Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Kidney Int ; 103(3): 529-543, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565808

RESUMO

Chronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death. Several in vitro studies have unraveled the molecular pathways driving the cytopathic effects of Vpr in tubular epithelial cells. However, the in vivo effects of Vpr on tubular injury and CKD pathogenesis have not been thoroughly investigated. Here, we use a novel inducible tubular epithelial cell-specific Vpr transgenic mouse model to show that Vpr expression leads to progressive tubulointerstitial damage, interstitial inflammation and fibrosis, and tubular cyst development. Importantly, Vpr-expressing tubular epithelial cells displayed significant hypertrophy, aberrant cell division, and atrophy; all reminiscent of tubular injuries observed in human HIV-associated nephropathy (HIVAN). Single-cell RNA sequencing analysis revealed the Vpr-mediated transcriptomic responses in specific tubular subsets and highlighted the potential multifaceted role of p53 in the regulation of cell metabolism, proliferation, and death pathways in Vpr-expressing tubular epithelial cells. Thus, our study demonstrates that HIV Vpr expression in tubular cells is sufficient to induce HIVAN-like tubulointerstitial damage and fibrosis, independent of glomerulosclerosis and proteinuria. Additionally, as this new mouse model develops progressive CKD with diffuse fibrosis and kidney failure, it can serve as a useful tool to examine the mechanisms of kidney disease progression and fibrosis in vivo.


Assuntos
Nefropatia Associada a AIDS , Produtos do Gene vpr , Infecções por HIV , HIV-1 , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Nefropatia Associada a AIDS/genética , Modelos Animais de Doenças , Produtos do Gene vpr/genética , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/farmacologia , Infecções por HIV/complicações , HIV-1/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana , Camundongos Transgênicos , Insuficiência Renal Crônica/complicações
2.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776272

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages.IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell's protein degradation machinery.


Assuntos
Antivirais/metabolismo , HIV-1/metabolismo , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/fisiologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Cultura Primária de Células , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
3.
Nat Microbiol ; 3(12): 1354-1361, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297740

RESUMO

Host factors that silence provirus transcription in CD4+ memory T cells help HIV-1 escape eradication by the host immune system and by antiviral drugs1. These same factors, however, must be overcome for HIV-1 to propagate. Here we show that Vpx and Vpr encoded by diverse primate immunodeficiency viruses activate provirus transcription. Vpx and Vpr are adaptor proteins for the DCAF1-CUL4A/B E3 ubiquitin ligase that degrade SAMHD1 and increase reverse transcription2-4. Nonetheless, Vpx and Vpr have effects on reporter gene expression that are not explained by SAMHD1 degradation5-8. A screen for factors that mimic these effects identified the human silencing hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN) and MORC29-13. Vpx associated with the HUSH complex and decreased steady-state level of these proteins in a DCAF1/CUL4A/B/proteasome-dependent manner14,15. Replication kinetics of HIV-1 and SIVMAC was accelerated to a similar extent by vpx or FAM208A knockdown. Finally, vpx increased steady-state levels of LINE-1 ORF1p, as previously described for FAM208A disruption11. These results demonstrate that the HUSH complex represses primate immunodeficiency virus transcription, and that, to counteract this restriction, viral Vpx or Vpr proteins degrade the HUSH complex.


Assuntos
Produtos do Gene vpr/metabolismo , Lentivirus de Primatas/metabolismo , Provírus/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antígenos de Neoplasias , Proteínas de Transporte , Proteínas Culina , Produtos do Gene vpr/genética , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , Humanos , Lentivirus de Primatas/genética , Proteínas Nucleares , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Proteínas Virais Reguladoras e Acessórias/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
4.
Molecules ; 23(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049955

RESUMO

HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69⁻75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.


Assuntos
Produtos do Gene vpr/química , Produtos do Gene vpr/metabolismo , Infecções por HIV/virologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/fisiologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
5.
PLoS One ; 10(8): e0135633, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270987

RESUMO

Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis.


Assuntos
Astrócitos/enzimologia , Regulação da Expressão Gênica/fisiologia , Produtos do Gene vpr/metabolismo , HIV-1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Células Cultivadas , Produtos do Gene vpr/genética , Humanos , Imuno-Histoquímica , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
6.
Retrovirology ; 11: 45, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912525

RESUMO

BACKGROUND: The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS: Here, we have identified transforming growth factor-ß-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS: HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.


Assuntos
Produtos do Gene vpr/metabolismo , HIV-1/fisiologia , MAP Quinase Quinase Quinases/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , Linhagem Celular Tumoral , Produtos do Gene vpr/genética , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/genética , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Transcrição AP-1/genética , Ubiquitinação , Replicação Viral
7.
PLoS One ; 8(11): e80414, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282540

RESUMO

Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3ß, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.


Assuntos
Proteínas 14-3-3/fisiologia , Linfócitos B/imunologia , Switching de Imunoglobulina/genética , Recombinação Genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citidina Desaminase/metabolismo , Produtos do Gene vpr/metabolismo , Humanos , Região de Troca de Imunoglobulinas , Modelos Genéticos , Modelos Moleculares , Imagem Óptica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Uracila-DNA Glicosidase/metabolismo
8.
Sci Transl Med ; 5(213): 213ra164, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285483

RESUMO

Viral infections, such as HIV, have been linked to obesity, but mechanistic evidence that they cause adipose dysfunction in vivo is lacking. We investigated a pathogenic role for the HIV-1 accessory protein viral protein R (Vpr), which can coactivate the glucocorticoid receptor (GR) and co-repress peroxisome proliferator-activated receptor γ (PPARγ) in vitro, in HIV-associated adipose dysfunction. Vpr circulated in the blood of most HIV-infected patients tested, including those on antiretroviral therapy (ART) with undetectable viral load. Vpr-mediated mechanisms were dissected in vivo using mouse models expressing the Vpr transgene in adipose tissues and liver (Vpr-Tg) or infused with synthetic Vpr. Both models demonstrated accelerated whole-body lipolysis, hyperglycemia and hypertriglyceridemia, and tissue-specific findings. Fat depots in these mice had diminished mass, macrophage infiltration, and blunted PPARγ target gene expression but increased GR target gene expression. In liver, we observed blunted PPARα target gene expression, steatosis with decreased adenosine monophosphate-activated protein kinase activity, and insulin resistance. Similar to human HIV-infected patients, Vpr circulated in the serum of Vpr-Tg mice. Vpr blocked differentiation in preadipocytes through cell cycle arrest, whereas in mature adipocytes, it increased lipolysis with reciprocally altered association of PPARγ and GR with their target promoters. These results delineate a distinct pathogenic sequence: Vpr, released from HIV-1 in tissue reservoirs after ART, can disrupt PPAR/GR co-regulation and cell cycle control to produce adipose dysfunction and hepatosteatosis. Confirmation of these mechanisms in HIV patients could lead to targeted treatment of the metabolic complications with Vpr inhibitors, GR antagonists, or PPARγ/PPARα agonists.


Assuntos
Produtos do Gene vpr/metabolismo , HIV-1/metabolismo , Receptores de Glucocorticoides/metabolismo , Células 3T3-L1 , Animais , Cromatografia em Camada Fina , Ensaio de Imunoadsorção Enzimática , Produtos do Gene vpr/genética , HIV-1/genética , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/metabolismo , Receptores de Glucocorticoides/agonistas
9.
Virus Res ; 167(2): 358-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22691542

RESUMO

Patients infected with human immunodeficiency virus type 1 (HIV-1) often display neurological complications in late stage disease and increased viral loads directly correlated with higher concentrations of extracellular HIV-1 viral protein r (Vpr) in the blood serum and cerebrospinal fluid. Additionally, HIV-1-infected patients with a low CD4+ T-lymphocyte count displayed lower concentrations of reduced glutathione (GSH), the main intracellular antioxidant molecule, and lower level of survival. To establish a correlation between increased concentrations of extracellular Vpr and an oxidative stress-induced phenotype, the U-87 MG astroglioma cell line has been used to determine the downstream effects induced by Vpr. Conditioned media obtained from the human endothelial kidney (HEK) 293 T cell line transfected either in the absence or presence of HIV-1 Vpr contained free Vpr. Exposure of U-87 MG to this conditioned media decreased intracellular levels of both adenosine triphosphate (ATP) and GSH. These observations were recapitulated using purified recombinant HIV-1 Vpr both in U-87 MG and primary human fetal astrocytes in a dose- and time-dependent manner. Vpr-induced oxidative stress could be partly restored by co-treatment with the antioxidant molecule N-acetyl-cysteine (NAC). In addition, free Vpr augmented production of reactive oxygen species due to an increase in the level of oxidized glutathione (GSSG). This event was almost entirely suppressed by treatment with an anti-Vpr antibody or co-treatment with NAC. These studies confirm a role of extracellular Vpr in impairing astrocytic levels of intracellular ATP and GSH. Studies are underway to better understand the intricate correlation between reductions in ATP and GSH metabolites and how they affect neuronal survival in end-stage disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Astrócitos/virologia , Produtos do Gene vpr/metabolismo , Glutationa/metabolismo , HIV-1/patogenicidade , Fatores de Virulência/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Citoplasma/química , Humanos
10.
Zhonghua Zhong Liu Za Zhi ; 32(10): 725-8, 2010 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21163059

RESUMO

OBJECTIVE: To study the anti-glioma effect of recombinant adenovirus mediated combined gene therapy of bFGF-siRNA and HIV1-Vpr in vivo. METHODS: Mouse glioma model was established by injecting 5 × 10(6) LN229 cells into BALB/c-nu nude mice. 30 nude mice were randomly divided into 5 groups: the negative control group, mock group, bFGF-siRNA group, Vpr group and combined therapy group, which at regular intervals were injected with PBS, rAd5-null, rAd5-bFGF-siRNA, rAd5-Vpr, rAd5-bFGF-siRNA plus rAd5-Vpr, respectively. The tumor volume was recorded every third day to draw a growth curve. After four weeks treatment, the mice were killed and specimens were taken. HE, immunohistochemical and TUNEL staining were performed to observe the cell morphology, detect the changes of relevant target proteins and cell apoptosis, respectively. Also the ultrastructural changes were observed by electron microscopy. RESULTS: The tumor growth inhibition rates were 36.9%, 37.2% and 58.6% in the bFGF-siRNA group, Vpr group and combined therapy group, respectively, and the combined therapy group showed the most significant effect (P < 0.05). Also the results of HE, immunohistochemical and TUNEL staining revealed that the combined therapy group had the best effects on proliferation inhibition and apoptosis induced in glioma cells (P < 0.05). The most significant ultrastructural changes were observed in the combined therapy group. CONCLUSION: The combined gene therapy of bFGF-siRNA with Vpr shows a prominent and synergistic anti-glioma effect compared with that of mono-gene therapy in nude mice.


Assuntos
Apoptose , Fator 2 de Crescimento de Fibroblastos/genética , Produtos do Gene vpr/genética , Glioma/terapia , RNA Interferente Pequeno/genética , Adenoviridae/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/metabolismo , Produtos do Gene vpr/metabolismo , Terapia Genética , Glioma/metabolismo , Glioma/patologia , HIV-1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Distribuição Aleatória , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
AIDS ; 24(8): 1107-19, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20404718

RESUMO

OBJECTIVE: HIV-associated nephropathy (HIVAN) is the most common cause of end-stage renal disease in persons with HIV/AIDS and is characterized by focal glomerulosclerosis and dysregulated renal tubular epithelial cell (RTEC) proliferation and apoptosis. HIV-1 viral protein r (Vpr) has been implicated in HIV-induced RTEC apoptosis but the mechanisms of Vpr-induced RTEC apoptosis are unknown. The aim of this study was therefore to determine the mechanisms of Vpr-induced apoptosis in RTEC. METHODS: Apoptosis and caspase activation were analyzed in human RTEC (HK2) after transduction with Vpr-expressing and control lentiviral vectors. Bax and BID were inhibited with lentiviral shRNA, and ERK activation was blocked with the MEK1,2 inhibitor, U0126. RESULTS: Vpr induced apoptosis as indicated by caspase 3/7 activation, PARP-1 cleavage and mitochondrial injury. Vpr activated both caspases-8 and 9. Inhibition of Bax reduced Vpr-induced apoptosis, as reported in other cell types. Additionally, Vpr-induced cleavage of BID to tBID and suppression of BID expression prevented Vpr-induced apoptosis. Since sustained ERK activation can activate caspase-8 in some cell types, we studied the role of ERK in Vpr-induced caspase-8 activation. Vpr induced sustained ERK activation in HK2 cells and incubation with U0126 reduced Vpr-induced caspase-8 activation, BID cleavage and apoptosis. We detected phosphorylated ERK in RTEC in HIVAN biopsy specimens by immunohistochemistry. CONCLUSIONS: These studies delineate a novel pathway of Vpr-induced apoptosis in RTEC, which is mediated by sustained ERK activation, resulting in caspase 8-mediated cleavage of BID to tBID, thereby facilitating Bax-mediated mitochondrial injury and apoptosis.


Assuntos
Nefropatia Associada a AIDS/metabolismo , Apoptose/fisiologia , Caspase 8/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Produtos do Gene vpr/metabolismo , HIV-1 , Falência Renal Crônica/metabolismo , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/virologia , Apoptose/genética , Caspase 8/genética , Proliferação de Células , Regulação Viral da Expressão Gênica , Produtos do Gene vpr/genética , Humanos , Falência Renal Crônica/genética , Falência Renal Crônica/virologia , Túbulos Renais/virologia , RNA Viral , Replicação Viral
12.
J Virol ; 84(3): 1585-96, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923179

RESUMO

During HIV-1 assembly, the viral protein R (Vpr) is incorporated into newly made viral particles via an interaction with the C-terminal domain of the Gag polyprotein precursor Pr55(Gag). Vpr has been implicated in the nuclear import of newly made viral DNA and subsequently in its transcription. In addition, Vpr can affect the cell physiology by causing G(2)/M cell cycle arrest and apoptosis. Vpr can form oligomers, but their roles have not yet been investigated. We have developed fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer-based assays to monitor the interaction between Pr55(Gag) and Vpr in HeLa cells. To that end, we used enhanced green fluorescent protein-Vpr that can be incorporated into the virus and tetracysteine (TC)-tagged Pr55(Gag)-TC. This TC motif is tethered to the C terminus of Pr55(Gag) and does not interfere with Pr55(Gag) trafficking and the assembly of virus-like particles (VLPs). Results show that the Pr55(Gag)-Vpr complexes accumulated mainly at the plasma membrane. In addition, results with Pr55(Gag)-TC mutants confirm that the (41)LXXLF domain of Gag-p6 is essential for Pr55(Gag)-Vpr interaction. We also report that Vpr oligomerization is crucial for Pr55(Gag) recognition and its accumulation at the plasma membrane. On the other hand, Pr55(Gag)-Vpr complexes are still formed when Pr55(Gag) carries mutations impairing its multimerization. These findings suggest that Pr55(Gag)-Vpr recognition and complex formation occur early during Pr55(Gag) assembly.


Assuntos
Produtos do Gene gag/metabolismo , Produtos do Gene vpr/metabolismo , HIV-1/metabolismo , Apoptose , Biopolímeros , Divisão Celular , Membrana Celular/metabolismo , Fase G2 , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica
14.
Cancer Biol Ther ; 8(2): 180-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19029839

RESUMO

Peptides that are capable of traversing the cell membrane, via protein transduction domains (PTDs), are attractive either directly as drugs or indirectly as carriers for the delivery of therapeutic molecules. For example, an HIV-1 Tat derived peptide has successfully delivered a large variety of "cargoes" including proteins, peptides and nucleic acids into cells when conjugate to the PTD. There also exists other naturally occurring membrane permeable peptides which have potential as PTDs. Specifically, one of the accessory proteins of HIV (viral protein R; i.e., Vpr), which is important in controlling viral pathogenesis, possesses cell transduction domain characteristics. Related to these characteristics, Vpr has also been demonstrated to induce cell cycle arrest and host/target cell apoptosis, suggesting a potential anti-cancer activity for this protein. In this report we assessed the ability of Vpr protein or peptides, with or without conjugation to a PTD, to mediate anti-cancer activity against several tumor cell lines. Specifically, several Vpr peptides spanning carboxy amino acids 65-83 induced significant (i.e., greater than 50%) in vitro growth inhibition/toxicity of murine B16.F10 melanoma cells. Likewise, in in vitro experiments with other tumor cell lines, conjugation of Vpr to the Tat derived PTD and transfection of this construct into cells enhanced the induction of in vitro apoptosis by this protein when compared to the effects of transfection of cells with unconjugated Vpr. These results underscore the potential for Vpr based reagents as well as PTDs to enhance anti-tumor activity, and warrants further examination of Vpr protein and derived peptides as potential therapeutic agents against progressive cell proliferative diseases such as cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos do Gene vpr/metabolismo , HIV-1/fisiologia , Peptídeos/farmacologia , Proteínas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Produtos do Gene vpr/genética , HIV-1/genética , Células HeLa , Humanos , Leucemia Monocítica Aguda/tratamento farmacológico , Masculino , Melanoma Experimental/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transdução Genética
15.
PLoS Pathog ; 4(5): e1000059, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18464893

RESUMO

Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4-based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.


Assuntos
Proteínas Culina/antagonistas & inibidores , Fluoresceínas/metabolismo , Produtos do Gene vpr/metabolismo , Macrófagos/virologia , Vírus da Imunodeficiência Símia/fisiologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Proteínas Culina/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Transdução de Sinais , Vírus da Imunodeficiência Símia/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/química
16.
J Virol ; 81(10): 5284-93, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17344301

RESUMO

Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin alpha alone, in an importin beta-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin alpha from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin alpha at low levels, whereas the expression of three major importin alpha isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin alpha is required for nuclear import of Vpr. Furthermore, interaction between importin alpha and the N-terminal alpha-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin alpha, preceding a novel nuclear import process, is a potential target for therapeutic intervention.


Assuntos
Transporte Ativo do Núcleo Celular , Produtos do Gene vpr/metabolismo , HIV-1/fisiologia , Macrófagos/virologia , Replicação Viral , alfa Carioferinas/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Expressão Gênica , Células HeLa , Humanos , Immunoblotting , Microscopia Confocal , Ligação Proteica , Isoformas de Proteínas/biossíntese , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , alfa Carioferinas/biossíntese , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
17.
Retrovirology ; 4: 16, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17341318

RESUMO

BACKGROUND: Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. RESULTS: We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. CONCLUSION: These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Produtos do Gene vpr/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Proteínas de Ligação a DNA/farmacologia , Produtos do Gene vpr/metabolismo , Genes vpr , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , HIV-1/fisiologia , Proteínas de Choque Térmico/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Macrófagos/virologia , Proteínas de Saccharomyces cerevisiae/farmacologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/farmacologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
18.
J Virol ; 81(7): 3574-82, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229711

RESUMO

Unlike activated T cells, quiescent CD4+ T cells have shown resistance to human immunodeficiency virus (HIV) infection due to a block in the early events of the viral life cycle. To further investigate the nature of this block, we infected quiescent CD4+ T cells with HIV-1(NL4-3) and immediately stimulated them. Compared to activated (prestimulated) cells, these poststimulated cells showed slightly decreased viral entry and delays in the completion of reverse transcription. However, the relative efficiency of integration was similar to that of prestimulated cells. Together, this resulted in decreased expression of tat/rev mRNA and synthesis of viral protein. Furthermore, based on cell cycle staining and BrdU incorporation, poststimulated cells expressing viral protein failed to initiate a second round of their cell cycle, independently of Vpr-mediated arrest. Together, these data demonstrate that the early stages of the HIV life cycle are inefficient in these poststimulated cells and that efficient replication cannot be induced by subsequent activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , HIV-1/fisiologia , Ativação Linfocitária/imunologia , Replicação Viral , Linfócitos T CD4-Positivos/citologia , Linhagem Celular , Proliferação de Células , Regulação Viral da Expressão Gênica , Produtos do Gene gag/metabolismo , Produtos do Gene vpr/metabolismo , Humanos , Cinética , RNA Viral/genética , Transcrição Reversa/genética , Internalização do Vírus , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
19.
FEBS Lett ; 581(1): 15-20, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17174312

RESUMO

Serotonin activates Ras and Ras-dependent ERK1/2 phosphorylation in HEK293 cells expressing G(s)-coupled 5-HT(4) or 5-HT(7) serotonin receptors through unknown mechanisms. Both Epac/Rap-dependent and -independent pathways for Ras-dependent ERK1/2 activation have been suggested. Epac overexpression or Epac-specific 8-CPT-2'-O-Me-cAMP did not cause ERK1/2 phosphorylation, despite Rap activation. The data did not support a role for PLCepsilon or DAG-dependent Ras GEFs of the Ras-GRP family in Ras-dependent ERK1/2 phosphorylation. However, serotonin stimulated phosphorylation of endogenous and recombinant Ras-GRF1, increased [Ca(2+)](i) and caused Ca(2+)- and calmodulin-dependent ERK1/2 phosphorylation. Different signalling pathways seem to be utilised by G(s)-coupled receptors in various isolates of HEK293 cells.


Assuntos
Sinalização do Cálcio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Receptores 5-HT4 de Serotonina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/metabolismo , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Produtos do Gene vpr/genética , Produtos do Gene vpr/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas ras/metabolismo
20.
J Biol Chem ; 282(7): 4288-4301, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17158886

RESUMO

Human immunodeficiency virus (HIV) accessory protein viral protein R (Vpr) plays a key role in virus replication and induces cell cycle arrest and apoptosis in various cell types including T cells and neuronal and tumor cells following infection with Vpr-expressing HIV isolates or exposure to the extracellular Vpr protein. The C-terminal Vpr peptide encompassing amino acids 52-96 (Vpr-(52-96)) is required for exerting the apoptotic effects, whereas the N-terminal Vpr-(1-45) peptide is responsible for virus transcription. We demonstrate that Vpr-(52-96) induced apoptosis in human promonocytic THP-1 cells and primary monocytes through the mitochondrial pathway in a caspase-dependent manner. To understand the regulation of Vpr-induced apoptosis, we investigated the signaling pathways, particularly the MAPKs, and the transcription factors involved. Although both Vpr-(52-96) and Vpr-(1-45) peptides induced phosphorylation of all the three members of the MAPKs, Vpr-(52-96)-activated JNK selectively induced apoptosis in monocytic cells through the mitochondrial pathway as determined by using JNK inhibitors SP60025, dexamethasone, curcumin, and JNK-specific small interfering RNAs. Furthermore Vpr-(52-96)-induced apoptosis was mediated by inhibition of downstream antiapoptotic Bcl2 and c-IAP1 genes whose expression could be restored following pretreatment with JNK-specific inhibitors. Overall the results suggest that Vpr-(52-96)-activated JNK plays a key role in inducing apoptosis through the down-regulation of antiapoptotic Bcl2 and c-IAP1 genes.


Assuntos
Apoptose , Produtos do Gene vpr/metabolismo , HIV/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , MAP Quinase Quinase 4/metabolismo , Monócitos/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo , Produtos do Gene vpr/genética , HIV/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/virologia , Peptídeos/genética , Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linfócitos T/metabolismo , Linfócitos T/virologia , Transcrição Gênica , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA