Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 912
Filtrar
1.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726747

RESUMO

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Assuntos
Produtos Biológicos , Fosfolipases Tipo C , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Humanos , Compostos Alílicos , Fenóis
2.
Mar Drugs ; 22(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667799

RESUMO

Techniques for extracting important bioactive molecules from seafood byproducts, viz., bones, heads, skin, frames, fins, shells, guts, and viscera, are receiving emphasis due to the need for better valorization. Employing green extraction technologies for efficient and quality production of these bioactive molecules is also strictly required. Hence, understanding the extraction process parameters to effectively design an applicable optimization strategy could enable these improvements. In this review, statistical optimization strategies applied for the extraction process parameters of obtaining bioactive molecules from seafood byproducts are focused upon. The type of experimental designs and techniques applied to criticize and validate the effects of independent variables on the extraction output are addressed. Dominant parameters studied were the enzyme/substrate ratio, pH, time, temperature, and power of extraction instruments. The yield of bioactive compounds, including long-chain polyunsaturated fatty acids, amino acids, peptides, enzymes, gelatine, collagen, chitin, vitamins, polyphenolic constituents, carotenoids, etc., were the most studied responses. Efficiency and/or economic and quality considerations and their selected optimization strategies that favor the production of potential bioactive molecules were also reviewed.


Assuntos
Alimentos Marinhos , Animais , Organismos Aquáticos , Humanos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação
3.
Bioorg Chem ; 147: 107389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677011

RESUMO

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Assuntos
Produtos Biológicos , Proliferação de Células , Crescimento Neuronal , Animais , Células PC12 , Crescimento Neuronal/efeitos dos fármacos , Ratos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Neurônios/efeitos dos fármacos , Neurônios/citologia , Folhas de Planta/química
4.
Org Lett ; 24(40): 7328-7333, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200745

RESUMO

Molecular network analysis of Streptomyces sp. CMB-MW079 detected rare phosphorylated natural products. Miniaturized cultivation profiling (MATRIX) established optimal conditions for the production, isolation, and identification of the polyketide δ-lactone phoslactomycin E (1) and new ester homologues, phoslactomycins J and K (2 and 3), as well as unprecedented heterocyclic analogues, the tetrahydrofuran cyclolactomycins A-D (4-7) and γ-lactone isocyclolactomycins A-C (8-10). We propose a biogenetic relationship linking these cometabolites with the known lactomycins A-C which were tentatively identified as minor cometabolites.


Assuntos
Produtos Biológicos , Lactonas , Compostos Organofosforados , Policetídeos , Streptomyces , Vespas , Animais , Austrália , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Ésteres/química , Furanos/química , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Estrutura Molecular , Compostos Organofosforados/química , Compostos Organofosforados/isolamento & purificação , Compostos Organofosforados/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Streptomyces/química , Streptomyces/metabolismo , Vespas/microbiologia
5.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36044031

RESUMO

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/química
6.
J Biol Chem ; 298(9): 102300, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931117

RESUMO

Natural products constitute and significantly impact many current anti-cancer medical interventions. A subset of natural products induces injury processes in malignant cells that recruit and activate host immune cells to produce an adaptive anti-cancer immune response, a process known as immunogenic cell death. However, a challenge in the field is to delineate forms of cell death and injury that best promote durable antitumor immunity. Addressing this with a single-cell chemical biology natural product discovery platform, like multiplex activity metabolomics, would be especially valuable in human leukemia, where cancer cells are heterogeneous and may react differently to the same compounds. Herein, a new ten-color, fluorescent cell barcoding-compatible module measuring six immunogenic cell injury signaling readouts are as follows: DNA damage response (γH2AX), apoptosis (cCAS3), necroptosis (p-MLKL), mitosis (p-Histone H3), autophagy (LC3), and the unfolded protein response (p-EIF2α). A proof-of-concept screen was performed to validate functional changes in single cells induced by secondary metabolites with known mechanisms within bacterial extracts. This assay was then applied in multiplexed activity metabolomics to reveal an unexpected mammalian cell injury profile induced by the natural product narbomycin. Finally, the functional consequences of injury pathways on immunogenicity were compared with three canonical assays for immunogenic hallmarks, ATP, HMGB1, and calreticulin, to correlate secondary metabolite-induced cell injury profiles with canonical markers of immunogenic cell death. In total, this work demonstrated a new phenotypic screen for discovery of natural products that modulate injury response pathways that can contribute to cancer immunogenicity.


Assuntos
Antineoplásicos , Produtos Biológicos , Proteína HMGB1 , Metabolômica , Neoplasias , Análise de Célula Única , Trifosfato de Adenosina , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Biomarcadores , Calreticulina/metabolismo , Morte Celular/imunologia , Proteína HMGB1/metabolismo , Histonas/metabolismo , Humanos , Metabolômica/métodos , Neoplasias/imunologia
7.
Mar Drugs ; 20(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323477

RESUMO

One new depsidone derivative, aspergillusidone H (3), along with seven known biosynthetically related chlorinated polyketides, were obtained from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Their structures were determined by comprehensive physicochemical and spectroscopic data interpretation. Notably, the X-ray crystal structure of 2 and the previously unknown absolute configuration of 8, assigned by ECD calculations, are described here for the first time. Compounds 1-5, 7 and 8 exhibited inhibition of lipopolysaccharide (LPS)-induced NF-κB in RAW 264.7 macrophages at 20 µM. In addition, the two potent inhibitors (2 and 7) dose-dependently suppressed RANKL-induced osteoclast differentiation without any evidence of cytotoxicity in bone marrow macrophages cells (BMMs). This is the first report of osteoclastogenesis inhibitory activity for the metabolites of these kinds. Besides, compounds 1, 2, 4, and 6-8 showed inhibitory activity against marine biofilm-forming bacteria, methicillin-resistant Staphylococcus aureus, Microbulbifer variabilis, Marinobacterium jannaschii, and Vibrio pelagius, with their MIC values ranging from 2 to 64 µg/mL. These findings provide a basis for further development of chlorinated polyketides as potential inhibitors of osteoclast differentiation and/or for use as anti-fouling agents.


Assuntos
Antozoários/microbiologia , Antibacterianos , Aspergillus/química , Produtos Biológicos , Osteogênese/efeitos dos fármacos , Policetídeos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Oceanos e Mares , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Ligante RANK
8.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323485

RESUMO

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Assuntos
4-Butirolactona/análogos & derivados , Produtos Biológicos , Fosfolipídeos , Piperazinas , Poríferos/química , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , Animais , Baías , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Comores , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Piperazinas/química , Piperazinas/isolamento & purificação , Poríferos/metabolismo
9.
Mar Drugs ; 20(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35323515

RESUMO

Aspergillus is well-known as the second-largest contributor of fungal natural products. Based on NMR guided isolation, three nitrogen-containing secondary metabolites, including two new compounds, variotin B (1) and coniosulfide E (2), together with a known compound, unguisin A (3), were isolated from the ethyl acetate (EtOAc) extract of the deep-sea fungus Aspergillus unguis IV17-109. The planar structures of 1 and 2 were elucidated by an extensive analysis of their spectroscopic data (HRESIMS, 1D and 2D NMR). The absolute configuration of 2 was determined by comparison of its optical rotation value with those of the synthesized analogs. Compound 2 is a rare, naturally occurring substance with an unusual cysteinol moiety. Furthermore, 1 showed moderate anti-inflammatory activity with an IC50 value of 20.0 µM. These results revealed that Aspergillus unguis could produce structurally diverse nitrogenous secondary metabolites, which can be used for further studies to find anti-inflammatory leads.


Assuntos
Anti-Inflamatórios , Aspergillus/química , Produtos Biológicos , Peptídeos Cíclicos , Sulfetos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Organismos Aquáticos , Aspergillus/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrogênio/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/metabolismo , Células RAW 264.7 , Metabolismo Secundário , Sulfetos/química , Sulfetos/isolamento & purificação , Sulfetos/metabolismo
10.
Mar Drugs ; 20(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35323517

RESUMO

Three complex polyoxygenated diterpenoids possessing uncommon tetradecahydro-2,13:6,9-diepoxybenzo[10]annulene scaffold, namely ximaoornatins A-C (1-3), one new eunicellin-type diterpene, litophynin K (4), and a related known compound, litophynol B (5) were isolated from the South China Sea soft coral Sinularia ornata. The structures and absolute configurations of 1-4 were established by extensive spectroscopic analysis, X-ray diffraction analysis, and/or modified Mosher's method. A plausible biosynthetic relationship of 1 and its potential precursor 4 was proposed. In a bioassay, none of the isolated compounds showed obvious anti-inflammatory activity on LPS-induced TNF-α release in RAW264.7 macrophages and PTP1B inhibitory effects.


Assuntos
Antozoários/química , Produtos Biológicos , Diterpenos , Animais , Antozoários/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
11.
Pharm Biol ; 60(1): 509-524, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35234563

RESUMO

CONTEXT: Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE: Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS: We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS: Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS: The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Tratamento Farmacológico da COVID-19 , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Produtos Biológicos/isolamento & purificação , COVID-19/virologia , Desenvolvimento de Medicamentos/métodos , Sinergismo Farmacológico , Humanos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/isolamento & purificação , Agentes de Imunomodulação/farmacologia
12.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209235

RESUMO

Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1-7 and bromophenols 12-29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Fenóis/química , Fenóis/farmacologia , Antineoplásicos/isolamento & purificação , Organismos Aquáticos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Humanos , Redes e Vias Metabólicas , Fenóis/isolamento & purificação , Fenóis/metabolismo , Relação Estrutura-Atividade
13.
Mar Drugs ; 20(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35200631

RESUMO

Malaysia has a long coastline surrounded by various islands, including North Borneo, that provide a suitable environment for the growth of diverse species of seaweeds. Some of the important North Bornean seaweed species are Kappaphycus alvarezii, Eucheuma denticulatum, Halymenia durvillaei (Rhodophyta), Caulerpa lentillifera, Caulerpa racemosa (Chlorophyta), Dictyota dichotoma and Sargassum polycystum (Ochrophyta). This review aims to highlight the therapeutic potential of North Bornean seaweeds and their nutraceutical profiling. North Bornean seaweeds have demonstrated anti-inflammatory, antioxidant, antimicrobial, anticancer, cardiovascular protective, neuroprotective, renal protective and hepatic protective potentials. The protective roles of the seaweeds might be due to the presence of a wide variety of nutraceuticals, including phthalic anhydride, 3,4-ethylenedioxythiophene, 2-pentylthiophene, furoic acid (K. alvarezii), eicosapentaenoic acid, palmitoleic acid, fucoxanthin, ß-carotene (E. denticulatum), eucalyptol, oleic acid, dodecanal, pentadecane (H. durvillaei), canthaxanthin, oleic acid, pentadecanoic acid, eicosane (C. lentillifera), pseudoephedrine, palmitic acid, monocaprin (C. racemosa), dictyohydroperoxide, squalene, fucosterol, saringosterol (D. dichotoma), and lutein, neophytadiene, cholest-4-en-3-one and cis-vaccenic acid (S. polycystum). Extensive studies on the seaweed isolates are highly recommended to understand their bioactivity and mechanisms of action, while highlighting their commercialization potential.


Assuntos
Produtos Biológicos/farmacologia , Suplementos Nutricionais , Alga Marinha/química , Animais , Produtos Biológicos/isolamento & purificação , Bornéu , Humanos
14.
Nat Commun ; 13(1): 842, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149673

RESUMO

In natural product discovery programs, the power of synthetic chemistry is often leveraged for the total synthesis and diversification of characterized metabolites. The synthesis of structures that are bioinformatically predicted to arise from uncharacterized biosynthetic gene clusters (BGCs) provides a means for synthetic chemistry to enter this process at an early stage. The recent identification of non-ribosomal peptides (NRPs) containing multiple ρ-aminobenzoic acids (PABAs) led us to search soil metagenomes for BGCs that polymerize PABA. Here, we use PABA-specific adenylation-domain sequences to guide the cloning of the lap BGC directly from soil. This BGC was predicted to encode a unique N-acylated PABA and thiazole containing structure. Chemical synthesis of this structure gave lapcin, a dual topoisomerase I/II inhibitor with nM to pM IC50s against diverse cancer cell lines. The discovery of lapcin highlights the power of coupling metagenomics, bioinformatics and total chemical synthesis to unlock the biosynthetic potential contained in even complex uncharacterized BGCs.


Assuntos
Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metagenoma , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Vias Biossintéticas/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Metagenoma/genética , Metagenômica , Família Multigênica , Solo
15.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164089

RESUMO

Liver cancer is a leading cause of cancer death globally. Marine mollusc-derived drugs have gained attention as potential natural-based anti-cancer agents to overcome the side effects caused by conventional chemotherapeutic drugs during cancer therapy. Using liquid chromatography-mass spectrometry, the main biomolecules in the purple ink secretion released by the sea hare, named Bursatella leachii (B. leachii), were identified as hectochlorin, malyngamide X, malyngolide S, bursatellin and lyngbyatoxin A. The cytotoxic effects of B. leachii ink concentrate against human hepatocarcinoma (HepG2) cells were determined to be dose- and time-dependent, and further exploration of the underlying mechanisms causing the programmed cell death (apoptosis) were performed. The expression of cleaved-caspase-8 and cleaved-caspase-3, key cysteine-aspartic proteases involved in the initiation and completion of the apoptosis process, appeared after HepG2 cell exposure to the B. leachii ink concentrate. The gene expression levels of pro-apoptotic BAX, TP53 and Cyclin D1 were increased after treatment with the B. leachii ink concentrate. Applying in silico approaches, the high scores predicted that bioactivities for the five compounds were protease and kinase inhibitors. The ADME and cytochrome profiles for the compounds were also predicted. Altogether, the B. leachii ink concentrate has high pro-apoptotic potentials, suggesting it as a promising safe natural product-based drug for the treatment of liver cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Gastrópodes/química , Neoplasias Hepáticas/tratamento farmacológico , Amidas/química , Amidas/isolamento & purificação , Amidas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Células Hep G2 , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Toxinas de Lyngbya/química , Toxinas de Lyngbya/isolamento & purificação , Toxinas de Lyngbya/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/farmacologia , Tiazóis/química , Tiazóis/isolamento & purificação , Tiazóis/farmacologia
16.
Bioorg Med Chem Lett ; 59: 128566, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063633

RESUMO

The ubiquitin-proteasome system (UPS) regulates selective protein degradation to maintain protein homeostasis. Small molecules that inhibit the UPS-dependent protein degradation are promising anti-tumor agents. We report a cell-based luminescent assay using HeLa cells expressing luciferase-fused oxygen-dependent destruction domain (ODD) of hypoxia-inducible factor 1 α (HIF-1 α). ODD is degraded by the UPS and this assay system can aid in the identification of natural products that inhibit either process of the UPS, including ubiquitination/deubiquitination and proteasomal degradation. This reporter assay can exclude the influences of coloring or fluorescent compounds in extracts, thereby leading to effective high-throughput processing. The screening of 15,025 extracts of natural sources identified the culture extract of the fungus Remotididymella sp. (18F02908). Bioassay-guided isolation yielded two new polyketides, mellains A (1) and B (2), together with leptosphaerodione (3) and its acetone adduct 4. Compound 1 was revealed to have an unprecedented benzo[g]isoquinoline-8,10-dione skeleton. Evaluation of the biological activities demonstrated that these polyketides inhibit the proteasomal proteolysis. This is the first report of the identification of proteasome inhibitors from natural sources using a cell-based reporter assay targeting UPS inhibitors.


Assuntos
Ascomicetos/química , Produtos Biológicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Estrutura Molecular , Inibidores de Proteassoma/química , Inibidores de Proteassoma/isolamento & purificação , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 60: 128589, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093502

RESUMO

Humulanolides are natural products isolated from Asteriscus, and the isolation and total synthesis of many types of humulanolides have been reported. In this study, we evaluated anti-proliferative activity of twelve humulanolides against various human cancer cell lines and found that humulanolide analog E, which was newly designed and synthesized, exhibited the highest anti-proliferative activity. Structure-activity relationship analysis revealed that α,ß-unsaturated carbonyl moieties in humulanolides play an important role for anti-proliferative activity. To identify molecular targets of humulanolide analog E, we investigated various cell-based and in vitro assays. Treatment with humulanolide analog E against human fibrosarcoma HT1080 cells increased the expression level of HSP70 protein and decreased the levels of AKT and CDK4, which are HSP90 client proteins. Moreover, humulanolide analog E inhibited refolding of denatured luciferase protein via suppression of HSP90 activity in vitro. These results suggest that humulanolide analog E possesses the anti-proliferative activity against human cancer cells by inhibiting HSP90 functions.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Produtos Biológicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011527

RESUMO

Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Endófitos/química , Fungos/química , Animais , Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Estudos Clínicos como Assunto , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Endófitos/metabolismo , Fungos/metabolismo , Humanos , Plantas/microbiologia , Relação Estrutura-Atividade
19.
Recent Pat Anticancer Drug Discov ; 16(4): 460-468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911411

RESUMO

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated9 (Cas9) endonuclease system is a facile, highly efficient and selective site-directed mutagenesis tool for RNA-guided genome-editing. CRISPR/Cas9 genome-editing strategy uses designed guide-RNAs that recognizes a 3 base-pair protospacer adjacent motif (PAM) sequence in the target-DNA. CRISPR/Cas-editing tools have mainly been employed in crop plants in relation to yield and stress tolerance. However, the immense potential of this technology has not yet been fully utilized in medicinal plants in deciphering or modulating secondary metabolic pathways producing therapeutically active phytochemicals against cancer and other diseases. OBJECTIVE: The present review elucidates the use of CRISPR-Cas9 as a promising genome-editing tool in plants and plant-derived natural products with anticancer and other therapeutic applications. It also includes recent patents on the therapeutic applications of CRISPR-CAS systems implicated to cancer and other human medical conditions. METHODS: Popular search engines, such as PubMed, Scopus, Google Scholar, Google Patents, Medline, ScienceDirect, SpringerLink, EMBASE, Mendeley, etc., were searched in order to retrieve literature using relevant keywords viz. CRISPER/Cas, plant natural product research, anticancer, therapeutics, etc., either singly or in various combinations. RESULTS: Retrieved citations and further cross-referencing among the literature have resulted in a total number of 71 publications and 3 patents are being cited in this work. Information presented in this review aims to support further biotechnological and clinical strategies to be carried using CRISPER/ Cas mediated optimization of plant natural products against cancer and an array of other human medical conditions. CONCLUSION: Off late, knock-in and knock-out, point mutation, controlled tuning of gene-expression and targeted mutagenesis have enabled the versatile CRISPR/Cas-editing device to engineer medicinal plants' genomes. In addition, by combining CRISPR/Cas-editing tool with next-generation sequencing (NGS) and various tools of system biology, many medicinal plants have been engineered genetically to optimize the production of valuable bioactive compounds of industrial significance.


Assuntos
Sistemas CRISPR-Cas/genética , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Edição de Genes , Genoma de Planta , Humanos , Patentes como Assunto , Preparações de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Medicinais/genética
20.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885744

RESUMO

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Assuntos
Antifúngicos/química , Produtos Biológicos/química , Micoses/tratamento farmacológico , Polifenóis/química , Amomum/química , Antifúngicos/farmacologia , Antioxidantes/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brassica/química , Cinnamomum zeylanicum/química , Coriandrum/química , Lactuca/química , Mentha piperita/química , Micoses/microbiologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Comestíveis/química , Plantas Medicinais/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia , Trigonella/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA