Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Environ Radioact ; 274: 107409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428363

RESUMO

The study presented the relationship between sudden Natural Gamma Radiation (NGR) increases related to enhanced atmospheric electric fields. We pinpoint Thunderstorm Ground Enhancements (TGEs) as the primary source of abrupt and significant NGR spikes. These TGEs, which are transient, several-minute-long increases in elementary particle fluxes, originate from natural electron accelerators within thunderclouds. The more prolonged, yet less pronounced, increases in NGR, persisting for several hours, are attributed to the gamma radiation from radon progeny and enhanced positron fluxes. This radon, emanating from terrestrial materials, is carried aloft by the Near-Surface Electric Field (NSEF). To measure NGR at Aragats Mountain, we use an ORTEC detector and custom-built large NaI (Tl) spectrometers, employing lead filters to discriminate between cosmic ray fluxes and radon progeny radiation. Our analysis differentiates between radiation enhancements during positive and negative NSEF episodes. The resultant data provide a comprehensive measurement of the intensities of principal isotopes and positron flux during thunderstorms compared to fair weather conditions.


Assuntos
Monitoramento de Radiação , Radônio , Produtos de Decaimento de Radônio/análise , Raios gama , Radônio/análise , Atmosfera
2.
J Environ Radioact ; 272: 107365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171111

RESUMO

In the last year, the use of computational fluid dynamics (CFD) techniques has gained prominence as a powerful tool for modeling biological phenomena and influencing the design of biomedical devices. In this study, we utilized a computational fluid dynamics (CFD) model to simulate airflow and the deposition of aerosol particles within the human respiratory tract. To achieve this, we meticulously constructed a 3D model of the human tracheobronchial airways using SolidWorks software. Our computational analyses encompassed a range of breathing conditions, ranging from 15 to 60 (L/min). Through the application of discrete phase modeling (DPM), we investigate the behavior of two-phase flow dynamics. Our focus lies in the examination of aerosol particles, with diameters ranging from 1 to 10 (µm), in order to evaluate the influence of aerosol particle size on deposition rates. Our findings encompass velocity contour maps, deposition rates of aerosol particles, and insights into the process of aerosol particle entrapment at various locations within the respiratory tract. Our study reveals a direct correlation between higher inhalation rates and larger aerosol particle sizes, resulting in increased deposition rates. Additionally, we observe a heightened deposition of aerosol-particles at bronchi region. These computational results hold significant value in estimating the distribution of doses resulting from radon progeny exposure in distinct anatomical regions of the respiratory tract.


Assuntos
Monitoramento de Radiação , Produtos de Decaimento de Radônio , Humanos , Administração por Inalação , Simulação por Computador , Aerossóis , Pulmão , Tamanho da Partícula , Modelos Biológicos , Hidrodinâmica
3.
Radiat Prot Dosimetry ; 200(5): 437-447, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38226499

RESUMO

In this study, the activity concentrations of radon (222Rn), thoron (220Rn) and thoron progeny were measured simultaneously in Djeno (Pointe-Noire, Republic of Congo) using RADUET detectors to evaluate the air quality and the radiological risks due to the inhalation of these radionuclides. Activity concentrations of radon progeny were calculated from those of radon. Indoor radon, thoron and progenies followed a lognormal distribution ranging between 20 and 40, 6 and 62, 8 and 17.6 and 0.4 and 19.6 Bq m-3 for radon, thoron, radon progeny and thoron progeny, respectively. Mean values for radon were lower than the worldwide values estimated by the United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), which are 40 Bq m-3 (arithmetic mean) and 45 Bq m-3 (geometric mean). Radon concentrations in the dwellings under study were below the World Health Organization and the International Commission on Radiological Protection recommended reference levels, which are, respectively, 100 and 300 Bq m-3. The mean concentration of thoron was twice the world average value of 10 Bq m-3 estimated by UNSCEAR. Thoron progeny mean concentration was sharply greater than the typical value (0.3 Bq m-3) for indoor atmosphere provided by UNSCEAR. Annual effective dose ranges were 0.40-0.87 mSv (arithmetic mean, 0.57 ± 0.11 mSv) for radon and 0.10-4.14 mSv (arithmetic mean, 0.55 ± 0.77 mSv) for thoron. The mean value for radon was lower than the value (1.15 mSv) estimated by UNSCEAR, while the mean value for thoron was five times higher than the UNSCEAR value (0.10 mSv). The study showed that the use of the typical equilibrium factor value given by UNSCEAR to compute effective dose led to an error above 80%. Finally, the results of this study showed that the excess relative risk of radon-induced cancer was low, below 2% for the population under 55 y. The results presented in the present study prove that the population of Djeno is exposed to a relatively low potential risk of radon- and thoron-induced cancer.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Neoplasias , Monitoramento de Radiação , Radônio , Radônio/análise , Produtos de Decaimento de Radônio/análise , Poluentes Radioativos do Ar/análise , Congo , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos , Habitação , Medição de Risco
4.
Appl Radiat Isot ; 205: 111158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159450

RESUMO

The risk of lung cancer or pneumoconiosis mortality, increases with radioactive radon gas exposures. This article report health risk for underground workers exposed to radioactive gas and radon daughters carried by airborne dust at the coal mining in the Central Mountainous Region of Colombia. A set of 33 measurement points located in that mine galleries were selected to monitor radon gas concentration activity, by passive LR-115 detectors, during two months. Resulting values provided radon concentrations, absorbed dose, environmental equivalent dose and the effective dose; miners increased risk of contracting lung cancer is included. It is concluded that the mine ventilation system satisfies the conditions required by the current radiological protection of the miners. Our study point out that Colombia can effectively address the potential risks associated with radon exposure and ensure a safer living environment for its citizens.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Radônio , Humanos , Radônio/efeitos adversos , Radônio/análise , Neoplasias Pulmonares/etiologia , Colômbia , Produtos de Decaimento de Radônio/análise , Carvão Mineral/efeitos adversos , Exposição Ocupacional/efeitos adversos
5.
Environ Res ; 240(Pt 2): 117505, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890828

RESUMO

Radon decay products include α-radiation emitting radionuclides that attach to airborne particles that have potential to promote oxidative tissue damage after inhalation. To assess associations between α-particle radioactivity (α-PR) with urinary biomarkers of oxidative tissue damage, 140 patients with chronic obstructive pulmonary disease (COPD) had up to four 1-week seasonal assessments (N = 413) of indoor (home) and ambient (central site) PM2.5 and black carbon (BC). Following environmental sampling, urine samples were analyzed for total and free malondialdehyde (MDA), biomarkers of lipid oxidation, and 8-hydroxyl-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage. Particle radioactivity was measured as α-activity on PM2.5 filter samples. Linear mixed-effects regression models adjusted for urinary creatinine and other personal characteristics were used to assess associations. Indoor α-PR was associated with an increase in 8-OhdG (8.53%; 95% CI: 3.12, 14.23); total MDA (5.59%; 95% CI: 0.20, 11.71); and free MDA (2.17%; 95% CI: 2.75, 7.35) per interquartile range (IQR) of α-PR [median 1.25 mBq/m3; IQR 0.64], similar adjusting for PM2.5 or BC. The ratio of indoor/ambient α-PR was positively associated with each biomarker and associations with ambient α-PR were positive but weaker than with indoor concentrations. These findings are consistent with a contribution of radon decay products as measured by α-PR to oxidative stress in patients with COPD, with a greater contribution of indoor radon decay products.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Radioatividade , Radônio , Humanos , Produtos de Decaimento de Radônio , Biomarcadores , Estresse Oxidativo , Fuligem
6.
Radiat Prot Dosimetry ; 199(18): 2179-2182, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934988

RESUMO

Results of the preliminary measurements of indoor radon, thoron and progeny concentrations showed very high values of thoron concentrations in the eastern coastal region of Odisha, India. Therefore, measurements of thoron and its progeny concentrations were extended to a larger number of houses in this area for the assessment of the radiation dose received by the public. The measured values of thoron concentrations were used for the calculation of annual effective doses. The estimated values of the annual effective dose due to thoron exposure were observed in the range of 0.2-14.7 mSv. The estimated radiation doses responsible for thoron exposure were observed considerably high in the region. The results obtained are compared with those obtained in other studies performed so far in the study area and a review of different studies involving different measurement techniques is presented in the paper. The results of this study support the preliminary studies showing high values of thoron levels in the study area.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Radiação de Fundo , Poluição do Ar em Ambientes Fechados/análise , Produtos de Decaimento de Radônio/análise , Monitoramento de Radiação/métodos , Habitação , Radônio/análise , Índia , Doses de Radiação
7.
Sci Rep ; 13(1): 10792, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402813

RESUMO

Radon (222Rn) and its progeny are responsible for half of the annual dose from natural radiation and the most frequent cause for lung cancer induction after smoking. During inhalation, progeny nuclides accumulate in the respiratory tract while most of the radon gas is exhaled. The decay of progeny nuclides in the lung together with the high radiosensitivity of this tissue lead to equivalent doses implying a significant cancer risk. Here, we use gamma spectroscopy to measure the attachment of radon progeny on an air-ventilated filter system within a radon enriched atmosphere, mimicking the respiratory tract. A mathematical model was developed to describe the measured time-dependent activities of radon progeny on the filter system. We verified a linear relation between the ambient radon activity concentration during exposure and the amount of decay products on the filter system. The measured activities on the filters and its mathematical description are in good agreement. The developed experimental set-up can thus serve to further investigate the deposition of radon progeny in the respiratory tract under varying conditions for determination of dose conversion factors in radiation protection, which we demonstrate by deriving dose estimations in mouse lung.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Animais , Camundongos , Produtos de Decaimento de Radônio/análise , Radônio/análise , Poluentes Radioativos do Ar/análise , Pulmão/química , Administração por Inalação , Monitoramento de Radiação/métodos , Poluição do Ar em Ambientes Fechados/análise
8.
Radiat Prot Dosimetry ; 199(12): 1284-1294, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37337628

RESUMO

In areas with high natural background radiation, underground cavities tend to have high levels of airborne radionuclides. Within mines, occupancy may involve significant exposure to airborne radionuclides like radon (222Rn), thoron (220Rn) and progeny. The Fen carbonatite complex in Norway has legacy mines going through bedrock with significantly elevated levels of uranium (238U) and especially thorium (232Th), and significant levels of their progeny 222Rn and 220Rn. There are also significantly elevated levels of gamma radiation in these mines. These mines are naturally chimney ventilated and release large volumes of air to the outdoors giving a large local outdoor impact. We placed alpha track detectors at several localities within these mines to measure airborne radionuclides and measured gamma radiation of bedrock at each locality. The bedrock within the mines shows levels up to 1900 Bq kg-1 for 238U, 12 000 Bq kg-1 for 232Th and gamma dose rates up to 11 µSv h-1. Maximum levels of airborne radionuclides were 45 000 Bq m-3 for 220Rn and 6900 Bq m-3 for 222Rn. In addition, we measured levels of thoron progeny (TnP). In order to estimate radiation dose contribution, TnP should be assessed rather than 220Rn, but deposition-based detectors may be biased by the airflow of mine-draft. We present dose rate contributions using UNSCEAR dose conversion factors, and correcting for airflow bias, finding a combined cold season dose rate within these mines of 17-24 µSv h-1. Interestingly, fractional dose rate contributions vary from 0.02 to 0.6 for gamma, 0.33 to 0.95 for radon and 0.1 to 0.25 for TnP.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Tório/análise , Urânio/análise , Raios gama , Radiação de Fundo , Estações do Ano , Poluentes Radioativos do Ar/análise , Produtos de Decaimento de Radônio/análise , Poluição do Ar em Ambientes Fechados/análise
9.
J Radiol Prot ; 43(2)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37164001

RESUMO

Chronic cigarette smoking leads to changes in the respiratory tract that might affect the dose received from exposure to radon progeny. In this study, changes induced by cigarette smoking in the respiratory tract were collected from the literature and used for calculation of the dose received by the lungs and organs outside the respiratory tract. Morphological and physiological parameters affected by chronic smoking were implemented in the human respiratory tract model (HRTM) used by the International Commission of Radiological Protection (ICRP). Smokers were found to receive lung doses 3% smaller than the ICRP reference worker (non-smoking reference adult male) in mines and 14% smaller in indoor workplaces and tourist caves. A similar dose reduction was found for the extrathoracic region of the HRTM. Conversely, kidneys, brain, and bone marrow of smokers were found to receive from 2.3- up to 3-fold of the dose received by the respective organ in the ICRP reference worker, although they remained at least two orders of magnitude smaller than the lung dose. These results indicate that the differences in the lung dose from radon progeny exposure in cigarette smokers and non-smokers are smaller than 15%.


Assuntos
Poluentes Radioativos do Ar , Fumar Cigarros , Exposição Ocupacional , Radônio , Adulto , Humanos , Masculino , Produtos de Decaimento de Radônio/análise , Radônio/análise , Poluentes Radioativos do Ar/análise , Pulmão/química , Exposição Ocupacional/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-37174189

RESUMO

Naturally occurring radon and its short lived progeny are the second leading cause of lung cancer after smoking, and the main risk factor for non-smokers. The radon progeny, mainly Polonium-218 (218Po) and Polonium-214 (214Po), are responsible for the highest dose deposition in the bronchial epithelium via alpha-decay. These alpha-particles release a large amount of energy over a short penetration range, which results in severe and complex DNA damage. In order to unravel the underlying biological mechanisms which are triggered by this complex DNA damage and eventually give rise to carcinogenesis, in vitro radiobiology experiments on mammalian cells have been performed using radon exposure setups, or radon analogues, which mimic alpha-particle exposure. This review provides an overview of the different experimental setups, which have been developed and used over the past decades for in vitro radon experiments. In order to guarantee reliable results, the design and dosimetry of these setups require careful consideration, which will be emphasized in this work. Results of these in vitro experiments, particularly on bronchial epithelial cells, can provide valuable information on biomarkers, which can assist to identify exposures, as well as to study the effects of localized high dose depositions and the heterogeneous dose distribution of radon.


Assuntos
Poluentes Radioativos do Ar , Radônio , Animais , Radônio/toxicidade , Produtos de Decaimento de Radônio/análise , Radiometria , Fumar , Mamíferos
11.
J Environ Radioact ; 257: 107080, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446183

RESUMO

Indoor radon and its decay products are the primary sources of the population's exposure to background ionizing radiation. Radon decay products are one of the leading causes of lung cancer, with a higher lung cancer risk for smokers due to the synergistic effects of radon decay products and cigarette smoking. A total of 459 year-long radon measurements in 257 detached and semi-detached residential homes in southwest and south Greenland were carried out, and a dose assessment for adults was performed. The annual arithmetic and geometric means of indoor radon concentrations was 10.5 ± 0.2 Bq m-3 and 8.0 ± 2.3 Bq m-3 in Nuuk, 139.0 ± 1.0 Bq m-3 and 97.3 ± 2.1 Bq m-3 in Narsaq, and 42.1 ± 0.7 Bq m-3 and 22.0 ± 3.1 Bq m-3 in Qaqortoq. Arithmetic and geometric mean radon concentration of 79.0 Bq m-3 and 50.3 Bq m-3 were estimated for adult, person-weighted living in south Greenland. The total number of detached and semi-detached residential homes where indoor radon is exceeding 100 Bq m-3, 200 Bq m-3, and 300 Bq m-3 is 37 homes (15.0%), 13 homes (5.2%), and 8 homes (3.2%), respectively. A positive correlation between indoor air radon concentrations and underlying geology was observed. The indoor radon contribution to the annual inhalation effective dose to an average adult was 0.5 mSv in Nuuk, 6.5 mSv in Narsaq, 2.0 mSv in Qaqortoq, and 4.0 mSv for south Greenland adult person weighted. The estimated annual average effective dose to adults in Narsaq is higher than the world's average annual effective dose of 1.3 mSv due to inhalation of indoor radon. Cost-efficient mitigation methods exist to reduce radon in existing buildings, and to prevent radon entry into new buildings.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Humanos , Radônio/análise , Produtos de Decaimento de Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Groenlândia , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Habitação
12.
Int Arch Occup Environ Health ; 96(3): 411-418, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36319769

RESUMO

OBJECTIVES: Exposure to ionizing radiation may increase the risk of circulatory diseases, including heart disease. A limited number of cohort studies of underground miners have investigated these associations. We previously reported a positive but non-statistically significant association between radon progeny and heart disease in a cohort of Newfoundland fluorspar miners. In this study, we report updated findings that incorporate 15 additional years of follow-up. METHODS: The cohort included 2050 miners who worked in the fluorspar mines from 1933 to 1978. Statistics Canada linked the personal identifying data of the miners to Canadian mortality data to identify deaths from 1950 to 2016. We used previously derived individual-level estimates of annual radon progeny exposure in working-level months. Cumulative exposure was categorized into quantiles. We estimated relative risks and their 95% confidence intervals using Poisson regression for deaths from circulatory, ischemic heart disease and acute myocardial infarction. Relative risks were adjusted for attained age, calendar year, and the average number of cigarettes smoked daily. RESULTS: Relative to the Newfoundland male population, the standardized mortality ratio for circulatory disease in this cohort was 0.82 (95% CI 0.74-0.91). Those in the highest quantile of cumulative radon progeny exposure had a relative risk of circulatory disease mortality of 1.03 (95% CI 0.76-1.40) compared to those in the lowest quantile. The corresponding estimates for ischemic disease and acute myocardial infarction were 0.99 (95% CI 0.66-1.48), and 1.39 (95% CI 0.84-2.30), respectively. CONCLUSIONS: Our findings do not support the hypothesis that occupational exposure to radon progeny increases the risk of circulatory disease.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Neoplasias Pulmonares , Infarto do Miocárdio , Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Radônio , Urânio , Humanos , Masculino , Produtos de Decaimento de Radônio , Terra Nova e Labrador , Canadá , Doenças Profissionais/epidemiologia
13.
Environ Res ; 216(Pt 1): 114492, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209792

RESUMO

BACKGROUND: Radon (222Rn) decay products can attach to particles in the air, be inhaled, and potentially cause airway damage. RESEARCH QUESTION: Is short-term exposure to particle radioactivity (PR) attributable to radon decay products emitted from particulate matter ≤2.5 µm in diameter (PM2.5) associated with pulmonary function in chronic obstructive pulmonary disease (COPD) patients? STUDY DESIGN AND METHODS: In this cohort study, 142 elderly, predominantly male patients with COPD from Eastern Massachusetts each had up to 4 one-week long seasonal assessments of indoor (home) and ambient (central site) PR and PM2.5 over the course of a year (467 assessments). Ambient and indoor PR were measured as α-activity on archived PM2.5 filter samples. Ratios of indoor/ambient PR were calculated, with higher ratios representing PR from an indoor source of radon decay. We also considered a measure of outside air infiltration that could dilute the concentrations of indoor radon decay products, the indoor/ambient ratio of sulfur concentrations in PM2.5 filter samples. Spirometry pre- and post-bronchodilator (BD) forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were conducted following sampling. Generalized additive mixed models were adjusted for meteorologic variables, seasonality, and individual-level determinants of pulmonary function. We additionally adjusted for indoor PM2.5 and black carbon (BC). RESULTS: PR exposure metrics indicating radon decay product exposure from an indoor source were associated with a reduction in FEV1 and FVC. Patients in homes with high indoor PR (≥median) and low air infiltration (

Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Radioatividade , Radônio , Humanos , Masculino , Idoso , Feminino , Produtos de Decaimento de Radônio , Poluentes Atmosféricos/análise , Estudos de Coortes , Material Particulado/análise , Fuligem , Exposição Ambiental/análise
14.
Biol Trace Elem Res ; 201(6): 2927-2941, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36048359

RESUMO

The dose contributed from thoron (220Rn) and its progeny has been neglected in the dose assessment because of its short half-life (t1/2 = 55.6 s) and generally low concentrations. Recently, concentrations of 220Rn gas and its progeny were found to be pronounced in the traditional residential dwellings in China, on beaches of India and in other countries. Accordingly, we investigated the biological effects of thoron (220Rn) decay products in various mouse organs, succeeding inhalation of thoron gas in BALB/c mouse. We investigated the biological effects upon thoron inhalation on mouse organs with a focus on oxidative stress. These mice were divided into (4 random groups): sham inhalation, thoron inhalation for 1, 4 and 10 days. Various tissues (lung, liver and kidney) were then collected after the time points and subjected to various biochemical analyses. Immediately after inhalation, mouse tissues were excised for gamma spectrometry and 72 h post inhalation for biochemical assays. The gamma spectrometry counts and its subsequent calculation of the equivalent dose showed varied distribution in the lung, liver and kidney. Our results suggest that acute thoron inhalation showed a differential effect on the antioxidant function and exerted pathophysiological alterations via oxidative stress in organs at a higher dose. These findings suggested that thoron inhalation could alter the redox state in organs; however, its characteristics were dependent on the total redox system of the organs as well as the thoron concentration and inhalation time.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Animais , Camundongos , Poluentes Radioativos do Ar/análise , Radiação de Fundo , Poluição do Ar em Ambientes Fechados/análise , Produtos de Decaimento de Radônio/análise , Monitoramento de Radiação/métodos , Radônio/análise , Doses de Radiação
15.
Radiat Environ Biophys ; 61(4): 561-577, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208308

RESUMO

Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.


Assuntos
Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Proteção Radiológica , Radônio , Criança , Humanos , Radônio/análise , Doses de Radiação , Produtos de Decaimento de Radônio , Proteção Radiológica/métodos , Neoplasias Induzidas por Radiação/epidemiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-36141609

RESUMO

The radioactive noble gas radon and its short-living progeny are inhaled during respiration, depositing their decay energies in the lungs. These progeny are considered responsible for more than 95% of the total effective dose and are, together with radon, classified as carcinogenic for lung cancer. Consequently, filtration of the progeny could reduce the dose to the lungs. In our study, we investigated the filtration properties of FFP2 versus surgical masks (II R) for radon and its decay products. The masks were attached to a measurement device, which enabled determination of the size distribution of radon progeny, ranging from unattached to clustered progeny. In parallel, it measured the radon activity concentration during experiments. By comparing background measurements without mask and experiments with masks, the percentage of retained unattached radon progeny was determined for FFP2 (98.8 ± 0.6%) and II R masks (98.4 ± 0.7%). For clustered progeny, the retained fraction was 85.2 ± 18.1% for FFP2 and 79.5 ± 22.1% for II R masks while radon was not filtered. We can show that masks are effective in filtering radon progeny and thus are capable of reducing the total effective dose to the lungs.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Adsorção , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Filtração , Radônio/análise , Produtos de Decaimento de Radônio/análise
17.
Radiat Prot Dosimetry ; 198(9-11): 802-808, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005983

RESUMO

The aim of this work was to use the microdosimetric threshold energy model to study the effects of alpha-emitting 222Rn progeny on the probability of developing lung cancer. The results suggest that the radiation risk may increase by several times as the thickness of the surface layer decreases. The thicker the protective mucus layer and the deeper the sensitive target cells are located in the tissue, the less radiation damage the same dose produces. These findings have been applied to children of various ages. As children grow older, their lungs enlarge, the mucus layer thickens and the cells sensitive to radiation damage move deeper into the lung tissue, resulting in a reduction of radiation risk. The fraction of affected target cells is not only a function of dose but also of lung tissue depth. The results indicate that children can be several times more vulnerable to radiation than adults.


Assuntos
Neoplasias Pulmonares , Radônio , Criança , Humanos , Pulmão , Neoplasias Pulmonares/etiologia , Doses de Radiação , Radônio/efeitos adversos , Radônio/análise , Produtos de Decaimento de Radônio , Medição de Risco
18.
Health Phys ; 123(4): 315-321, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773245

RESUMO

ABSTRACT: The Steenkampskraal mine in the Western Cape Province in South Africa provides some interesting challenges for radiation protection practitioners in view of the high thoron values encountered in this mine. The mine contains high natural thorium concentrations that lead to high thoron activity concentrations, as will be shown in this paper. The influence of ventilation has been studied, and the source term has been investigated by considering the thorium content of the rocks and the thoron exhalation. The thoron activity concentrations are around 10 kBq m -3 at a monazite seam, and the thorium exhalation is consistent with these levels. The thoron concentrations can be reduced by ventilation but not eliminated. However, the thoron progeny can probably be reduced dramatically. Issues that affect the thoron levels are also discussed. Further studies are needed, but the thoron may well not be a radiation protection problem despite the high thoron concentrations.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Projetos Piloto , Radônio/análise , Produtos de Decaimento de Radônio/análise , Tório/análise
19.
Radiat Prot Dosimetry ; 198(8): 467-471, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679532

RESUMO

A passive integrating discriminative radon-thoron monitor (Raduet) and a radon-thoron progeny monitor with a solid-state nuclear tracking detector were used for estimating indoor radon, thoron and their progeny concentrations in residential areas around the old mines of southern Thailand. Exposure to high background radiation levels from natural 238U and 232Th in the tin mine areas or active fault areas may increase the risk of lung cancer in the respiratory system when considering the health effects of the surrounding inhabitants. In this study, radon thoron and their progeny concentrations from inhalation in the study site have been assessed in dose at volunteer houses to confirm radiation effects. The annual effective doses due to inhalation of radon-thoron, radon progeny and thoron progeny using the ICRP latest dose conversion factors were estimated to be 3.0-4.6, 2.5-3.7 and 0.4-1.0 mSv, respectively, and as 5.9-9.0 mSv in total.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Urânio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Radiação de Fundo , Habitação , Humanos , Radônio/análise , Produtos de Decaimento de Radônio/análise , Tailândia , Tório
20.
Appl Radiat Isot ; 187: 110344, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764003

RESUMO

In this paper, simulation of a gas micro-strip detector by using the MCNPX code, the feasibility of alpha spectroscopy for radon and its progeny has been investigated. Initially, for the verification of the code, the range of alpha particles released from 222Rn gas in the air has been obtained in the standard condition, which is consistent with the experimental results. Subsequently, the energy loss per unit path length, range of alpha particles and radon progeny was measured, then the relationship between the range, the energy and the air pressure has been achieved. Finally, the simulation results have been compared with the results of the particle range relationship, pressure and energy, and the radon spectroscopy has been performed with the studied detector. The comparison of the spectrum obtained with the simulated micro-strip detector and the experimental results shows that the introduced micro-strip detector, in addition to the ability to measure radon and daughters, also has the ability to extract the spectrum from it.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radônio/análise , Produtos de Decaimento de Radônio/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA