Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Bioorg Med Chem Lett ; 111: 129880, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996941

RESUMO

Viral infectivity factor (Vif) has been recognized as a new therapeutic target for human immunodeficiency virus-1 (HIV-1) infected patients. In our previous work, we have synthesized a novel class of Vif inhibitors with 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold, which show obvious activity in HIV-1 infected cells and are also effective against drug-resistant strains. Proteolytic targeting chimera (PROTAC) utilizes the ubiquitin-proteasome system to degrade target proteins, which is well established in the field of cancer, but the antiviral PROTAC molecules are rarely reported. In order to explore the effectiveness of PROTAC in the antiviral area, we designed and synthesized a series of degrader of HIV-1 Vif based on 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold. Among them, L15 can degrade Vif protein obviously in a dose-dependent manner and shows certain antivirus activity. Meanwhile, molecular dynamics simulation indicated that the ternary complex formed by L15, Vif, and E3 ligase adopted a reasonable binding mode and maintained a stable interaction. This provided a molecular basis and prerequisite for the selective degradation of the Vif protein by L15. This study reports the HIV-1 Vif PROTAC for the first time and represents the proof-of-concept of PROTACs-based antiviral drug discovery in the field of HIV/ acquired immune deficiency syndrome (AIDS).


Assuntos
Fármacos Anti-HIV , HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , HIV-1/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/síntese química , Descoberta de Drogas , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Proteólise/efeitos dos fármacos , Simulação de Dinâmica Molecular
2.
J Biochem ; 176(3): 205-215, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38740386

RESUMO

The viral infectivity factor (Vif) of human immunodeficiency virus 1 forms a complex with host proteins, designated as Vif-CBFß-ELOB-ELOC-CUL5 (VßBCC), initiating the ubiquitination and subsequent proteasomal degradation of the human antiviral protein APOBEC3G (A3G), thereby negating its antiviral function. Whilst recent cryo-electron microscopy (cryo-EM) studies have implicated RNA molecules in the Vif-A3G interaction that leads to A3G ubiquitination, our findings indicated that the VßBCC complex can also directly impede A3G-mediated DNA deamination, bypassing the proteasomal degradation pathway. Employing the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we have identified RNA aptamers with high affinity for the VßBCC complex. These aptamers not only bind to the VßBCC complex but also reinstate A3G's DNA deamination activity by inhibiting the complex's function. Moreover, we delineated the sequences and secondary structures of these aptamers, providing insights into the mechanistic aspects of A3G inhibition by the VßBCC complex. Analysis using selected aptamers will enhance our understanding of the inhibition of A3G by the VßBCC complex, offering potential avenues for therapeutic intervention.


Assuntos
Aptâmeros de Nucleotídeos , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Desaminase APOBEC-3G/metabolismo , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/química , Subunidade beta de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/química , Técnica de Seleção de Aptâmeros , HIV-1/metabolismo , Proteínas Culina
3.
Nat Struct Mol Biol ; 31(10): 1492-1501, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789685

RESUMO

HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFß to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFß-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.


Assuntos
Microscopia Crioeletrônica , HIV-1 , Modelos Moleculares , Proteína Fosfatase 2 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/química , Humanos , HIV-1/metabolismo , Ligação Proteica , Subunidade beta de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/genética , Proteólise , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Sítios de Ligação , Células HEK293 , Conformação Proteica , Elonguina
4.
Viruses ; 16(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675833

RESUMO

One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFß E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFß interaction based on the sequences of Vif mutants with higher affinity for CBFß screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 µM and 55.1 µM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFß. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFß over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFß interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.


Assuntos
Fármacos Anti-HIV , Subunidade beta de Fator de Ligação ao Core , HIV-1 , Peptídeos , Ligação Proteica , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Humanos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Células HEK293 , Subunidade beta de Fator de Ligação ao Core/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/química , Fármacos Anti-HIV/farmacologia , Replicação Viral/efeitos dos fármacos , Desenho de Fármacos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo
5.
Virus Res ; 341: 199323, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237808

RESUMO

Virion infectivity factor (Vif), an accessory protein of HIV-1 (human immunodeficiency virus type 1), antagonizes host APOBEC3 protein (apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3) or A3 via proteasomal degradation, facilitating viral replication. HLA (Human leukocyte antigens) alleles, host restriction factors, and error-prone reverse transcription contribute to the global polymorphic dynamics of HIV, impacting effective vaccine design. Our computational analysis of over 50,000 HIV-1 M vif sequences from the Los Alamos National Laboratory (LANL) database (1998-2021) revealed positive selection pressure on the vif gene (nonsynonymous to synonymous ratio, dn/ds=1.58) and an average entropy score of 0.372 in protein level. Interestingly, over the years (1998-2021), a decreasing trend of dn/ds (1.68 to 1.47) and an increasing trend of entropy (0.309 to 0.399) was observed. The predicted mutational frequency against Vif consensus sequence decreased over time (slope = -0.00024, p < 0.0001). Sequence conservation was observed in Vif functional motifs F1, F2, F3, G, BC box, and CBF ß binding region, while variability was observed mainly in N- and C- terminal and Zinc finger region, which were dominantly under immune pressure by host HLA-I-restricted CD8+ T cell. Computational analysis of ∆∆Gstability through protein stability prediction tools suggested that missense mutation may affect Vif stability, especially in the Vif-A3 binding interface. Notably, mutations R17K and Y44F in F1 and G box were predicted to destabilize the Vif-A3 binding interface by altering bond formations with adjacent amino acids. Therefore, our analysis demonstrates Vif adaptation with host physiology by maintaining sequence conservation, especially in A3 interacting functional motifs, highlighting important therapeutic candidate regions of Vif against HIV-1 infections.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Mutação de Sentido Incorreto , Polimorfismo Genético , Ligação Proteica , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
6.
mBio ; 14(4): e0078223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555667

RESUMO

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Citidina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Ligação Proteica , Desaminase APOBEC-3G/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Linhagem Celular , Células Mieloides/metabolismo , Vírion/metabolismo , Desaminases APOBEC/metabolismo
7.
J Biol Chem ; 298(4): 101805, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259395

RESUMO

HIV-1 encodes accessory proteins that neutralize antiviral restriction factors to ensure its successful replication. One accessory protein, the HIV-1 viral infectivity factor (Vif), is known to promote ubiquitination and proteasomal degradation of the antiviral restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), a cytosine deaminase that leads to hypermutations in the viral DNA and subsequent aberrant viral replication. We have previously demonstrated that the HIV-1 viral transcription mediator Tat activates the host progrowth PI-3-AKT pathway, which in turn promotes HIV-1 replication. Because the HIV-1 Vif protein contains the putative AKT phosphorylation motif RMRINT, here we investigated whether AKT directly phosphorylates HIV-1 Vif to regulate its function. Coimmunoprecipitation experiments showed that AKT and Vif interact with each other, supporting this hypothesis. Using in vitro kinase assays, we further showed that AKT phosphorylates Vif at threonine 20, which promotes its stability, as Vif becomes destabilized after this residue is mutated to alanine. Moreover, expression of dominant-negative kinase-deficient AKT as well as treatment with a chemical inhibitor of AKT increased K48-ubiquitination and proteasomal degradation of HIV-1 Vif. In contrast, constitutively active AKT (Myr-AKT) reduced K48-ubiquitination of Vif to promote its stability. Finally, inhibition of AKT function restored APOBEC3G levels, which subsequently reduced HIV-1 infectivity. Thus, our results establish a novel mechanism of HIV-1 Vif stabilization through AKT-mediated phosphorylation at threonine 20, which reduces APOBEC3G levels and potentiates HIV-1 infectivity.


Assuntos
Desaminase APOBEC-3G , Infecções por HIV , HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treonina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
8.
Front Immunol ; 12: 740713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630422

RESUMO

Hijacking host ubiquitin pathways is essential for the replication of diverse viruses. However, the role of deubiquitinating enzymes (DUBs) in the interplay between viruses and the host is poorly characterized. Here, we demonstrate that specific DUBs are potent inhibitors of viral proteins from HIVs/simian immunodeficiency viruses (SIVs) that are involved in viral evasion of host restriction factors and viral replication. In particular, we discovered that T cell-functioning ubiquitin-specific protease 8 (USP8) is a potent and specific inhibitor of HIV-1 virion infectivity factor (Vif)-mediated apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3)G (A3G) degradation. Ectopic expression of USP8 inhibited Vif-induced A3G degradation and suppressed wild-type HIV-1 infectivity even in the presence of Vif. In addition, specific DUBs repressed Vpr-, Vpu-, and Vpx-triggered host restriction factor degradation. Our study has revealed a previously unrecognized interplay between the host's DUBs and viral replication. Enhancing the antiviral activity of DUBs therefore represents an attractive strategy against HIVs/SIVs.


Assuntos
Desaminase APOBEC-3G/metabolismo , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Resistência à Doença , Células HEK293 , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Primatas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Ubiquitinação , Tropismo Viral , Virulência , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
9.
J Virol ; 95(23): e0117021, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523960

RESUMO

Vif is a lentiviral accessory protein that counteracts the antiviral activity of cellular APOBEC3 (A3) cytidine deaminases in infected cells. The exact contribution of each member of the A3 family for the restriction of HIV-2 is still unclear. Thus, the aim of this work was to identify the A3s with anti-HIV-2 activity and compare their restriction potential for HIV-2 and HIV-1. We found that A3G is a strong restriction factor of both types of viruses and A3C restricts neither HIV-1 nor HIV-2. Importantly, A3B exhibited potent antiviral activity against HIV-2, but its effect was negligible against HIV-1. Whereas A3B is packaged with similar efficiency into both viruses in the absence of Vif, HIV-2 and HIV-1 differ in their sensitivity to A3B. HIV-2 Vif targets A3B by reducing its cellular levels and inhibiting its packaging into virions, whereas HIV-1 Vif did not evolve to antagonize A3B. Our observations support the hypothesis that during wild-type HIV-1 and HIV-2 infections, both viruses are able to replicate in host cells expressing A3B but using different mechanisms, probably resulting from a Vif functional adaptation over evolutionary time. Our findings provide new insights into the differences between Vif protein and their cellular partners in the two human viruses. Of note, A3B is highly expressed in some cancer cells and may cause deamination-induced mutations in these cancers. Thus, A3B may represent an important therapeutic target. As such, the ability of HIV-2 Vif to induce A3B degradation could be an effective tool for cancer therapy. IMPORTANCE Primate lentiviruses encode a series of accessory genes that facilitate virus adaptation to its host. Among those, the vif-encoded protein functions primarily by targeting the APOBEC3 (A3) family of cytidine deaminases. All lentiviral Vif proteins have the ability to antagonize A3G; however, antagonizing other members of the A3 family is variable. Here, we report that HIV-2 Vif, unlike HIV-1 Vif, can induce degradation of A3B. Consequently, HIV-2 Vif but not HIV-1 Vif can inhibit the packaging of A3B. Interestingly, while A3B is packaged efficiently into the core of both HIV-1 and HIV-2 virions in the absence of Vif, it only affects the infectivity of HIV-2 particles. Thus, HIV-1 and HIV-2 have evolved two distinct mechanisms to antagonize the antiviral activity of A3B. Aside from its antiviral activity, A3B has been associated with mutations in some cancers. Degradation of A3B by HIV-2 Vif may be useful for cancer therapies.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , HIV-1/metabolismo , HIV-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Animais , Citidina Desaminase/genética , Células HEK293 , Infecções por HIV , Humanos , Antígenos de Histocompatibilidade Menor/genética , Receptor EphB2
10.
Eur J Med Chem ; 224: 113680, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245947

RESUMO

The viral infectivity factor (Vif)-apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) axis has been recognized as a valid target for developing novel small-molecule therapies for acquired immune deficiency syndrome (AIDS) or for enhancing innate immunity against viruses. Our previous work reported the novel Vif antagonist 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide (2) with strong antiviral activity. In this work, through optimizations of ring C of 2, we discovered the more potent compound 6m with an EC50 of 0.07 µM in non-permissive H9 cells, reflecting an approximately 5-fold enhancement of antiviral activity compared to that of 2. Western blotting indicated that 6m more strongly suppressed the defensive protein Vif than 2 at the same concentration. Furthermore, 6m suppressed the replication of various clinical drug-resistant HIV strains (FI, NRTI, NNRTI, IN and PI) with relatively high efficacy. These results suggested that compound 6m is a more potent candidate for treating AIDS.


Assuntos
Desaminase APOBEC-3G/metabolismo , Fármacos Anti-HIV/química , HIV-1/metabolismo , ortoaminobenzoatos/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
11.
Viruses ; 13(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916704

RESUMO

The ubiquitin-proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.


Assuntos
Desaminase APOBEC-3G/antagonistas & inibidores , HIV-1/genética , Interações entre Hospedeiro e Microrganismos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/química , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
12.
J Biol Chem ; 296: 100045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465707

RESUMO

The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called the virion infectivity factor (Vif), which recruits A3 proteins to cullin-RING E3 ubiquitin ligases such as cullin-5 (Cul5) for ubiquitylation and subsequent proteasomal degradation. Although Vif proteins from primate lentiviruses such as HIV-1 utilize the transcription factor core-binding factor subunit beta as a noncanonical cofactor to stabilize the complex, the maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Because core-binding factor subunit beta and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for the MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that although some common motifs between the HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in the MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.


Assuntos
Vírus Visna-Maedi/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Proteínas Culina/metabolismo , Ciclofilina A/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Zinco/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
13.
Virology ; 554: 17-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333348

RESUMO

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , HIV-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas dos Retroviridae/metabolismo , Spumavirus/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elonguina/genética , Elonguina/metabolismo , Produtos do Gene vif/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Vírus da Imunodeficiência Símia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo
14.
Viruses ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751972

RESUMO

Macrophages are the first line of defence against invading pathogens. They play a crucial role in immunity but also in regeneration and homeostasis. Their remarkable plasticity in their phenotypes and function provides them with the ability to quickly respond to environmental changes and infection. Recent work shows that macrophages undergo cell cycle transition from a G0/terminally differentiated state to a G1 state. This G0-to-G1 transition presents a window of opportunity for HIV-1 infection. Macrophages are an important target for HIV-1 but express high levels of the deoxynucleotide-triphosphate hydrolase SAMHD1, which restricts viral DNA synthesis by decreasing levels of dNTPs. While the G0 state is non-permissive to HIV-1 infection, a G1 state is very permissive to HIV-1 infection. This is because macrophages in a G1 state switch off the antiviral restriction factor SAMHD1 by phosphorylation, thereby allowing productive HIV-1 infection. Here, we explore the macrophage cell cycle and the interplay between its regulation and permissivity to HIV-1 infection.


Assuntos
Ciclo Celular , HIV-1/fisiologia , Macrófagos/fisiologia , Macrófagos/virologia , Animais , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Dano ao DNA , Fase G1 , Bactérias Gram-Negativas/imunologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Macrófagos/imunologia , Fosforilação , Fase de Repouso do Ciclo Celular , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
15.
J Biol Chem ; 295(43): 14592-14605, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32817167

RESUMO

HIV remains a health challenge worldwide, partly because of the continued development of resistance to drugs. Therefore, it is urgent to find new HIV inhibitors and targets. Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3) are important host restriction factors that inhibit HIV-1 replication by their cytidine deaminase activity. HIV-1 viral infectivity factor (Vif) promotes proteasomal degradation of APOBEC3 proteins by recruiting the E3 ubiquitin ligase complex, in which core-binding factor ß (CBFß) is a necessary molecular chaperone. Interrupting the interaction between Vif and CBFß can release APOBEC3 proteins to inhibit HIV-1 replication and may be useful for developing new drug targets for HIV-1. In this study, we identified a potent small molecule inhibitor CBFß/Vif-3 (CV-3) of HIV-1 replication by employing structure-based virtual screening using the crystal structure of Vif and CBFß (PDB: 4N9F) and validated CV-3's antiviral activity. We found that CV-3 specifically inhibited HIV-1 replication (IC50 = 8.16 µm; 50% cytotoxic concentration >100 µm) in nonpermissive lymphocytes. Furthermore, CV-3 treatment rescued APOBEC3 family members (human APOBEC3G (hA3G), hA3C, and hA3F) in the presence of Vif and enabled hA3G packaging into HIV-1 virions, which resulted in Gly-to-Ala hypermutations in viral genomes. Finally, we used FRET to demonstrate that CV-3 inhibited the interaction between Vif and CBFß by simultaneously forming hydrogen bonds with residues Gln-67, Ile-102, and Arg-131 of CBFß. These findings demonstrate that CV-3 can effectively inhibit HIV-1 by blocking the interaction between Vif and CBFß and that this interaction can serve as a new target for developing HIV-1 inhibitors.


Assuntos
Desaminases APOBEC/metabolismo , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Subunidade beta de Fator de Ligação ao Core/metabolismo , HIV-1/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
16.
mBio ; 11(2)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345636

RESUMO

Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a "super restriction factor" that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity-recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif.IMPORTANCE As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV.


Assuntos
Antivirais , Citidina Desaminase/farmacologia , HIV-1/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Citidina Desaminase/síntese química , Citidina Desaminase/química , Citidina Desaminase/genética , Enzimas de Restrição do DNA/síntese química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/farmacologia , HIV-1/imunologia , Humanos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
17.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941780

RESUMO

Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFß) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFß. Only mutants that retained the ability to bind CBFß exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFß and wild-type Vif. Furthermore, overexpression of CBFß counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFß as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFß), which is expressed in cells in limiting quantities. Overexpression of CBFß neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFß, phenocopied the D/N Vif phenotype by sequestering endogenous CBFß. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.


Assuntos
Desaminase APOBEC-3G/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Ligação Competitiva , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas Culina/metabolismo , Elonguina/metabolismo , Genes Dominantes , Células HEK293 , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Mutação , Fenótipo , Vírion
18.
Protein Sci ; 29(2): 391-406, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31518043

RESUMO

Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.


Assuntos
Citidina Desaminase/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Desaminases APOBEC , Cristalografia por Raios X , Citidina Desaminase/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
19.
Arch Virol ; 164(5): 1353-1360, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859472

RESUMO

Animal cells have multiple innate effector mechanisms that inhibit viral replication. For the pathogenic retrovirus human immunodeficiency virus 1 (HIV-1), there are widely expressed restriction factors, such as APOBEC3 proteins, tetherin/BST2, SAMHD1 and MX2, as well as TRIM5α. We previously found that the TRIM5α gene clearly affects SIVmac or HIV-2 replication, but the major determinant of the combinatorial effect caused by multiple host restriction factors is still not fully clear. APOBEC3G (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G), a host restriction factor that restricts HIV replication by causing cytosine deamination, can be targeted and degraded by the SIV/HIV-1/HIV-2 accessory protein Vif. Although rhesus macaques are widely used in HIV/AIDS research, little is known regarding the impact of APOBEC3G gene polymorphisms on viral Vif-mediated ubiquitin degradation in Chinese-origin rhesus macaques. In this study, we therefore genotyped APOBEC3G in 35 Chinese rhesus macaques. We identified a novel transcript and 27 APOBEC3G polymorphisms, including 20 non-synonymous variants and 7 synonymous mutation sites, of which 10 were novel. According to the predicted structure of the A3G protein, we predicted that the E88K and G212D mutations, both on the surface of the A3G protein, would have a significant effect on Vif-induced A3G degradation. However, an in vitro overexpression assay showed that these mutations did not influence HIV-2-Vif-mediated degradation of APOBEC3G. Unexpectedly, another polymorphism L71R, conferred resistance to Vif-mediated ubiquitin degradation, strongly suggesting that L71R might play an important role in antiviral defense mechanisms.


Assuntos
Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , HIV-2/genética , Replicação Viral/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , China , Citosina Desaminase/genética , Células HEK293 , HIV-2/crescimento & desenvolvimento , Humanos , Macaca mulatta , Polimorfismo Genético/genética , Alinhamento de Sequência , Ubiquitinação
20.
Biochem Biophys Res Commun ; 511(4): 910-915, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30851937

RESUMO

Interaction between HIV-1 Vif and host factor CBFß leads to the assembly of the Vif-Cul5-EloB/C ubiquitin ligase (E3 complex). By inducing the formation of E3 complex, Vif depletes host APOBEC3 restriction factors and promotes HIV-1 infection. In addition, Vif is known to arrest host cells at G2/M phase (G2 arrest), benefiting HIV-1 replication and contributing to the depletion of CD4+ T cells. However, whether CBFß is also involved in Vif-induced cell cycle arrest remains unclear. In the present study, we report that CBFß is an essential factor for Vif-induced G2 arrest. Reducing endogenous CBFß expression significantly compromised Vif's potency in cell cycle regulation. In addition, tests with CBFß and Vif mutants indicated that Vif-CBFß interaction is crucial for Vif to induce G2 arrest. Furthermore, suppressors against Vif-hijacked E3 complex or proteasome-mediated proteolysis also abolished Vif's ability to cause G2 arrest. In general, our data indicated that Vif induces G2 arrest through depletion of a yet-unknown cellular factor, where the involvement of CBFß is essential. On the other hand, our data also suggested that, antiviral drugs targeting the Vif-CBFß interaction have the potential to abolish Vif's ability to cause APOBEC3 degradation as well as G2 arrest in host cells, thus reducing both HIV-1 replication and Vif-induced CD4+ T-cell depletion.


Assuntos
Subunidade beta de Fator de Ligação ao Core/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Infecções por HIV/metabolismo , HIV-1/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno , Humanos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA