmacologia , Poluentes do Solo/farmacocinética , Agricultura/métodos , Biomassa , Brassica/metabolismo , Cádmio/análise , Produtos Agrícolas/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Poluentes do Solo/análise , Distribuição Tecidual , Triticum/efeitos dos fármacos , Triticum/metabolismo
18.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340442

RESUMO

In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose-which is to efficiently determine pesticides-cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Praguicidas/isolamento & purificação , Espectrometria de Fluorescência/métodos , Agricultura , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Colorimetria/economia , Colorimetria/instrumentação , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/microbiologia , Produtos Agrícolas/parasitologia , Produtos Agrícolas/virologia , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Humanos , Limite de Detecção , Medições Luminescentes/economia , Medições Luminescentes/instrumentação , Musa/efeitos dos fármacos , Musa/microbiologia , Musa/parasitologia , Musa/virologia , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/instrumentação
19.
Protein Pept Lett ; 26(10): 720-742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31215363

RESUMO

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


Assuntos
Anti-Infecciosos/química , Peptídeos/química , Anti-Infecciosos/farmacologia , Biotecnologia/métodos , Produtos Agrícolas/efeitos dos fármacos , Resistência à Doença , Peptídeos/farmacologia , Doenças das Plantas/prevenção & controle , Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo
20.
Ecotoxicol Environ Saf ; 180: 295-308, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100594

RESUMO

Crops can become contaminated when grown in soils containing heavy metals. Cadmium is a heavy metal that poses a significant health risk to humans. The purpose of this study was to evaluate the effect of cadmium on lettuce (Lactuca sativa Linn) and the contamination risk of lettuce grown in cadmium environments. The results showed that photosynthesis and growth parameters were significantly affected by cadmium. Lettuce has the ability to absorb large amounts of cadmium from the contaminated environment and so is a cadmium hyperaccumulator plant. The study showed that approximately 35% of the total absorbed cadmium is transmitted to aerial and edible parts of lettuce. This study was undertaken as lettuce has the ability to absorb and accumulate high levels of cadmium. There are however are no reports on the PCS gene and the potential for high cadmium accumulation in lettuce. The bioinformatics study revealed that lettuce has two phytochelatin synthase genes that produce 6 PCSs through splicing leading to the ability of lettuce to store high levels of cadmium. These six sequences although different in length have high similarity. Sequence structure, cellular location, three-dimensional structure, phylogeny and a comparison of their catalytic power were evaluated. The high accumulation of cadmium in lettuce and the presence of several PCSs contribute to the accumulation of cadmium in aerial tissues. The cultivation of lettuce in contaminated environments led us to evaluate suspected farms for the presence of cadmium in produce. Lettuce grown in industrial environments contaminated with cadmium can pose a serious threat to human health.


Assuntos
Aminoaciltransferases/genética , Cádmio/toxicidade , Lactuca/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Cádmio/análise , Cádmio/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/enzimologia , Lactuca/enzimologia , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA