Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
World J Gastroenterol ; 30(26): 3201-3205, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086640

RESUMO

In our editorial, we want to comment on the article by Stefanolo et al titled "Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet". Celiac disease is an immune-mediated disorder triggered by dietary gluten in genetically predisposed individuals. Although avoiding gluten can permit patients to live symptom-free, ongoing voluntary or involuntary exposure to gluten is common and associated with persistent villous atrophy in small bowel mucosa. As villous atrophy predisposes patients to life threatening complications, such as osteoporotic fractures or malignancies, therapeutic adjuncts to gluten-free diet become important to improve patients' quality of life and, if these adjuncts can be shown to improve villous atrophy, avoid complications. Oral administration of enzyme preparations, such as endopeptidases that digest gluten and mitigate its antigenicity to trigger inflammation, is one clinical strategy under investigation. The article is about the utility of one endopeptidase isolated from Aspergillus niger. We critique findings of this clinical trial and also summarize endopeptidase-based as well as other strategies and how they can complement gluten-free diet in the management of celiac disease.


Assuntos
Aspergillus niger , Doença Celíaca , Dieta Livre de Glúten , Glutens , Prolil Oligopeptidases , Humanos , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Aspergillus niger/enzimologia , Glutens/imunologia , Glutens/efeitos adversos , Glutens/administração & dosagem , Administração Oral , Mucosa Intestinal/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/enzimologia , Qualidade de Vida , Endopeptidases/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/imunologia , Resultado do Tratamento
2.
J Med Chem ; 67(12): 10436-10446, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38783480

RESUMO

Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.


Assuntos
Prolil Oligopeptidases , Conformação Proteica , Serina Endopeptidases , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ligantes , Espectrometria de Mobilidade Iônica , Modelos Moleculares , Espectrometria de Massas/métodos , Domínio Catalítico , Humanos
3.
J Mol Recognit ; 37(4): e3090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803118

RESUMO

Bioactive peptides derived from foods provide physiological health benefits beyond nutrition. This study focused on profiling small peptide inhibitors against two key serine proteases, dipeptidyl peptidase-IV (DPP-IV) and prolyl oligopeptidase (POP). DPP-IV is a well-known protein involved in diverse pathways regulating inflammation, renal, cardiovascular physiology, and glucose homeostasis. POP is yet another key target protein for neurodegenerative disorders. The study evaluated peptide libraries of buffalo colostrum whey and fat globule membrane proteins derived from pepsin and pepsin-pancreatin digestion through in silico web tools and structure-based analysis by molecular docking and binding free-energy estimation, followed by in vitro assay for DPP-IV inhibition for the lead peptides. The bioinformatic study indicated 49 peptides presented motifs with DPP-IV inhibition while 5 peptides with sequences for POP inhibition. In the molecular docking interactions study, 22 peptides interacted with active site residues of DPP-IV and 3 peptides with that of POP. The synthesized peptides, SFVSEVPEL and LTFQHNF inhibited DPP-IV in vitro with an IC50 of 193.5 µM and 1.782 mM, respectively. The study revealed the key residues for inhibition of DPP-IV and POP thus affirming the DPP-IV inhibitory potential of milk-derived peptides.


Assuntos
Búfalos , Colostro , Biologia Computacional , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Simulação de Acoplamento Molecular , Peptídeos , Colostro/química , Animais , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Prolil Oligopeptidases/metabolismo , Prolil Oligopeptidases/química , Humanos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Feminino
4.
Int J Biol Macromol ; 259(Pt 2): 129313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216012

RESUMO

Prolyl endopeptidases (PEP) from Sphingomonas capsulata (sc) and Myxococcus xanthus (mx) selectively degrade gluten peptides in vitro, offering a potential therapeutic strategy for celiac disease. However, the mechanisms governing the interaction of these enzymes with their substrates remain unclear. In this study, conventional molecular dynamics simulations with a microsecond timescale and targeted molecular dynamics simulations were performed to investigate the native states of mxPEP and scPEP enzymes, as well as their allosteric binding with a representative substrate, namely, Z-Ala-Pro-p-nitroanilide (pNA). The simulations reveal that the native scPEP is in an open state, while the native mxPEP is in a closed state. When pNA approaches a closed mxPEP, it binds to an allosteric pocket located at the first and second ß-sheet of the ß-propeller domain, inducing the opening of this enzyme. Neither enzyme is active in the open or partly-open states. Enzymatic activity is enabled only when the catalytic pocket in the closed state fully accommodates the substrates. The internal capacity of the catalytic pocket of PEP in the closed state determines the maximum size of the gluten peptides that the enzymes can catalyze. The present work provides essential molecular dynamics information for the redesign or engineering of PEP enzymes.


Assuntos
Doença Celíaca , Prolil Oligopeptidases , Humanos , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Simulação de Dinâmica Molecular , Glutens/química , Peptídeos/química
5.
Protein Sci ; 33(1): e4856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059672

RESUMO

Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.


Assuntos
Prolil Oligopeptidases , Serina Endopeptidases , Serina Endopeptidases/química , Aspergillus niger/metabolismo , Hidrólise , Prolina , Proteínas , Peptídeos , Peptídeo Hidrolases , Exopeptidases , Glutamatos
6.
Respir Res ; 24(1): 211, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626373

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS: The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 µg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 µM, 10 µM and 50 µM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS: The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION: In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Prolil Oligopeptidases , NF-kappa B , Inflamação
7.
Exp Mol Med ; 55(7): 1437-1450, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394591

RESUMO

Macrophages are immune cells crucial for host defense and homeostasis maintenance, and their dysregulation is involved in multiple pathological conditions, such as liver fibrosis. The transcriptional regulation in macrophage is indispensable for fine-tuning of macrophage functions, but the details have not been fully elucidated. Prolyl endopeptidase (PREP) is a dipeptidyl peptidase with both proteolytic and non-proteolytic functions. In this study, we found that Prep knockout significantly contributed to transcriptomic alterations in quiescent and M1/M2-polarized bone marrow-derived macrophages (BMDMs), as well as aggravated fibrosis in an experimental nonalcoholic steatohepatitis (NASH) model. Mechanistically, PREP predominantly localized to the macrophage nuclei and functioned as a transcriptional coregulator. Using CUT&Tag and co-immunoprecipitation, we found that PREP was mainly distributed in active cis-regulatory genomic regions and physically interacted with the transcription factor PU.1. Among PREP-regulated downstream genes, genes encoding profibrotic cathepsin B and D were overexpressed in BMDMs and fibrotic liver tissue. Our results indicate that PREP in macrophages functions as a transcriptional coregulator that finely tunes macrophage functions, and plays a protective role against liver fibrosis pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Prolil Oligopeptidases , Animais , Camundongos , Macrófagos , Fibrose , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL
8.
J Ethnopharmacol ; 314: 116508, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37264880

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cotinus coggygria has a number of applications in traditional medicine most of which are connected with its anti-inflammatory and anti-oxidant properties. Since inflammation and oxidative stress are recognized as triggering factors for cancer, anti-cancer activity has also been documented and the possible mechanisms of this activity are under investigation. Important components of C. coggygria extracts are shown to be hydrolysable gallotannins of which pentagalloyl-O-glucose has been studied in details. This compound inhibits various enzymes including prolyl oligopeptidase which is involved in tumorigenesis and tumour growth. According to our pilot studies, oligo-O-galloylglucoses with more than five galloyl residues are also presented in the herb of Bulgarian origin, but their activities have not been examined. AIM OF THE STUDY: To establish an extraction method by which it is possible to concentrate high molecular hydrolysable gallotannins from dried leaves of Cotinus coggygria and to determine their inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α. MATERIALS AND METHODS: Dried leaves of C. coggygria were extracted using different solvents in single-phase or biphasic systems under various extraction conditions. Main compounds of the extracts were identified by using high performance liquid chromatography and liquid chromatography - high resolution mass spectrometry. The extracts' inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α were studied on recombinant human enzymes by enzyme kinetic analyses using a fluorogenic substrate. RESULTS: Ethyl acetate/water (pH 3.0) extraction of dried plant leaves proved to be the most efficient method for isolation of high molecular hydrolysable gallotannins which can be further concentrated by precipitation of dicyclohexylammonium salts in ethyl acetate. The main components of those extracts were oligo-O-galloyl glucoses with more than five gallic acid residues. They were shown to inhibit both enzymes studied but were about 30 times more effective inhibitors of prolyl oligopeptidase. CONCLUSIONS: C. coggygria from Bulgarian origin is shown to possess a substantial quantity of oligo-O-galloyl glucoses with more than five gallic acid residues which has not been described thus far in the same herb from other sources. An extraction method useable for concentrating those compounds is established. They are found to inhibit prolyl oligopeptidase with a very good selectivity to fibroblast activation protein α. The previously described antitumor activity of this plant may be at least in part due to the inhibition of the above enzymes which has been shown to participate in the genesis and development of various types of tumors.


Assuntos
Anacardiaceae , Taninos Hidrolisáveis , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/análise , Prolina , Peptídeo Hidrolases , Prolil Oligopeptidases , Anacardiaceae/química , Ácido Gálico/análise , Extratos Vegetais/química , Folhas de Planta/química
9.
Chembiochem ; 24(8): e202200691, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36593180

RESUMO

Enzymatic hydrolysis of food-derived proteins to produce bioactive peptides could activate food functions such as antihypertension. However, the diversity of enzymatic hydrolysis products can reduce bioactive peptides' efficacy. Highly specific proteases can homogenize the hydrolysis products to reduce the production of impotent peptides. In this study, we successfully obtained M. xanthus prolyl endopeptidase mutant Y451M by constraint/free molecular dynamics simulations and binding energy calculations. The specificity of Y451M for proline was increased by 286 % compared to WT, while its activity was almost unchanged. Milk-derived substrates processed with Y451M showed an antihypertensive effect that was 567 % higher than without enzymes. The ability to activate food antihypertension increased 152 % and the use of enzyme by 192 % compared with WT. Specific proteases are thus valuable tools in the processing of complex substrates to obtain bioactive peptides.


Assuntos
Anti-Hipertensivos , Prolil Oligopeptidases , Anti-Hipertensivos/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases , Hidrólise
10.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203318

RESUMO

Euphorbia species are important sources of polycyclic and macrocyclic diterpenes, which have been the focus of natural-product-based drug research due to their relevant biological properties, including anticancer, multidrug resistance reversal, antiviral, and anti-inflammatory activities. Premyrsinane, cyclomyrsinane, and myrsinane diterpenes are generally and collectively designated as myrsinane-type diterpenes. These compounds are derived from the macrocyclic lathyrane structure and are characterized by having highly oxygenated rearranged polycyclic systems. This review aims to describe and summarize the distribution and diversity of 220 myrsinane-type diterpenes isolated in the last four decades from about 20 Euphorbia species. Some myrsinane diterpenes obtained from Jatropha curcas are also described. Discussion on their plausible biosynthetic pathways is presented, as well as isolation procedures and structural elucidation using nuclear magnetic resonance spectroscopy. Furthermore, the most important biological activities are highlighted, which include cytotoxic and immunomodulatory activities, the modulation of efflux pumps, the neuroprotective effects, and the inhibition of enzymes such as urease, HIV-1 reverse transcriptase, and prolyl endopeptidase, among other biological effects.


Assuntos
Diterpenos , Euphorbia , Jatropha , Diterpenos/farmacologia , Imunomodulação , Prolil Oligopeptidases
11.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362069

RESUMO

Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin ß4 (Tß4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tß4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tß4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tß4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tß4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages.


Assuntos
Fibrose , Oligopeptídeos , Prolil Oligopeptidases , Humanos , Fibrose/etiologia , Fibrose/metabolismo , Oligopeptídeos/metabolismo , Prolil Oligopeptidases/metabolismo , Timosina/metabolismo
12.
J Food Biochem ; 46(12): e14464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190151

RESUMO

The objective of this study was to determine the in vitro activities such as antioxidant and inhibitions of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase of sacha inchi protein hydrolysate (SPH) and its membrane ultrafiltration peptide fractions. SPH was prepared after hydrolysis of sacha inchi protein using papain followed by separation into peptide fractions (F1: <1 kDa, F2: 1-3 kDa, F3: 3-5 kDa, and F4: 5-10 kDa) via ultrafiltration membranes. SPH and the peptide fractions were tested for multifunctional properties, specifically functional ability as antioxidants and enzyme inhibitors. Surface hydrophobicity was an important contributing factor to the activity of antioxidative peptides. The DPPH inhibitory activity of F4 was significantly higher (p < .05) than activities of the SPH and other fractions. The smaller peptides with <1 kDa size (F1) showed the most potent (p < .05) antioxidant properties based on the stronger scavenging of ABTS, DPPH, and superoxide radicals in addition to better attenuation of linoleic acid peroxidation. Moreover, the F1 was also the strongest inhibitor of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase based on the lower IC50 values. It was concluded that the smaller size of the F1 peptides was the main determinant of its strong antioxidant and enzyme inhibition potency, which could be taken as an advantage to formulate functional foods and nutraceuticals with potential activities in ameliorating some of the chronic human diseases. PRACTICAL APPLICATIONS: The results of present study indicate that SPH and its ultrafiltration fractions are potential sources of antihypertensive, antidiabetic, inhibition of POP, reduced cholesterol, and strong antioxidant peptides. The strong angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme inhibitory efficiency of the F1 peptides (MW < 1 kDa) suggest potential utility as an antihypertensive, antidiabetic agent, reduce cholesterol and brain plasticity and memory formation because the small peptide size could enhance absorption from the gastrointestinal tract. Overall, results from this study indicate that SPH, especially the F1 peptides may have applications as ingredients for the formulation of functional foods and nutraceuticals.


Assuntos
Anti-Hipertensivos , Antioxidantes , Anti-Hipertensivos/química , Antioxidantes/química , Hipoglicemiantes/farmacologia , Oxirredutases , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A , Prolil Oligopeptidases , Hidrolisados de Proteína/química
13.
Eur J Med Chem ; 240: 114543, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35797897

RESUMO

We have previously described several different chemical series of bicyclic prolyl oligopeptidase (POP) inhibitors as probes for neurodegenerative diseases that demonstrated nanomolar activity in vitro and submicromolar activity in cellulo. The more recent implication of POP in cancer, together with homologous fibroblast activation protein α (FAP), implicated in tumor growth, led us to consider developing POP/FAP dual inhibitors as a promising strategy for the development of cancer therapeutics. At this stage, we thought to evaluate the requirements for selectivity of inhibitors for POP over FAP and to evaluate molecular platforms that would enable the development of selective POP and dual POP/FAP inhibitors. We report herein docking-guided design of a new bicyclic scaffold and synthesis of both covalent and non-covalent bicyclic inhibitors. Biological evaluation of first-of-their-kind [4.3.0] bicyclic compounds confirmed that reactive groups, or covalent warheads, are required for inhibitor activity. This work ultimately led to one scaffold yielding new POP-selective inhibitors and a dual inhibitor equipotent to the only drug targeting FAP and POP that ever reached clinical trials.


Assuntos
Neoplasias , Prolil Oligopeptidases , Endopeptidases , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana , Serina Endopeptidases/metabolismo
14.
Oxid Med Cell Longev ; 2022: 9731800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464773

RESUMO

A healthy microenvironment of the intervertebral disc tissue is characterized by hypoxia owing to its sparse vascular distribution. Oxidative stress plays a pivotal role in the pathological development of intervertebral disc degeneration (IVDD). We found that the expression of prolyl endopeptidase (PREP) increased in degenerative nucleus pulposus (NP) tissues. The purpose of this study was to determine whether PREP is involved in oxidative-stress-induced IVDD. Tertbutyl hydroperoxide can inhibit the expression of PREP by activating the PI3K/AKT signaling pathway at low concentrations in NP cells. Knockdown of PREP protected NP cells from apoptosis induced by oxidative stress, whereas overexpression of PREP exacerbated the apoptosis of NP cells. We also investigated the connection between the PI3K/AKT signaling pathway and PREP and found that the activation of the PI3K/AKT signaling pathway downregulated the expression of PREP by inhibiting p53. As a crucial transcription factor, p53 binds to the PREP promoter region and promotes its transcription. Overexpression of PREP also impairs protein secretion in the extracellular matrix of NP cells. Furthermore, the in vivo knockout of PREP could attenuate puncture-induced IVDD. These findings suggested that the downregulation of PREP might maintain the viability of NP cells and attenuate IVDD under oxidative stress.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Apoptose/fisiologia , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Prolil Oligopeptidases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35038331

RESUMO

There is increasing interest in gluten-degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten-degrading enzymes are of great interest. We have identified a new thermostable gluten-degrading proline-specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterize the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The Vmax, Km and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1, respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (α-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up new food processing possibilities and further the understanding of proline-specific protease diversity.


Assuntos
Glutens , Thermococcus , Gliadina/química , Gliadina/metabolismo , Glutens/química , Glutens/metabolismo , Peptídeos , Prolil Oligopeptidases , Thermococcus/genética , Thermococcus/metabolismo
16.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769337

RESUMO

Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-ß and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.


Assuntos
Injúria Renal Aguda/prevenção & controle , Isquemia/complicações , Prolina/análogos & derivados , Prolil Oligopeptidases/antagonistas & inibidores , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Apoptose , Creatinina/metabolismo , Masculino , Camundongos , Prolina/farmacologia , Transdução de Sinais
17.
Eur J Med Chem ; 224: 113717, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371463

RESUMO

Peptidomimetic inhibitors of fibroblast activation protein (FAP) are regarded as promising tools for tumor targeting in vivo. Even though several peptidomimetic compounds with nanomolar potency have been described, broad chemical space for further modification remained unexplored. Therefore, we set to analyze the structure-activity relationship (SAR) of pseudopeptide compound series with α-ketoamide warheads in order to explore the contributions of the P1' and P2' moieties to the inhibitory potency. A series of novel inhibitors bearing varied P1' and/or P2' moieties was synthesized by combining a Passerini reaction-Amine Deprotection-Acyl Migration (PADAM) approach with peptide coupling and subsequent oxidation. The resulting compounds inhibited FAP and the related prolyl endopeptidase (PREP) with potencies in the nanomolar to sub-nanomolar range. The most potent FAP inhibitor IOCB22-AP446 (6d, IC50 = 89 pM) had about 36-fold higher inhibition potency than the most potent inhibitor published to date. The compounds were selective over FAP's closest homolog DPP-IV, were stable in human and mouse plasma and in mouse microsomes, and displayed minimal cytotoxicity in tissue cultures.


Assuntos
Fibroblastos/metabolismo , Prolil Oligopeptidases/metabolismo , Animais , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Biochem Biophys Res Commun ; 572: 65-71, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358965

RESUMO

Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a binding partner of prolyl oligopeptidase (POP) in neuroblastoma NB-1 cells and that the POP inhibitor, SUAM-14746, inhibits cytosine arabinoside (Ara-C)-induced nuclear translocation of GAPDH and protects against Ara-C cytotoxicity. To carry out a more in-depth analysis of the interaction between POP and GAPDH, we generated POP-KO NB-1 cells and compared the nuclear translocation of GAPDH after Ara-C with or without SUAM-14746 treatment to wild-type NB-1 cells by western blotting and fluorescence immunostaining. Ara-C did not induce the nuclear translocation of GAPDH and SUAM-14746 did not protect against Ara-C cytotoxicity in POP-KO cells. These results indicate that the anticancer effects of Ara-C not only include the commonly known antimetabolic effects, but also the induction of cell death by nuclear transfer of GAPDH through interaction with POP.


Assuntos
Núcleo Celular/efeitos dos fármacos , Citarabina/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Prolil Oligopeptidases/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citarabina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Prolina/análogos & derivados , Prolina/farmacologia , Prolil Oligopeptidases/antagonistas & inibidores , Prolil Oligopeptidases/deficiência , Tiazolidinas/farmacologia , Células Tumorais Cultivadas
19.
Basic Clin Pharmacol Toxicol ; 129(4): 287-296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196102

RESUMO

Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3 ) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Prolil Oligopeptidases/antagonistas & inibidores , Prolil Oligopeptidases/deficiência , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lítio/farmacologia , Ácido Okadáico/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores
20.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208970

RESUMO

Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3ß-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.


Assuntos
Cádmio/toxicidade , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Prolil Oligopeptidases/metabolismo , Testículo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose , Proteínas do Citoesqueleto/genética , Masculino , Prolil Oligopeptidases/genética , Ratos , Ratos Wistar , Espermatogênese , Testículo/metabolismo , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA