Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
mBio ; 15(10): e0024024, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39269169

RESUMO

Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Pontos de Checagem do Ciclo Celular , Dano ao DNA , HIV-1 , NF-kappa B , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , NF-kappa B/metabolismo , NF-kappa B/genética , HIV-1/fisiologia , HIV-1/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Transdução de Sinais , Macrófagos/virologia , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Interações Hospedeiro-Patógeno
2.
Nat Commun ; 15(1): 5514, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951492

RESUMO

HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.


Assuntos
HIV-1 , Imunidade Inata , Macrófagos , Proteínas Proto-Oncogênicas , Transativadores , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , HIV-1/fisiologia , HIV-1/imunologia , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/genética , Células HEK293 , Vírion/metabolismo , Proteínas Serina-Treonina Quinases
3.
mBio ; 14(1): e0297322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602307

RESUMO

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Gelsolina/metabolismo , Produtos do Gene env/metabolismo , Células HEK293 , Células Mieloides/metabolismo , Antivirais/metabolismo
4.
J Virol ; 95(17): e0055421, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106747

RESUMO

The p12 region of murine leukemia virus (MLV) Gag and the p6 region of HIV-1 Gag contain late domains required for virus budding. Additionally, the accessory protein Vpr is recruited into HIV particles via p6. Mature p12 is essential for early viral replication events, but the role of mature p6 in early replication is unknown. Using a proviral vector in which the gag and pol reading frames are uncoupled, we have performed the first alanine-scanning mutagenesis screens across p6 to probe its importance for early HIV-1 replication and to further understand its interaction with Vpr. The infectivity of our mutants suggests that, unlike p12, p6 is not important for early viral replication. Consistent with this, we observed that p6 is rapidly lost upon target cell entry in time course immunoblot experiments. By analyzing Vpr incorporation into p6 mutant virions, we identified that the 15-FRFG-18 and 41-LXXLF-45 motifs previously identified as putative Vpr-binding sites are important for Vpr recruitment but that the 34-ELY-36 motif also suggested to be a Vpr-binding site is dispensable. Additionally, disrupting Vpr oligomerization together with removing either binding motif in p6 reduced Vpr incorporation ∼25- to 50-fold more than inhibiting Vpr oligomerization alone and ∼10- to 25-fold more than deleting each p6 motif alone, implying that multivalency/avidity is important for the interaction. Interestingly, using immunoblotting and immunofluorescence, we observed that most Vpr is lost concomitantly with p6 during infection but that a small fraction remains associated with the viral capsid for several hours. This has implications for the function of Vpr in early replication. IMPORTANCE The p12 protein of MLV and the p6 protein of HIV-1 are both supplementary Gag cleavage products that carry proline-rich motifs that facilitate virus budding. Importantly, p12 has also been found to be essential for early viral replication events. However, while Vpr, the only accessory protein packaged into HIV-1 virions, is recruited via the p6 region of Gag, the function of both mature p6 and Vpr in early replication is unclear. Here, we have systematically mutated the p6 region of Gag and have studied the effects on HIV infectivity and Vpr packaging. We have also investigated what happens to p6 and Vpr during early infection. We show that, unlike p12, mature p6 is not required for early replication and that most of the mature p6 and the Vpr that it recruits are lost rapidly upon target cell entry. This has implications for the role of Vpr in target cells.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Internalização do Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Humanos , Multimerização Proteica , Vírion/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
5.
J Virol ; 95(15): e0097120, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011540

RESUMO

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Infecções por HIV/patologia , HIV-1/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
6.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753492

RESUMO

The DNA damage response (DDR) is a signaling cascade that is vital to ensuring the fidelity of the host genome in the presence of genotoxic stress. Growing evidence has emphasized the importance of both activation and repression of the host DDR by diverse DNA and RNA viruses. Previous work has shown that HIV-1 is also capable of engaging the host DDR, primarily through the conserved accessory protein Vpr. However, the extent of this engagement has remained unclear. Here, we show that HIV-1 and HIV-2 Vpr directly induce DNA damage and stall DNA replication, leading to the activation of several markers of double- and single-strand DNA breaks. Despite causing damage and activating the DDR, we found that Vpr represses the repair of double-strand breaks (DSB) by inhibiting homologous recombination (HR) and nonhomologous end joining (NHEJ). Mutational analyses of Vpr revealed that DNA damage and DDR activation are independent from repression of HR and Vpr-mediated cell cycle arrest. Moreover, we show that repression of HR does not require cell cycle arrest but instead may precede this long-standing enigmatic Vpr phenotype. Together, our data uncover that Vpr globally modulates the host DDR at at least two independent steps, offering novel insight into the primary functions of lentiviral Vpr and the roles of the DNA damage response in lentiviral replication.IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. However, the DDR has also been utilized by many pathogens, such as human immunodeficiency virus (HIV), to enhance infection. To properly treat HIV-positive individuals, we must understand how the virus usurps our own cellular processes. Here, we have found that an important yet poorly understood gene in HIV, Vpr, targets the DDR at two unique steps: it causes damage and activates DDR signaling, and it represses the ability of cells to repair this damage, which we hypothesize is central to the primary function of Vpr. In clarifying these important functions of Vpr, our work highlights the multiple ways human pathogens engage the DDR and further suggests that modulation of the DDR is a novel way to help in the fight against HIV.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Linhagem Celular Tumoral , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , HIV-2/genética , HIV-2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Osteossarcoma , Replicação Viral
7.
J Gen Virol ; 101(9): 997-1007, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553018

RESUMO

The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in Escherichia coli aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.


Assuntos
Motivos de Aminoácidos , HIV-2/fisiologia , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Células HEK293 , HIV-2/genética , Células HeLa , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos , Mutação Puntual , Prolina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Virais Reguladoras e Acessórias/genética , Zinco/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
8.
Elife ; 92020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538781

RESUMO

The HIV-1 Vpr accessory protein induces ubiquitin/proteasome-dependent degradation of many cellular proteins by recruiting them to a cullin4A-DDB1-DCAF1 complex. In so doing, Vpr enhances HIV-1 gene expression and induces (G2/M) cell cycle arrest. However, the identities of Vpr target proteins through which these biological effects are exerted are unknown. We show that a chromosome periphery protein, CCDC137/cPERP-B, is targeted for depletion by HIV-1 Vpr, in a cullin4A-DDB1-DCAF1 dependent manner. CCDC137 depletion caused G2/M cellcycle arrest, while Vpr-resistant CCDC137 mutants conferred resistance to Vpr-induced G2/M arrest. CCDC137 depletion also recapitulated the ability of Vpr to enhance HIV-1 gene expression, particularly in macrophages. Our findings indicate that Vpr promotes cell-cycle arrest and HIV-1 gene expression through depletion of CCDC137.


Like all viruses, the human immunodeficiency virus 1 (HIV-1) cannot replicate on its own; to multiply, it needs to exploit the molecular machinery of a cell. A set of HIV-1 proteins is vital in this hijacking process, and they are required for the virus to make more of itself. However, HIV-1 also carries accessory proteins that are not absolutely necessary for the replication process, but which boost the growth of the virus by deactivating the defences of the infected cells. Amongst these proteins, the role of Viral Protein R (Vpr for short) has been particularly enigmatic. Previous experiments have shown that, in infected cells, Vpr is linked to several biological processes: it tags for destruction a large number of proteins, it causes the cells to stop dividing, and it encourages them to express the genetic information of the virus. How these different processes are connected and triggered by Vpr is still unknown. It particular, it remains unclear which protein is responsible for these changes when it is destroyed by Vpr. To investigate, Zhang and Bieniasz conducted a series of experiments to spot the proteins that interact with Vpr in human cells. This screening process highlighted a protein known as CCDC137, which is depleted in cells infected by HIV-1. To investigate the role of CCDC137, Zhang and Bieniasz decreased the levels of the protein in human cells. This stopped the cells from dividing, just like during HIV-1 infection. Destroying CCDC137 also mimicked the effects of Vpr on HIV-1 gene expression, increasing the levels of virus proteins in infected cells. Finally, Zhang and Bieniasz made a mutant version of CCDC137 that Vpr could not destroy. When infected cells carried this mutant protein, they kept on dividing as normal. Taken together, these results suggest that Vpr works by triggering the destruction of the CCDC137 protein. Overall, this work represents the first step to understand the role of CCDC137 in both infected and healthy cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Western Blotting , Linhagem Celular , Dano ao DNA , HIV-1/fisiologia , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Repressoras , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
9.
Sci Rep ; 9(1): 13154, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511615

RESUMO

Mammals have evolved many antiviral factors impacting different steps of the viral life cycle. Associated with chromatin-modifying enzymes, the cellular cofactor CTIP2 contributes to HIV-1 gene silencing in latently infected reservoirs that constitute the major block toward an HIV cure. We report, for the first time, that the virus has developed a strategy to overcome this major transcriptional block. Productive HIV-1 infection results in a Vpr-mediated depletion of CTIP2 in microglial cells and CD4+ T cells, two of the major viral reservoirs. Associated to the Cul4A-DDB1-DCAF1 ubiquitin ligase complex, Vpr promotes CTIP2 degradation via the proteasome pathway in the nuclei of target cells and notably at the latent HIV-1 promoter. Importantly, Vpr targets CTIP2 associated with heterochromatin-promoting enzymes dedicated to HIV-1 gene silencing. Thereby, Vpr reactivates HIV-1 expression in a microglial model of HIV-1 latency. Altogether our results suggest that HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing.


Assuntos
Inativação Gênica , HIV-1/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Linhagem Celular , Células Cultivadas , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Células Jurkat , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Latência Viral/genética , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
10.
mBio ; 10(4)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431548

RESUMO

HIV-1 Vpr enhances viral replication in human macrophages via multiple mechanisms that are not clearly defined. It does not affect HIV-1 virion production during the first round of infection. We have recently discovered that Vpr targets the DNA demethylase TET2 for degradation, which leads to sustained interleukin-6 (IL-6) expression and elevated HIV-1 replication. We report here that Vpr enhanced Env processing in infected macrophages, associated with increased Env incorporation into virions with higher infectivity. Interestingly, IFITM3 was constitutively expressed in macrophages in a TET2-dependent fashion. We showed that Vpr-enhanced Env processing depended genetically on TET2 and IFITM3. We further showed that Vpr reduced IFITM3 expression by reducing demethylation of the IFITM3 promoter in macrophages, associated with degradation of TET2 and reduced TET2 binding to the IFITIM3 promoter. Our findings indicate that the Vpr-TET2 axis enhances HIV-1 replication in macrophages via two independent mechanisms: reduced IFTIM3 expression to enhance Env processing and virion infectivity and sustained IL-6 expression to increase HIV-1 replication. The Vpr-TET2 axis may provide a novel target to develop therapeutics to inhibit HIV-1 infection and pathogenesis.IMPORTANCE How Vpr enhances HIV-1 replication in macrophages is still unclear. We report here that Vpr enhanced HIV-1 Env processing during the first round of HIV-1 replication, resulting in virions with higher Env incorporation and viral infectivity. These higher-quality viral particles contributed to elevated infection during the second round and spreading infection in macrophages and other HIV-1 target cells. We have recently discovered that TET2 is a novel host factor degraded by Vpr, which leads to sustained IL-6 expression in macrophages. Interestingly, Vpr-enhanced HIV-1 Env processing depended on both the IFITIM3 and TET2 genes. The constitutive expression of IFITIM3 expression in macrophages was maintained by TET2, which demethylated the IFITIM3 promoter. We conclude that the Vpr degrades TET2 to enhance HIV-1 replication in macrophages by reducing IFITIM3 expression to increase viral Env processing, virion incorporation, and infectivity and by sustaining IL-6 expression to increase HIV-1 gene expression. The Vpr-TET2 axis may serve as a novel target to develop anti-HIV drugs to inhibit HIV-1 infection and pathogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , HIV-1/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/farmacologia , Proteínas de Transporte , Linhagem Celular , Desmetilação do DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Regulação Viral da Expressão Gênica , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/patogenicidade , Humanos , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/genética , Vírion/genética , Vírion/patogenicidade , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
11.
Cell Rep ; 27(5): 1579-1596.e7, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042482

RESUMO

HIV-1 encodes four "accessory proteins" (Vif, Vpr, Vpu, and Nef), dispensable for viral replication in vitro but essential for viral pathogenesis in vivo. Well characterized cellular targets have been associated with Vif, Vpu, and Nef, which counteract host restriction and promote viral replication. Conversely, although several substrates of Vpr have been described, their biological significance remains unclear. Here, we use complementary unbiased mass spectrometry-based approaches to demonstrate that Vpr is both necessary and sufficient for the DCAF1/DDB1/CUL4 E3 ubiquitin ligase-mediated degradation of at least 38 cellular proteins, causing systems-level changes to the cellular proteome. We therefore propose that promiscuous targeting of multiple host factors underpins complex Vpr-dependent cellular phenotypes and validate this in the case of G2/M cell cycle arrest. Our model explains how Vpr modulates so many cell biological processes and why the functional consequences of previously described Vpr targets, identified and studied in isolation, have proved elusive.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteoma/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HEK293 , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Proteólise , Proteoma/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
12.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29976660

RESUMO

Coinfection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) often leads to AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The interaction between HIV and KSHV plays a pivotal role in the progression of these malignancies. We have previously demonstrated that, by upregulating miR-942-5p, HIV-1 viral protein R (Vpr) inhibits KSHV lytic replication by targeting IκBα to activate the NF-κB signaling (Q. Yan, C. Shen, J. Qin, W. Li, M. Hu, H. Lu, D. Qin, J. Zhu, S. J. Gao, C. Lu, J Virol 90:8739-8753, 2016). Here, we show that Vpr inactivates Notch signaling, resulting in inhibition of KSHV lytic replication and induction of pro-proliferative and -survival cytokines, including interleukin-2 (IL-2), TIMP-1, IGF-1, and NT-4. Mechanistically, Vpr upregulates miR-711, which directly targets the Notch1 3' untranslated region. Suppression of miR-711 relieved Notch1 and reduced Vpr inhibition of KSHV lytic replication and Vpr induction of pro-proliferation and -survival cytokines, while overexpression of miR-711 exhibited the opposite effect. Finally, overexpression of Notch1 reduced Vpr induction of NF-κB activity by promoting IκBα promoter activity. Our novel findings reveal that by upregulating miR-711 to target Notch1, Vpr silences Notch signaling to activate the NF-κB pathway by reducing IκBα expression, leading to inhibition of KSHV lytic replication and induction of pro-proliferation and -survival cytokines. Therefore, the miR-711/Notch/NF-κB axis is important in the pathogenesis of AIDS-related malignancies and could be an attractive therapeutic target.IMPORTANCE HIV-1 infection significantly increases the risk of KS and PEL in KSHV-infected individuals. Our previous study has shown that HIV-1 Vpr regulates the KSHV life cycle by targeting IκBα to activate NF-κB signaling through upregulating cellular miR-942-5p. In this study, we have further found that Vpr inactivates Notch signaling to promote KSHV latency and production of pro-proliferation and -survival cytokines. Another Vpr-upregulated cellular microRNA, miR-711, participates in this process by directly targeting Notch1. As a result, Notch1 upregulation of the IκBα promoter activity is attenuated, resulting in reduced levels of IκBα transcript and protein. Overall, these results illustrate an alternative mechanism of HIV-1 Vpr regulation of KSHV latency and aberrant cytokines through the miR-711/Notch/NF-κB axis. Our novel findings further demonstrate the role of an HIV-1-secreted regulatory protein in the KSHV life cycle and KSHV-related malignancies.


Assuntos
Citocinas/imunologia , HIV-1/genética , Herpesvirus Humano 8/fisiologia , MicroRNAs/genética , NF-kappa B/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Linhagem Celular Tumoral , Proliferação de Células , Coinfecção/imunologia , Coinfecção/virologia , Citocinas/genética , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ativação Transcricional , Regulação para Cima , Ativação Viral/genética , Latência Viral/genética , Replicação Viral/genética
13.
Mol Cell ; 70(5): 961-970.e5, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883611

RESUMO

HIV-1 expresses several accessory proteins to counteract host anti-viral restriction factors to facilitate viral replication and disease progression. One such protein, Vpr, has been implicated in affecting multiple cellular processes, but its mechanism remains elusive. Here we report that Vpr targets TET2 for polyubiquitylation by the VprBP-DDB1-CUL4-ROC1 E3 ligase and subsequent degradation. Genetic inactivation or Vpr-mediated degradation of TET2 enhances HIV-1 replication and substantially sustains expression of the pro-inflammatory cytokine interleukin-6 (IL-6). This process correlates with reduced recruitment of histone deacetylase 1 and 2 to the IL-6 promoter, thus enhancing its histone H3 acetylation level during resolution phase. Blocking IL-6 signaling reduced the ability of Vpr to enhance HIV-1 replication. We conclude that HIV-1 Vpr degrades TET2 to sustain IL-6 expression to enhance viral replication and disease progression. These results suggest that disrupting the Vpr-TET2-IL6 axis may prove clinically beneficial to reduce both viral replication and inflammation during HIV-1 infection.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , HIV-1/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Monócitos/virologia , Proteínas Proto-Oncogênicas/metabolismo , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Células HEK293 , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/patogenicidade , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interleucina-6/genética , Células Jurkat , Monócitos/enzimologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases , Proteólise , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Células THP-1 , Ubiquitina-Proteína Ligases , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
14.
J Biol Chem ; 292(51): 21117-21127, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29079575

RESUMO

The viral protein R (Vpr) is an accessory virulence factor of HIV-1 that facilitates infection in immune cells. Cellular functions of Vpr are tied to its interaction with DCAF1, a substrate receptor component of the CRL4 E3 ubiquitin ligase. Recent proteomic approaches suggested that Vpr degrades helicase-like transcription factor (HLTF) DNA helicase in a proteasome-dependent manner by redirecting the CRL4-DCAF1 E3 ligase. However, the precise molecular mechanism of Vpr-dependent HLTF depletion is not known. Here, using in vitro reconstitution assays, we show that Vpr mediates polyubiquitination of HLTF, by directly loading it onto the C-terminal WD40 domain of DCAF1 in complex with the CRL4 E3 ubiquitin ligase. Mutational analyses suggest that Vpr interacts with DNA-binding residues in the N-terminal HIRAN domain of HLTF in a manner similar to the recruitment of another target, uracil DNA glycosylase (UNG2), to the CRL4-DCAF1 E3 by Vpr. Strikingly, Vpr also engages a second, adjacent region, which connects the HIRAN and ATPase/helicase domains. Thus, our findings reveal that Vpr utilizes common as well as distinctive interfaces to recruit multiple postreplication DNA repair proteins to the CRL4-DCAF1 E3 ligase for ubiquitin-dependent proteasomal degradation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Deleção de Genes , Células HEK293 , Humanos , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Serina-Treonina Quinases , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Repetições WD40 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
15.
Mol Cell Proteomics ; 16(8): 1447-1461, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28606917

RESUMO

The mechanisms by which human immunodeficiency virus (HIV) circumvents and coopts cellular machinery to replicate and persist in cells are not fully understood. HIV accessory proteins play key roles in the HIV life cycle by altering host pathways that are often dependent on post-translational modifications (PTMs). Thus, the identification of HIV accessory protein host targets and their PTM status is critical to fully understand how HIV invades, avoids detection and replicates to spread infection. To date, a comprehensive characterization of HIV accessory protein host targets and modulation of their PTM status does not exist. The significant gap in knowledge regarding the identity and PTMs of HIV host targets is due, in part, to technological limitations. Here, we applied current mass spectrometry techniques to define mechanisms of viral protein action by identifying host proteins whose abundance is affected by the accessory protein Vpr and the corresponding modulation of down-stream signaling pathways, specifically those regulated by phosphorylation. By utilizing a novel, inducible HIV-1 CD4+ T-cell model system expressing either the wild type or a vpr-negative viral genome, we overcame challenges associated with synchronization and infection-levels present in other models. We report identification and abundance dynamics of over 7000 proteins and 28,000 phospho-peptides. Consistent with Vpr's ability to impair cell-cycle progression, we observed Vpr-mediated modulation of spindle and centromere proteins, as well as Aurora kinase A and cyclin-dependent kinase 4 (CDK4). Unexpectedly, we observed evidence of Vpr-mediated modulation of the activity of serine/arginine-rich protein-specific kinases (SRPKs), suggesting a possible role for Vpr in the regulation of RNA splicing. This study presents a new experimental system and provides a data-resource that lays the foundation for validating host proteins and phosphorylation-pathways affected by HIV-1 and its accessory protein Vpr.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Proteômica/métodos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Aurora Quinase A/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/genética , Quinase 4 Dependente de Ciclina/metabolismo , Expressão Gênica , Ontologia Genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Células Jurkat , Fosforilação , Processamento de Proteína Pós-Traducional , Splicing de RNA/fisiologia , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
16.
Neuropharmacology ; 117: 364-375, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212984

RESUMO

Disruption of mitochondria axonal transport, essential for the maintenance of synaptic and neuronal integrity and function, has been identified in neurodegenerative diseases. Whether HIV-1 viral proteins affect mitochondria axonal transport is unknown, albeit HIV-associated neurocognitive disorders occur in around half of the patients living with HIV. Therefore, we sought to examine the effect of HIV-1 viral protein R (Vpr) on mitochondria axonal transport. Using mice primary neuronal cultures, we demonstrated that 4-day Vpr treatment reduced the ratio of moving mitochondria associated with (i) less energy (ATP) supply, (ii) reduction in Miro-1 and (iii) increase of α-synuclein which led to loss of microtubule stability as demonstrated by inconsecutive distribution of acetylated α-tubulin along the axons. Interestingly, the effect of Vpr on mitochondria axonal transport was partially restored in the presence of bongkrekic acid, a compound that negatively affected the Vpr-adenine nucleotide translocator (ANT) interaction and totally restored the ATP level in neurons. This indicated Vpr impaired mitochondria axonal transport partially related to its interaction with ANT. The above effect of Vpr was similar to the data obtained from hippocampal tissues isolated from 18-month-old aging mice compared to 5-month-old mice. In accord with previous clinical findings that HIV infection prematurely ages the brain and increases the susceptibility to HAND, we found that Vpr induced aging markers in neurons. Thus, we concluded that instead of causing cell death, low concentration of HIV-1 Vpr altered neuronal function related with inhibition of mitochondria axonal transport which might contribute to the accelerated neuronal aging.


Assuntos
Transporte Axonal/fisiologia , Senescência Celular/fisiologia , HIV-1 , Mitocôndrias/metabolismo , Neurônios/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Axonal/efeitos dos fármacos , Ácido Bongcréquico/farmacologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/virologia , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/virologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/virologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , alfa-Sinucleína/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
17.
Anal Chem ; 88(21): 10675-10679, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27700062

RESUMO

Photobleaching is a major obstacle in the real-time imaging of biological events, particularly at the single-molecule/particle level. Here, we report a strategy to delay photobleaching of a light-switch complex, [Ru(phen)2dppx]2+, by insertion of a six-cysteine peptide into virus particles. The six-cysteine peptide was inserted into viral protein R of HIV-1 and assembled into infectious HIV-1 viral particles, where it effectively delayed the photobleaching of the [Ru(phen)2dppx]2+ complex used to label viral genomic RNAs. This delay in photobleaching allowed for a monofluorescent assay to be constructed for the real-time monitoring of viral uncoating, a poorly understood process. This novel strategy to delay photobleaching in infectious viral particles provides a powerful method to analyze viral uncoating at the single-particle level in real time.


Assuntos
Complexos de Coordenação/efeitos da radiação , Corantes Fluorescentes/efeitos da radiação , HIV-1/metabolismo , Fotodegradação , Desenvelopamento do Vírus , Complexos de Coordenação/química , Cisteína/genética , Corantes Fluorescentes/química , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Peptídeos/genética , RNA Viral/química , Proteínas Recombinantes de Fusão/genética , Rutênio/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
18.
PLoS One ; 11(9): e0163100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648839

RESUMO

HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Fatores de Transcrição/metabolismo , Liberação de Vírus/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Western Blotting , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Produtos do Gene gag/genética , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência/métodos , Mutação , Ligação Proteica , Fatores de Transcrição/genética , Vírion/genética , Vírion/metabolismo , Vírion/fisiologia , Montagem de Vírus/genética , Liberação de Vírus/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
19.
J Acquir Immune Defic Syndr ; 72(1): 31-8, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26751016

RESUMO

BACKGROUND: The genomic heterogeneity of HIV-1 impedes the ability of consensus sequences in vaccines to elicit effective antiviral immune responses. AGS-004 amplifies translation-competent RNA molecules encoding for Gag, Rev, Vpr, and Nef from the patient's autologous virus and loads them into dendritic cells. METHODS: This phase IIB, multicenter, 2:1 randomized, double-blind, placebo-controlled study enrolled 54 HIV-1-infected patients on antiretroviral therapy with viral loads (VLs) <50 copies per milliliter, current CD4 T-cell counts >450 cells per cubic millimeter, and nadir counts >200 cells per cubic millimeter, to receive intradermal injections of study product into the axillary lymph node region every 4 weeks. At week 16, a 12-week analytical treatment interruption (ATI) was undertaken. RESULTS: There was no difference in the end-of-ATI VL (average of values from weeks 11 and 12) between the 2 arms of the study [4.39 (4.17, 4.69) vs. 4.47 (3.76, 4.64) log10 HIV-1 RNA; P = 0.73]. Between arms, no change between pre-antiretroviral therapy VL and the end-of-ATI VL [-0.06 (0.24, -0.32) vs. -0.17 (0.17, -0.32) log10 HIV-1 RNA; P = 0.43] was observed. When interferon-γ, interleukin-2, tumor necrosis factor α, CD107a, and granzyme b expressions were measured by multicolor flow cytometry, a greater percentage of AGS-004 than of placebo recipients had multifunctional cytotoxic T-lymphocyte responses induced in the CD28+/CD45RA-CD8 effector/memory T-cell population to dendritic cells electroporated with autologous antigens. Adverse events consisted of transient, mild (grade 1) local injection site reactions. CONCLUSIONS: Despite the induction of HIV-specific effector/memory CD8 T-cell responses, no antiviral effect was seen after the administration of AGS-004 when compared with placebo.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Imunoterapia/métodos , RNA Viral/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Adolescente , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Método Duplo-Cego , Feminino , Granzimas/biossíntese , HIV-1/genética , Humanos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Proteína 1 de Membrana Associada ao Lisossomo/biossíntese , Masculino , Pessoa de Meia-Idade , Placebos/uso terapêutico , Fator de Necrose Tumoral alfa/biossíntese , Carga Viral , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
20.
J Biol Chem ; 291(6): 2696-711, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26679995

RESUMO

Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.


Assuntos
Cromatina/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Latência Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Acetilação , Cromatina/genética , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/patologia , Repetição Terminal Longa de HIV , Células HeLa , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Macrófagos/patologia , Macrófagos/virologia , Complexo de Endopeptidases do Proteassoma/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA