Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.846
Filtrar
1.
J Nucl Med ; 65(10): 1626-1632, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266290

RESUMO

Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non-p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse-derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/química , Modelos Animais de Doenças , Anticorpos Monoclonais , Produtos do Gene tat/química , Imagem Molecular/métodos , Radioisótopos de Índio , Marcação por Isótopo
2.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511507

RESUMO

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542351

RESUMO

Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.


Assuntos
COVID-19 , HIV-1 , Humanos , HIV-1/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Ativação Transcricional , Repetição Terminal Longa de HIV , COVID-19/genética , Produtos do Gene tat/genética , Lentivirus/genética , Expressão Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , RNA Viral/metabolismo
4.
Exp Neurol ; 373: 114650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092186

RESUMO

Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.


Assuntos
Lesões Encefálicas Traumáticas , Ubiquitina Tiolesterase , Camundongos , Animais , Ubiquitina Tiolesterase/genética , Produtos do Gene tat/uso terapêutico , Cisteína , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Axônios/patologia
5.
AIDS Res Ther ; 20(1): 82, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981694

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) infection is associated with an elevated incidence of cervical cancer, and accelerated disease progression, but the underlying mechanisms are not well understood. This study aimed to investigate the relationship between HIV infection and epithelial-mesenchymal transition (EMT) in cervical cancer. METHODS: Tissue samples from HIV-positive and negative patients with cervical intraepithelial neoplasia (CIN) and cervical cancer were analyzed for EMT-related proteins. Human cervical cancer SiHa cells were treated with HIV Tat and gp120 proteins to test their effects on EMT, migration, and invasion. RESULTS: HIV-positive patients had lower E-cadherin and cytokeratin, and higher N-cadherin and vimentin levels than HIV-negative patients. HIV Tat and gp120 proteins induced EMT, migration, and invasion in SiHa cells. Transcriptome sequencing analysis revealed that, compared to the control group, the protein-treated group showed upregulation of 22 genes and downregulation of 77 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed the involvement of the Wnt signaling pathway in EMT. Further analysis of gene expression related to this pathway revealed upregulation of DVL1, TCF7, KRT17, and VMAC, while GSK3ß, SFRP2, and CDH1 were downregulated. Immunofluorescence assay demonstrated that HIVgp120 and Tat proteins treatment induced elevated ß-catenin expression with nuclear accumulation in SiHa cells. CONCLUSIONS: The treatment of SiHa cells with HIV Tat and gp120 proteins induces EMT and activates the Wnt/ß-catenin pathway, suggesting that the Wnt/ß-catenin pathway may play a crucial role in promoting EMT progression in cervical lesion tissues of HIV-infected patients.


Assuntos
Infecções por HIV , Neoplasias do Colo do Útero , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Produtos do Gene tat/farmacologia , Transição Epitelial-Mesenquimal/fisiologia
6.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445656

RESUMO

It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic ß-cell death in type 2 diabetes mellitus (T2DM). However, the function of CIAPIN1 protein on T2DM is not yet well studied. Therefore, we investigated the effects of CIAPIN1 protein on a hIAPP-induced RINm5F cell and T2DM animal model induced by a high-fat diet (HFD) and streptozotocin (STZ). The Tat-CIAPIN1 protein reduced the activation of mitogen-activated protein kinase (MAPK) and regulated the apoptosis-related protein expression levels including COX-2, iNOS, Bcl-2, Bax, and Caspase-3 in hIAPP-induced RINm5F cells. In a T2DM mice model, the Tat-CIAPIN1 protein ameliorated the pathological changes of pancreatic ß-cells and reduced the fasting blood glucose, body weight and hemoglobin Alc (HbAlc) levels. In conclusion, the Tat-CIAPIN1 protein showed protective effects against T2DM by protection of ß-cells via inhibition of hIAPP toxicity and by regulation of a MAPK signal pathway, suggesting CIAPIN1 protein can be a therapeutic protein drug candidate by beneficial regulation of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Apoptose , Amiloide/metabolismo , Modelos Animais de Doenças , Produtos do Gene tat/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
7.
Exp Neurol ; 358: 114226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096180

RESUMO

HIV-associated sensory neuropathies (HIV-SN) are prevalent in >50% of patients aged over 45 years many of which report moderate to severe chronic pain. Previous preclinical studies have investigated the mechanisms by which HIV-1 causes sensory neuropathies and pain-like behaviors. The aim of the present study is to delineate the role of chronic HIV-1 trans-activator of transcription protein (Tat) exposure in the development of neuropathy in mice. The temporal effects of conditional Tat expression on the development of hypersensitivity to mechanical (von Frey filaments) and thermal (heat or cold) stimuli were tested in male and female mice that transgenically expressed HIV-1 Tat in a doxycycline-inducible manner. Inducing Tat expression produced an allodynic response to mechanical or cold (but not heat) stimuli that respectively persisted for at least 23-weeks (mechanical hypersensitivity) or at least 8-weeks (cold hypersensitivity). Both allodynic states were greater in magnitude among females, compared to males, and mechanical increased hypersensitivity progressively in females over time. Acute morphine or gabapentin treatment partly attenuated allodynia in males, but not females. Irrespective of sex, Tat reduced intraepidermal nerve fiber density, the mean amplitude of sensory nerve action potentials (but not conductance), engagement in some pain-related ethological behaviors (cage-hanging and rearing), and down-regulated PPAR-α gene expression in lumbar spinal cord while upregulating TNF-α expression in dorsal root ganglion. Taken together, these data reveal fundamental sex differences in mechanical and cold hypersensitivity in response to Tat and demonstrate the intractable nature in female mice to current therapeutics. Understanding the role of Tat in these pathologies may aid the design of future therapies aimed at mitigating the peripheral sensory neuropathies that accompany neuroHIV.


Assuntos
Infecções por HIV , HIV-1 , Doenças do Sistema Nervoso Periférico , Animais , Síndromes Periódicas Associadas à Criopirina , Doxiciclina , Feminino , Gabapentina , Produtos do Gene tat , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Dor , Receptores Ativados por Proliferador de Peroxissomo , Caracteres Sexuais , Fator de Necrose Tumoral alfa
8.
AIDS Res Hum Retroviruses ; 38(9): 753-763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35972747

RESUMO

Although combination antiretroviral therapy is widely used to treat HIV-1 infection, anemia affects the health and quality of life in a large number of these patients. The proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as important support cells in the hematopoietic microenvironment, can be affected by HIV-1 Tat protein. In this study, we explored the mechanism underlying the effect of Tat protein on the hematopoietic support function of BMSCs in erythroid commitment. BMSCs were treated with Tat protein or transfected with Tat mRNA and cocultured with hematopoietic stem cells (HSCs) to detect the number of erythroid colony-forming units (CFUs) and the proportion of mature red blood cells from HSCs. Subsequently, the expression level of a series of erythroid hematopoietic support factors and inflammatory factors in BMSCs after Tat treatment were analyzed. Then, the activation effect of Tat on the mitogen-activated protein kinase/nuclear factor kappa-B (MAPK/NF-κB) pathway, which is an important inflammatory response signaling pathway, was evaluated. The results showed that the number of erythroid CFUs and the production of mature red blood cells supported by BMSCs treated with Tat protein were significantly reduced and the expression of a series of erythroid supporting factors of BMSCs were significantly decreased by Tat protein. Tat-treated BMSCs highly express a variety of inflammatory mediators. Moreover, the expression of P38, p-p38, ERK1/2, p-ERK1/2, JNK1/2, p-JNK1/2, NF-κB, and p-NF-κB was significantly upregulated by Tat protein. In conclusion, Tat protein induces the inflammatory response of BMSCs by activating the MAPK/NF-κB pathway to inhibit the erythroid hematopoietic support function of BMSCs.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Mesenquimais , Células Cultivadas , Produtos do Gene tat/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , NF-kappa B/metabolismo , Qualidade de Vida
9.
Cells ; 11(10)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626677

RESUMO

Arginine-rich cell-penetrating peptides (RRCPPs) exhibit intrinsic neuroprotective effects on neurons injured by acute ischemic stroke. Conformational properties, interaction, and the ability to penetrate the neural membrane are critical for the neuroprotective effects of RRCCPs. In this study, we applied circular dichroism (CD) spectroscopy and coarse-grained molecular dynamics (CG MD) simulations to investigate the interactions of two RRCPPs, Tat(49-57)-NH2 (arginine-rich motif of Tat HIV-1 protein) and PTD4 (a less basic Ala-scan analog of the Tat peptide), with an artificial neuronal membrane (ANM). CD spectra showed that in an aqueous environment, such as phosphate-buffered saline, the peptides mostly adopted a random coil (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) conformation. On the other hand, in the hydrophobic environment of the ANM liposomes, the peptides showed moderate conformational changes, especially around 200 nm, as indicated by CD curves. The changes induced by the liposomes were slightly more significant in the PTD4 peptide. However, the nature of the conformational changes could not be clearly defined. CG MD simulations showed that the peptides are quickly attracted to the neuronal lipid bilayer and bind preferentially to monosialotetrahexosylganglioside (DPG1) molecules. However, the peptides did not penetrate the membrane even at increasing concentrations. This suggests that the energy barrier required to break the strong peptide-lipid electrostatic interactions was not exceeded in the simulated models. The obtained results show a correlation between the potential of mean force parameter and a peptide's cell membrane-penetrating ability and neuroprotective properties.


Assuntos
Peptídeos Penetradores de Células , AVC Isquêmico , Fármacos Neuroprotetores , Arginina , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Produtos do Gene tat , Humanos , Lipossomos , Membranas Artificiais , Neurônios , Fármacos Neuroprotetores/farmacologia
10.
J Microbiol Biotechnol ; 32(4): 493-503, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35283423

RESUMO

Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.


Assuntos
Chelidonium , Proteína Forkhead Box O3/metabolismo , Neoplasias Ovarianas , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Chelidonium/genética , Chelidonium/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Produtos do Gene tat , Humanos , RNA Interferente Pequeno/genética , Proteína X Associada a bcl-2
11.
Biochem J ; 479(3): 259-272, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015082

RESUMO

Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting serine/threonine protein kinases (RIPK) 1, RIPK3, Z-DNA-binding protein 1, and Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-ß. Remarkably, all four aforementioned mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death (RCD) processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischaemia reperfusion injury, myocardial infarction, sepsis, stroke, and solid organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it eradicated or destroyed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of RCD cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of RCD may offer a novel therapeutic approach to combat resistant tumour cells.


Assuntos
Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Transdução de Sinais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Produtos do Gene tat/genética , HIV-1/química , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/genética , Células U937 , Proteínas Virais/genética
12.
Biochem Biophys Res Commun ; 586: 63-67, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826702

RESUMO

Although cell-penetrating peptides such as the HIV-derived TAT peptide have been used as tools for the intracellular delivery of therapeutic peptides and proteins, a problem persists: the endosomal escape efficiency is low. Previously, we found that the fusogenic peptide S19, derived from the human protein syncytin-1, enhance the endosomal escape efficiency of proteins that incorporated by endocytosis via TAT. In this study, we first performed Ala-scanning mutagenesis of S19, and found that all Ile, Val, Leu and Phe with high ß-sheet forming propensities in S19 are important for the intracellular uptake of S19-TAT-fused proteins. In a secondary structure analysis of the mutated S19-TAT peptides in the presence of liposomes mimicking late endosomes (LEs), the CD spectra of V3A and I4A mutants with low uptake activity showed the appearance of an α-helix structure, whereas the mutant G5A retained both the uptake activity and the ß-structure. In addition, we investigated the appropriate linking position and order of the S19 and TAT peptides to a cargo protein including an apoptosis-induced peptide and found that both the previous C-terminal S19-TAT tag and the N-terminal TAT-S19 tag promote the cytoplasmic delivery of the fusion protein. These results and previous results suggest that the interaction of TAT with the LE membrane causes a structural change in S19 from a random coil to a ß-strand and that the subsequent parallel ß-sheet formation between two S19 peptides may promote adjacent TAT dimerization, resulting in endosomal escape from the LE membrane.


Assuntos
Membrana Celular/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene tat/metabolismo , Peptídeos/metabolismo , Plasmídeos/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Endossomos/química , Endossomos/metabolismo , Expressão Gênica , Produtos do Gene env/genética , Produtos do Gene tat/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Imagem Óptica , Peptídeos/genética , Plasmídeos/química , Proteínas da Gravidez/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Transdução Genética
13.
Neurosci Lett ; 767: 136298, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673147

RESUMO

Alzheimer's disease (AD) is characterized by amyloid beta (Aß) plaques and neurofibrillary tangles. AD drug development has been limited due to the presence of the blood-brain barrier (BBB), which prevents efficient uptake of therapeutics into the brain. To solve this problem, we used trans-activator of transcription (TAT)-transducing domain and added the human serum albumin (HSA) carrier to increase the half-life of the drug within the body. In addition, we included the protein of interest for lowering Aß deposition and/or neurofibrillary tangles. We made HSA fusion protein (designated AL04) which contains Cystatin C (CysC) as core mechanism of action moiety in the construct containing tandem repeat TAT (dTAT). After purification of 80KDa AL04, we investigate the therapeutic potential of AL04 in vitro and AD mouse model Tg2576. We evaluated the permeability of AL04 through the BBB using a cell-basedhuman BBB model and show that dTAT plays a role in facilitating the delivery of 80 kDa protein. We found out that AL04 attenuates Aß-induced neurotoxicity in PC12 cells. In Tg2576 mice brain, Aß plaques were dramatically reduced in AL04 treated mice. These data suggest that BBB-crossing albumin fusion protein AL04 with CysC active moiety can be a disease modifying treatment for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cistatina C/farmacocinética , Portadores de Fármacos/farmacocinética , Albumina Sérica Humana/farmacocinética , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Encéfalo/patologia , Cistatina C/administração & dosagem , Portadores de Fármacos/química , Produtos do Gene tat/farmacocinética , Humanos , Camundongos , Células PC12 , Ratos , Albumina Sérica Humana/química
14.
Methods Mol Biol ; 2383: 257-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766295

RESUMO

The ability to deliver or transduce proteins into cells allows for the manipulation of cell biology in culture, preclinical models, and potentially human disease. Fusion proteins containing the TAT peptide transduction domain (PTD), also known as cell-penetrating peptide (CPP), allow for delivery of a wide variety of proteins, including enzymes, transcription factors, tumor suppressor proteins, and many more. TAT-fusion proteins are generated cloning in-frame into the pTAT-HA plasmid, then transformed into E. coli for expression, and purified by the 6-His affinity tag over Ni-NTA column, followed by a final IEX FPLC purification step.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/análise , Escherichia coli/genética , Produtos do Gene tat , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição
15.
J Neuroimmune Pharmacol ; 17(1-2): 152-164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619645

RESUMO

Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.


Assuntos
Dor Crônica , Infecções por HIV , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , HIV , Transativadores , Dor Crônica/tratamento farmacológico , Anti-Inflamatórios , Produtos do Gene tat , Infecções por HIV/tratamento farmacológico , Sacarose
16.
Int J Radiat Oncol Biol Phys ; 112(3): 759-770, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610386

RESUMO

PURPOSE: Recent studies reported therapeutic effects of Smad7 on oral mucositis in mice without compromising radiation therapy-induced cancer cell killing in neighboring oral cancer. This study aims to assess whether a Smad7-based biologic can treat oral mucositis in a clinically relevant setting by establishing an oral mucositis model in dogs and analyzing molecular targets. METHODS AND MATERIALS: We created a truncated human Smad7 protein fused with the cell-penetrating Tat tag (Tat-PYC-Smad7). We used intensity modulated radiation therapy to induce oral mucositis in dogs and applied Tat-PYC-Smad7 to the oral mucosa in dose-finding studies after intensity modulated radiation therapy. Clinical outcomes were evaluated. Molecular targets were analyzed in biopsies and serum samples. RESULTS: Tat-PYC-Smad7 treatment significantly shortened the duration of grade 3 oral mucositis based on double-blinded Veterinary Radiation Therapy Oncology Group scores and histopathology evaluations. Topically applied Tat-PYC-Smad7 primarily penetrated epithelial cells and was undetectable in serum. NanoString nCounter Canine IO Panel identified that, compared to the vehicle samples, top molecular changes in Tat-PYC-Smad7 treated samples include reductions in inflammation and cell death and increases in cell growth and DNA repair. Consistently, immunostaining shows that Tat-PYC-Smad7 reduced DNA damage and neutrophil infiltration with attenuated TGF-ß and NFκB signaling. Furthermore, IL-1ß and TNF-α were lower in Tat-PYC-Smad7 treated mucosa and serum samples compared to those in vehicle controls. CONCLUSIONS: Topical Tat-PYC-Smad7 application demonstrated therapeutic effects on oral mucositis induced by intensity modulated radiation therapy in dogs. The local effects of Tat-PYC-Smad7 targeted molecules involved in oral mucositis pathogenesis as well as reduced systemic inflammatory cytokines.


Assuntos
Mucosite , Lesões por Radiação , Estomatite , Animais , Cães , Produtos do Gene tat/metabolismo , Camundongos , Lesões por Radiação/complicações , Proteína Smad7/genética , Proteína Smad7/metabolismo , Estomatite/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Neurochem Res ; 46(12): 3123-3134, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34403064

RESUMO

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1ß and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.


Assuntos
Produtos do Gene tat/administração & dosagem , Inflamação/imunologia , Doença dos Neurônios Motores/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Isquemia do Cordão Espinal/complicações , alfa-Sinucleína/antagonistas & inibidores , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos , Masculino , Doença dos Neurônios Motores/etiologia , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Coelhos , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34204001

RESUMO

Radiodynamic therapy (RDT) is a recent extension of conventional photodynamic therapy, in which visible/near infrared light irradiation is replaced by a well-tolerated dose of high-energy X-rays. This enables greater tissue penetration to allow non-invasive treatment of large, deep-seated tumors. We report here the design and testing of a drug delivery system for RDT that is intended to enhance intra- or peri-nuclear localization of the photosensitizer, leading to DNA damage and resulting clonogenic cell kill. This comprises a photosensitizer (Verteporfin, VP) incorporated into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) that are surface-functionalized with a cell-penetrating HIV trans-activator of transcription (TAT) peptide. In addition to a series of physical and photophysical characterization studies, cytotoxicity tests in pancreatic (PANC-1) cancer cells in vitro under 4 Gy X-ray exposure from a clinical 6 MV linear accelerator (LINAC) showed that TAT targeting of the nanoparticles markedly enhances the effectiveness of RDT treatment, particularly when assessed by a clonogenic, i.e., DNA damage-mediated, cell kill.


Assuntos
Composição de Medicamentos , Produtos do Gene tat/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Verteporfina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , DNA/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Lipídeos de Membrana/metabolismo , Nanopartículas/ultraestrutura , Oxigênio Singlete/metabolismo
19.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205205

RESUMO

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


Assuntos
Antioxidantes/farmacologia , Células da Medula Óssea/citologia , Peptídeos Penetradores de Células/genética , Produtos do Gene tat/genética , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase-1/genética , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Peptídeos Penetradores de Células/metabolismo , Células Cultivadas , Produtos do Gene tat/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/metabolismo , Irradiação Corporal Total
20.
Mol Brain ; 14(1): 107, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225758

RESUMO

Major depressive disorder (MDD) is associated with significant morbidity and mortality. Most antidepressant medications target the serotonin and norepinephrine transporters, but a significant minority of patients do not respond to treatment and novel therapeutic targets are needed. We previously identified a protein complex composed of the α7 nicotinic acetylcholine receptor (nAChR) and NMDA glutamate receptors (NMDARs), through which α7nAChR upregulates NMDAR function. Disruption of the α7nAChR-NMDAR complex with an interfering peptide blocked α7nAChR-mediated upregulation of NMDAR function and cue-induced reinstatement of nicotine seeking in rat models of relapse. Here we report that disrupting the α7nAChR-NMDAR complex with the interfering peptide also has antidepressant-like effects in the forced swim test (FST), a common rat behaviour screening test for antidepressant effects. Furthermore, the interfering peptide significantly increases extracellular signal-regulated kinase (ERK) activity in the animals subjected to the FST. Our results provide a novel potential therapeutic target for the development of new antidepressant medications.


Assuntos
Antidepressivos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Produtos do Gene tat , Hipocampo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA