Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 713
Filtrar
1.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511507

RESUMO

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445656

RESUMO

It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic ß-cell death in type 2 diabetes mellitus (T2DM). However, the function of CIAPIN1 protein on T2DM is not yet well studied. Therefore, we investigated the effects of CIAPIN1 protein on a hIAPP-induced RINm5F cell and T2DM animal model induced by a high-fat diet (HFD) and streptozotocin (STZ). The Tat-CIAPIN1 protein reduced the activation of mitogen-activated protein kinase (MAPK) and regulated the apoptosis-related protein expression levels including COX-2, iNOS, Bcl-2, Bax, and Caspase-3 in hIAPP-induced RINm5F cells. In a T2DM mice model, the Tat-CIAPIN1 protein ameliorated the pathological changes of pancreatic ß-cells and reduced the fasting blood glucose, body weight and hemoglobin Alc (HbAlc) levels. In conclusion, the Tat-CIAPIN1 protein showed protective effects against T2DM by protection of ß-cells via inhibition of hIAPP toxicity and by regulation of a MAPK signal pathway, suggesting CIAPIN1 protein can be a therapeutic protein drug candidate by beneficial regulation of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Apoptose , Amiloide/metabolismo , Modelos Animais de Doenças , Produtos do Gene tat/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
3.
AIDS Res Hum Retroviruses ; 38(9): 753-763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35972747

RESUMO

Although combination antiretroviral therapy is widely used to treat HIV-1 infection, anemia affects the health and quality of life in a large number of these patients. The proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as important support cells in the hematopoietic microenvironment, can be affected by HIV-1 Tat protein. In this study, we explored the mechanism underlying the effect of Tat protein on the hematopoietic support function of BMSCs in erythroid commitment. BMSCs were treated with Tat protein or transfected with Tat mRNA and cocultured with hematopoietic stem cells (HSCs) to detect the number of erythroid colony-forming units (CFUs) and the proportion of mature red blood cells from HSCs. Subsequently, the expression level of a series of erythroid hematopoietic support factors and inflammatory factors in BMSCs after Tat treatment were analyzed. Then, the activation effect of Tat on the mitogen-activated protein kinase/nuclear factor kappa-B (MAPK/NF-κB) pathway, which is an important inflammatory response signaling pathway, was evaluated. The results showed that the number of erythroid CFUs and the production of mature red blood cells supported by BMSCs treated with Tat protein were significantly reduced and the expression of a series of erythroid supporting factors of BMSCs were significantly decreased by Tat protein. Tat-treated BMSCs highly express a variety of inflammatory mediators. Moreover, the expression of P38, p-p38, ERK1/2, p-ERK1/2, JNK1/2, p-JNK1/2, NF-κB, and p-NF-κB was significantly upregulated by Tat protein. In conclusion, Tat protein induces the inflammatory response of BMSCs by activating the MAPK/NF-κB pathway to inhibit the erythroid hematopoietic support function of BMSCs.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Mesenquimais , Células Cultivadas , Produtos do Gene tat/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , NF-kappa B/metabolismo , Qualidade de Vida
4.
Biochem J ; 479(3): 259-272, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015082

RESUMO

Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting serine/threonine protein kinases (RIPK) 1, RIPK3, Z-DNA-binding protein 1, and Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-ß. Remarkably, all four aforementioned mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death (RCD) processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischaemia reperfusion injury, myocardial infarction, sepsis, stroke, and solid organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it eradicated or destroyed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of RCD cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of RCD may offer a novel therapeutic approach to combat resistant tumour cells.


Assuntos
Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Transdução de Sinais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Produtos do Gene tat/genética , HIV-1/química , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/genética , Células U937 , Proteínas Virais/genética
5.
Int J Radiat Oncol Biol Phys ; 112(3): 759-770, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610386

RESUMO

PURPOSE: Recent studies reported therapeutic effects of Smad7 on oral mucositis in mice without compromising radiation therapy-induced cancer cell killing in neighboring oral cancer. This study aims to assess whether a Smad7-based biologic can treat oral mucositis in a clinically relevant setting by establishing an oral mucositis model in dogs and analyzing molecular targets. METHODS AND MATERIALS: We created a truncated human Smad7 protein fused with the cell-penetrating Tat tag (Tat-PYC-Smad7). We used intensity modulated radiation therapy to induce oral mucositis in dogs and applied Tat-PYC-Smad7 to the oral mucosa in dose-finding studies after intensity modulated radiation therapy. Clinical outcomes were evaluated. Molecular targets were analyzed in biopsies and serum samples. RESULTS: Tat-PYC-Smad7 treatment significantly shortened the duration of grade 3 oral mucositis based on double-blinded Veterinary Radiation Therapy Oncology Group scores and histopathology evaluations. Topically applied Tat-PYC-Smad7 primarily penetrated epithelial cells and was undetectable in serum. NanoString nCounter Canine IO Panel identified that, compared to the vehicle samples, top molecular changes in Tat-PYC-Smad7 treated samples include reductions in inflammation and cell death and increases in cell growth and DNA repair. Consistently, immunostaining shows that Tat-PYC-Smad7 reduced DNA damage and neutrophil infiltration with attenuated TGF-ß and NFκB signaling. Furthermore, IL-1ß and TNF-α were lower in Tat-PYC-Smad7 treated mucosa and serum samples compared to those in vehicle controls. CONCLUSIONS: Topical Tat-PYC-Smad7 application demonstrated therapeutic effects on oral mucositis induced by intensity modulated radiation therapy in dogs. The local effects of Tat-PYC-Smad7 targeted molecules involved in oral mucositis pathogenesis as well as reduced systemic inflammatory cytokines.


Assuntos
Mucosite , Lesões por Radiação , Estomatite , Animais , Cães , Produtos do Gene tat/metabolismo , Camundongos , Lesões por Radiação/complicações , Proteína Smad7/genética , Proteína Smad7/metabolismo , Estomatite/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Biochem Biophys Res Commun ; 586: 63-67, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826702

RESUMO

Although cell-penetrating peptides such as the HIV-derived TAT peptide have been used as tools for the intracellular delivery of therapeutic peptides and proteins, a problem persists: the endosomal escape efficiency is low. Previously, we found that the fusogenic peptide S19, derived from the human protein syncytin-1, enhance the endosomal escape efficiency of proteins that incorporated by endocytosis via TAT. In this study, we first performed Ala-scanning mutagenesis of S19, and found that all Ile, Val, Leu and Phe with high ß-sheet forming propensities in S19 are important for the intracellular uptake of S19-TAT-fused proteins. In a secondary structure analysis of the mutated S19-TAT peptides in the presence of liposomes mimicking late endosomes (LEs), the CD spectra of V3A and I4A mutants with low uptake activity showed the appearance of an α-helix structure, whereas the mutant G5A retained both the uptake activity and the ß-structure. In addition, we investigated the appropriate linking position and order of the S19 and TAT peptides to a cargo protein including an apoptosis-induced peptide and found that both the previous C-terminal S19-TAT tag and the N-terminal TAT-S19 tag promote the cytoplasmic delivery of the fusion protein. These results and previous results suggest that the interaction of TAT with the LE membrane causes a structural change in S19 from a random coil to a ß-strand and that the subsequent parallel ß-sheet formation between two S19 peptides may promote adjacent TAT dimerization, resulting in endosomal escape from the LE membrane.


Assuntos
Membrana Celular/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene tat/metabolismo , Peptídeos/metabolismo , Plasmídeos/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Endossomos/química , Endossomos/metabolismo , Expressão Gênica , Produtos do Gene env/genética , Produtos do Gene tat/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Imagem Óptica , Peptídeos/genética , Plasmídeos/química , Proteínas da Gravidez/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Transdução Genética
7.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205205

RESUMO

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


Assuntos
Antioxidantes/farmacologia , Células da Medula Óssea/citologia , Peptídeos Penetradores de Células/genética , Produtos do Gene tat/genética , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase-1/genética , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Peptídeos Penetradores de Células/metabolismo , Células Cultivadas , Produtos do Gene tat/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/metabolismo , Irradiação Corporal Total
8.
BMB Rep ; 54(9): 458-463, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120676

RESUMO

Cytokines activate inflammatory signals and are major mediators in progressive ß-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced ß-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F ß-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F ß-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F ß-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F ß-cell damage. [BMB Reports 2021; 54(9): 458-463].


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/farmacologia , Produtos do Gene tat/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Recombinantes de Fusão/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Fragmentação do DNA/efeitos dos fármacos , Produtos do Gene tat/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos
9.
Cells ; 10(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572372

RESUMO

The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood-brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Hipocampo/patologia , Peroxidação de Lipídeos , Plasticidade Neuronal , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Produtos do Gene tat/metabolismo , Gerbillinae , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Tempo
10.
Biotechnol Prog ; 37(1): e3071, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840065

RESUMO

Hyperpigmentation disorders negatively influence an individual's quality of life and may cause emotional distress. Over the years, various melanogenesis inhibitors (mainly tyrosinase inhibitors) have been developed, most of which with low efficacy or high toxicity. Although metabolic engineering by deviation in the flux of substrate is of considerable interest, trials to develop a melanogenesis inhibitor based on L-tyrosine (L-Tyr) restriction are missing. We propose a novel proteinaceous melanogenesis inhibitor called tyrosine ammonia-lyase (TAL), an enzyme that catalyzes the conversion of L-Tyr to p-coumaric acid and ammonia. Since the cell membrane can act as a barrier for intracellular protein delivery, we have covalently conjugated a recombinant TAL enzyme from Rhodobacter sphaeroides (RsTAL) to a trans-activator of transcription (TAT) cell-penetrating peptide (CPP) to afford the intracellular delivery. The heterologously expressed TAT-RsTAL fusion protein was delivered successfully into B16F10 melanocytes as confirmed by the direct fluorescence microscopy with increased intensity from 30 to 180 min. TAT-RsTAL showed sufficient intracellular activity of about 0.83 ± 0.04 and 0.34 ± 0.03 nmol•mg-1 •s-1 for the native and inclusion body-extracted conjugates, respectively. The conjugate inhibited melanin biosynthesis in B16F10 cells in a time-dependent manner. Melanin accumulation was inhibited by 12.7 ± 6.2%, 28.2 ± 5.7%, and 33.9 ± 2.9% compared to the nontreated control groups after 24, 48, and 72 hr of incubation, respectively. L-Tyr restriction had no significant effect on the cell viability up to a concentration of 100 µgml-1 even after 72 hr. According to the observed hypopigmentary effect of the conjugate in this study, TAT-RsTAL can be suggested as a melanogenesis inhibitor for further investigations.


Assuntos
Amônia-Liases/metabolismo , Peptídeos Penetradores de Células/farmacologia , Produtos do Gene tat/metabolismo , Melaninas/metabolismo , Melanoma Experimental/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Produtos do Gene tat/química , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Rhodobacter sphaeroides/enzimologia , Tirosina/metabolismo
11.
FASEB J ; 34(3): 4147-4162, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950548

RESUMO

HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.


Assuntos
Cálcio/metabolismo , Produtos do Gene tat/metabolismo , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Produtos do Gene tat/genética , Repetição Terminal Longa de HIV/genética , Repetição Terminal Longa de HIV/fisiologia , HIV-1/metabolismo , Humanos , Immunoblotting , Lisossomos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia
12.
Mol Omics ; 16(1): 73-82, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31899468

RESUMO

Glioblastoma is the most lethal brain cancer in adults. Despite advances in surgical techniques, radiotherapy, and chemotherapy, their therapeutic effect is far from significant, since the detailed underlying pathological mechanism of this cancer is unclear. The establishment of molecular interaction networks has laid the foundation for the exploration of these mechanisms with a view to improving therapy for glioblastoma. In the present study, to further explore the cellular role of DCF1 (dendritic cell-derived factor 1), the proteins bound to TAT-DCF1 (transactivator of transcription-dendritic cell-derived factor 1) were identified, and biosystem analysis was employed. Functional enrichment analyses indicate that TAT-DCF1 induced important biological changes in U251 cells. Furthermore, the established molecular interaction networks indicated that TAT-DCF1 directly interacted with TAF6 in glioma cells and with UBC in HEK293T (human embryonic kidney 293T) cells. In addition, further biological experiments demonstrate that TAT-DCF1 induced the activation of the RPS27A/TOP2A/HMGB2/BCL-2 signaling pathway via interaction with TAF6 in U251 cells. Taken together, these findings suggest that the TAT-DCF1 peptide possesses great potential for the development of glioblastoma therapy through the interaction with TAF6-related pathways and provides further theoretic evidence for the mechanisms underlying the antitumor effects of TAT-DCF1.


Assuntos
Neoplasias Encefálicas/metabolismo , Produtos do Gene tat/metabolismo , Glioblastoma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Glioblastoma/patologia , Células HEK293 , Proteína HMGB2/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo
13.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590403

RESUMO

G-protein-coupled receptors associate into dimers/oligomers whose function is not well understood. One approach to investigate this issue is to challenge oligomerization by peptides replicating transmembrane domains and to study their effect on receptor functionality. The disruptor peptides are typically delivered by means of cell-penetrating vectors such as the human immunodeficiency virus (HIV) transcription trans-activation protein Tat. In this paper we report a cyclic, Tat-like peptide that significantly improves its linear analogue in targeting interreceptor sequences in the transmembrane space. The same cyclic Tat-like vector fused to a transmembrane region not involved in receptor oligomerization was totally ineffective. Besides higher efficacy, the cyclic version has enhanced proteolytic stability, as shown by trypsin digestion experiments.


Assuntos
Produtos do Gene tat/metabolismo , Peptídeos Cíclicos/metabolismo , Receptor A2A de Adenosina/metabolismo , Produtos do Gene tat/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Peptídeos Cíclicos/genética , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica
14.
AIDS ; 33(6): 953-964, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946149

RESUMO

OBJECTIVE: HIV-infected patients receiving antiretroviral treatment (ART) often present adipose tissue accumulation and/or redistribution. adipose tissue has been shown to be an HIV/SIV reservoir and viral proteins as Tat or Nef can be released by infected immune cells and exert a bystander effect on adipocytes or precursors. Our aim was to demonstrate that SIV/HIV infection per se could alter adipose tissue structure and/or function. DESIGN: Morphological and functional alterations of subcutaneous (SCAT) and visceral adipose tissue (VAT) were studied in SIV-infected macaques and HIV-infected ART-controlled patients. To analyze the effect of Tat or Nef, we used human adipose stem cells (ASCs) issued from healthy donors, and analyzed adipogenesis and extracellular matrix component production using two dimensional (2D) and three-dimensional (3D) culture models. METHODS: Adipocyte size and index of fibrosis were determined on Sirius red-stained adipose tissue samples. Proliferating and adipocyte 2D-differentiating or 3D-differentiating ASCs were treated chronically with Tat or Nef. mRNA, protein expression and secretion were examined by RT-PCR, western-blot and ELISA. RESULTS: SCAT and VAT from SIV-infected macaques displayed small adipocytes, decreased adipogenesis and severe fibrosis with collagen deposition. SCAT and VAT from HIV-infected ART-controlled patients presented similar alterations. In vitro, Tat and/or Nef induced a profibrotic phenotype in undifferentiated ASCs and altered adipogenesis and collagen production in adipocyte-differentiating ASCs. CONCLUSION: We demonstrate here a specific role for HIV/SIV infection per se on adipose tissue fibrosis and adipogenesis, probably through the release of viral proteins, which could be involved in adipose tissue dysfunction contributing to cardiometabolic alterations of HIV-infected individuals.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/patologia , Fibrose/patologia , Infecções por HIV/patologia , HIV/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Adulto , Animais , Células Cultivadas , Feminino , Produtos do Gene nef/metabolismo , Produtos do Gene tat/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
15.
Chembiochem ; 20(5): 727-733, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452106

RESUMO

Intracellular delivery and endosomal release of antisense oligonucleotides remain a significant challenge in the development of gene-targeted therapeutics. Previously, noncovalently cyclized TAT peptide (Cyc-TAT), in which the final ring-closing step is accomplished by hybridization of two short complementary γPNA segments, has been proven more efficient than its linear analogues at entering cells. As Cyc-TAT also readily accommodates a binding site, that is, an overhanging γPNA sequence, for codelivery of functional nucleic acid probes into cells, we were able to demonstrate that the overhang-Cyc-TAT penetrated into A549 cells when carrying an anti-telomerase γPNA that specifically reduced telomerase activity by over 97 %. Herein, we report that the cyclized TAT(FAM) can escape endosomes much more efficiently than the linear TAT(FAM) after LED illumination (490 nm). Based on this observation, the endosomal release of overhang-Cyc-TAT(FAM)/anti-telomerase γPNA complex can be greatly enhanced by photoactivation, thus shortening cell treatment time from 60 to 3 h, while keeping the same high efficiency in inhibiting telomerase activity inside A549 cells.


Assuntos
Endossomos/metabolismo , Produtos do Gene tat/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Peptídeos/metabolismo , Tionucleotídeos/metabolismo , Células A549 , Ciclização , Citosol/metabolismo , Humanos
16.
Pharmazie ; 73(12): 715-720, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30522555

RESUMO

Tumstatin7 (CNYYSNS) is an antitumor peptide derived from the NC1 domain of Type IV collagen that has been associated with tumor angiogenesis. In this work, we generated a peptide composed of tumstatin7 fused to TAT, a cell-internalizing peptide consisting of 11 amino acids. Tumstatin7-TAT was internalized by cells and triggered cell death. The new peptide was more potent in inducing B16F10 melanoma cell apoptosis in vitro than the shorter tumstatin7. Whereas tumstatin7-TAT significantly reduced tumor cell viability, tumstatin7 showed only weak effects even at the highest treatment concentration applied. Both tumstatin7-TAT and tumstatin7 inhibited cell migration in an in vitro wound healing model, and the former was more effective than the latter in inhibiting tumor growth in vivo. Combining the cell-internalizing property of TAT with the tumor-specific property of tumstatin7 may provide a useful adjunct to tumor therapy.


Assuntos
Autoantígenos/farmacologia , Colágeno Tipo IV/farmacologia , Produtos do Gene tat/metabolismo , Melanoma Experimental/tratamento farmacológico , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autoantígenos/administração & dosagem , Autoantígenos/química , Movimento Celular/efeitos dos fármacos , Colágeno Tipo IV/administração & dosagem , Colágeno Tipo IV/química , Feminino , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Peptídeos/química , Cicatrização/efeitos dos fármacos
17.
Biomater Sci ; 6(11): 3085-3095, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303500

RESUMO

Targeted delivery of nanomaterials to specific intracellular locations is essential for the development of many nanomaterials-based biological applications. Thus far the targeting performance has been limited due to various intracellular transport barriers, especially intracellular vesicle trapping. Here we report the application of permeation enhancers based on organic solvents in small percentage to enhance the intracellular targeted delivery of nanomaterials. Previously permeation enhancers based on organic solvents and ionic liquids have been used in overcoming biological transport barriers at tissue, organ, and cellular levels, but this strategy has so far rarely been examined for its potential in facilitating transport of nanometer-scale entities across intracellular barriers, particularly intracellular vesicle trapping. Using the cell nucleus as a model intracellular target and Tat peptide-conjugated quantum dots (QDs-Tat) as a model nanomaterial-based probe, we demonstrate that a small percentage (e.g. 1%) of organic solvent greatly enhances nucleus targeting specificity as well as increasing endocytosis-based cellular uptake of QDs. We combine vesicle colocalization (DiO dye staining), vesicle integrity (calcein dye release), and single-particle studies (pair-correlation function microscopy) to investigate the process of organic solvent-enhanced vesicle escape of QDs-Tat. The organic solvent based vesicle escape-enhancing approach is found to be not only very effective but minimally invasive, resulting in high vesicle escape efficiency with no significant disruption to the membrane integrity of either intracellular vesicles or cells. This approach drastically outperforms the commonly used vesicle escape-enhancing agent (i.e., chloroquine, whose enhancement effect is based on disrupting vesicle integrity) in both potency and minimal invasiveness. Finally, we apply organic solvent-based targeting enhancement to improve the intracellular delivery of the anticancer drug doxorubicin (DOX).


Assuntos
Portadores de Fármacos/química , Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , Espaço Intracelular/metabolismo , Compostos Orgânicos/química , Pontos Quânticos/química , Solventes/química , Transporte Biológico , Células HeLa , Humanos , Células MCF-7 , Permeabilidade
18.
Exp Cell Res ; 372(1): 73-82, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244178

RESUMO

The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings. We have shown here that TNF-alpha signaling regulates the phosphorylation of serine-5 and -7 in L-plastin which increases the actin bundling capacity of L-plastin and hence the formation of nascent sealing zones in mouse osteoclasts. Using the TAT-mediated transduction method, we confirmed the role of L-plastin in nascent sealing zones formation at the early phase of the sealing ring assembly. Transduction of TAT-fused full-length L-plastin peptide significantly increases the number of nascent sealing zones and therefore sealing rings. But, transduction of amino-terminal L-plastin peptides consisting of the serine-5 and -7 reduces the formation of both nascent sealing zones and sealing rings. Therefore, bone resorption in vitro was reduced considerably. The decrease was associated with the selective inhibition of cellular L-plastin phosphorylation by the transduced peptides. Neither the formation of podosomes nor the migration was affected in these osteoclasts. Phosphorylation of L- plastin on serine 5 and -7 residues increases the F-actin bundling capacity. The significance of our studies stands on laying the groundwork for a better understanding of L-plastin as a potential regulator at the early phase of sealing ring formation and could be a new therapeutic target to treat bone loss.


Assuntos
Citoesqueleto de Actina/metabolismo , Reabsorção Óssea/genética , Osteoclastos/metabolismo , Fosfoproteínas/genética , Serina/metabolismo , Fator de Necrose Tumoral alfa/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proteínas do Citoesqueleto , Fêmur/citologia , Fêmur/metabolismo , Regulação da Expressão Gênica , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Osteoclastos/citologia , Peptídeos/genética , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Podossomos/metabolismo , Podossomos/ultraestrutura , Cultura Primária de Células , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transdução Genética , Fator de Necrose Tumoral alfa/metabolismo
19.
J Cell Mol Med ; 22(3): 1601-1613, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29265583

RESUMO

Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA.


Assuntos
Trifosfato de Adenosina/biossíntese , Fibroblastos/enzimologia , Produtos do Gene tat/genética , Metilmalonil-CoA Mutase/genética , Mitocôndrias/enzimologia , Proteínas Recombinantes de Fusão/genética , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroblastos/patologia , Expressão Gênica , Produtos do Gene tat/metabolismo , Terapia Genética/métodos , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/patologia , Potencial da Membrana Mitocondrial , Ácido Metilmalônico/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Engenharia de Proteínas/métodos , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
20.
Colloids Surf B Biointerfaces ; 162: 326-334, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223647

RESUMO

We developed a high-efficiency nucleus-targeted co-delivery vector that delivers genes and drugs directly into the nucleus of cancer cells. The system is based on grafted poly-(N-3-carbobenzyloxy-lysine) (CPCL) with transactivator of transcription (TAT)- chitosan on the surface. It is designed to perform highly efficient nucleus- targeted gene and drug co-delivery. Confocal laser scanning microscopy (CLSM) revealed that more TAT-CPCL entered the nucleus than does CPCL alone. The TAT-modified vector serves as a gene and drug co-delivery mechanism to achieve high gene transfection efficiency, high apoptosis and low viability in HeLa cells. TAT-CPCL may become a vector for cancer gene treatment and a template for designing better co-deliver systems.


Assuntos
Núcleo Celular/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos , Produtos do Gene tat/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/química , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Doxorrubicina/farmacologia , Produtos do Gene tat/genética , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Micelas , Tamanho da Partícula , Polilisina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA