Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(7): e5072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39133178

RESUMO

Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 µM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 µM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.


Assuntos
Inibidores Enzimáticos , Prolina , Pirrolina Carboxilato Redutases , delta-1-Pirrolina-5-Carboxilato Redutase , Pirrolina Carboxilato Redutases/metabolismo , Pirrolina Carboxilato Redutases/antagonistas & inibidores , Pirrolina Carboxilato Redutases/química , Pirrolina Carboxilato Redutases/genética , Humanos , Cristalografia por Raios X , Prolina/química , Prolina/análogos & derivados , Prolina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Peso Molecular , Prolina Oxidase/metabolismo , Prolina Oxidase/química , Prolina Oxidase/antagonistas & inibidores , Prolina Oxidase/genética , Modelos Moleculares
2.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37843921

RESUMO

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Assuntos
Arabidopsis , Pirróis , Arabidopsis/metabolismo , Prolina Oxidase/química , Prolina Oxidase/metabolismo , Mitocôndrias/metabolismo , Glutamatos/metabolismo , Ornitina/metabolismo , Prolina/metabolismo
3.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36448708

RESUMO

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA α-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 Å resolution. Minimal PRODHs should be useful in chemical probe discovery.


Assuntos
Prolina Oxidase , Prolina , Humanos , Prolina Oxidase/genética , Prolina Oxidase/química , Prolina Oxidase/metabolismo , Prolina/química , Prolina/metabolismo , Proteínas de Bactérias/química
4.
ACS Chem Biol ; 15(4): 936-944, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32159324

RESUMO

Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent with the crystals lacking the distinctive yellow color of the oxidized enzyme and stopped-flow kinetic data showing that T2C is a substrate for the PRODH domain of PutA. A mechanism is proposed in which PRODH catalyzes the oxidation of T2C at the C atom adjacent to the S atom of the thiazolidine ring (C5). Then, the N5 atom of the reduced FAD attacks the C5 of the oxidized T2C species, resulting in the covalent adduct observed in the crystal structure. To our knowledge, this is the first report of T2C inactivating (or inhibiting) PRODH or any other flavoenzyme. These results may inform the design of new mechanism-based inactivators of PRODH for use as chemical probes to study the roles of proline metabolism in cancer.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Dinitrocresóis/química , Inibidores Enzimáticos/química , Prolina Oxidase/antagonistas & inibidores , Prolina/análogos & derivados , Tiazolidinas/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Cinética , Modelos Químicos , Oxirredução , Prolina/química , Prolina Oxidase/química , Sinorhizobium meliloti/enzimologia
5.
Mol Cancer Ther ; 18(8): 1374-1385, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189611

RESUMO

Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (S-5-oxo: S-5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (N-PPG: N-propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor N-PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with N-PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that N-PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered in vivo Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (S-5-oxo and N-PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed in vitro when the PRODH suicide inhibitor, N-PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of N-PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.


Assuntos
Glutaminase/antagonistas & inibidores , Glutaminase/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Prolina Oxidase/antagonistas & inibidores , Prolina Oxidase/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor p53/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Ativação Enzimática , Glutaminase/química , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Prolina Oxidase/química , Ligação Proteica , Relação Estrutura-Atividade , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Resposta a Proteínas não Dobradas
6.
Antioxid Redox Signal ; 30(4): 650-673, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990412

RESUMO

SIGNIFICANCE: Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES: Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS: New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.


Assuntos
Prolina Oxidase/metabolismo , Prolina/biossíntese , Animais , Biocatálise , Humanos , Modelos Moleculares , Estrutura Molecular , Prolina/química , Prolina Oxidase/química
7.
Arch Biochem Biophys ; 632: 142-157, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28712849

RESUMO

Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/química , Proteínas de Bactérias/química , Flavoproteínas/química , Bactérias Gram-Negativas/enzimologia , Proteínas de Membrana/química , Prolina Oxidase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Prolina/química , Prolina/genética , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo
8.
J Biol Chem ; 290(32): 19756-69, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088140

RESUMO

Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Prolina Oxidase/metabolismo , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Sacaropina Desidrogenases/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Prolina Oxidase/química , Prolina Oxidase/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Sacaropina Desidrogenases/química , Sacaropina Desidrogenases/genética , Transdução de Sinais
9.
Appl Biochem Biotechnol ; 175(5): 2413-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502926

RESUMO

Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response.


Assuntos
Clonagem Molecular , Jatropha/enzimologia , Proteínas de Plantas/genética , Prolina Oxidase/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Jatropha/química , Jatropha/classificação , Jatropha/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prolina Oxidase/química , Prolina Oxidase/metabolismo , Alinhamento de Sequência
10.
Appl Microbiol Biotechnol ; 93(1): 83-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22089387

RESUMO

Dye-linked L-proline dehydrogenase (ProDH) catalyzes the oxidation of L-proline to ∆(1)-pyrroline-5-carboxylate (P5C) in the presence of artificial electron acceptors. The enzyme is known to be widely distributed in bacteria and eukarya, together with nicotinamide adenine dinucleotide (phosphate)-dependent P5C dehydrogenase, and to function in the metabolism of L-proline to L-glutamate. In addition, over the course of the last decade, three other types of ProDH with molecular compositions completely different from previously known ones have been identified in hyperthermophilic archaea. The first is a heterotetrameric αßγδ-type ProDH, which exhibits both ProDH and reduced nicotinamide adenine dinucleotide dehydrogenase activity and includes two electron transfer proteins. The second is a heterooctameric α(4)ß(4)-type ProDH, which uses flavin adenine dinucleotide, flavin mononucleotide, adenosine triphosphate, and Fe as cofactors and creates a new electron transfer pathway. The third is a recently identified homodimeric ProDH, which exhibits the greatest thermostability among these archaeal ProDHs. This minireview focuses on the functional and structural properties of these three types of archaeal ProDH and their distribution in archaea. In addition, we will describe the specific application of hyperthermostable ProDH for use in a biosensor and for DNA sensing.


Assuntos
Archaea/enzimologia , Prolina Oxidase/metabolismo , Prolina/metabolismo , Pirróis/metabolismo , Sequência de Aminoácidos , Archaea/genética , Coenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Prolina Oxidase/química , Prolina Oxidase/genética , Multimerização Proteica , Subunidades Proteicas/metabolismo
11.
Front Biosci (Landmark Ed) ; 17(2): 556-68, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201760

RESUMO

Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Domínio Catalítico , Sequência Conservada , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Prolina Oxidase/química , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
12.
Appl Microbiol Biotechnol ; 89(4): 1075-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20936278

RESUMO

The activity of a dye-linked L-proline dehydrogenase (dye-L: -proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5-9.0 for 30 min at 50 °C. The enzyme catalyzed L-proline dehydrogenation to Δ(1)-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for L-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-L-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.


Assuntos
Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Pyrobaculum/enzimologia , Sequência de Aminoácidos , Cromatografia , Clonagem Molecular , Coenzimas/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Prolina/metabolismo , Prolina Oxidase/química , Prolina Oxidase/isolamento & purificação , Multimerização Proteica , Alinhamento de Sequência
13.
J Agric Food Chem ; 55(13): 5097-102, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17536821

RESUMO

Proline dehydrogenase (PRODH) catalyzes the biosynthesis of Delta1-pyrroline-5-carboxylic acid (P5C). The Bacillus subtilis subsp. natto gene for the proline dehydrogenase (BnPRODH) was cloned and expressed in Escherichia coli. Nucleotide sequence analysis of the clone revealed an open-reading frame that encodes 302 amino acid polypeptide with a calculated molecular mass of 34.5 kDa. The deduced amino acid sequence showed sequence similarity to bacterial PRODH and PutA of E. coli. The BnPRODH gene was cloned into pET21b and was expressed at a high level in E. coli BL21(DE3). The expressed protein was purified by using nickel ion affinity column chromatography to homogeneity before characterization. The purified recombinant BnPRODH was used to produce P5C. Model system composed of P5C and methylglyoxal was set up to study the formation of 2-acetyl-1-pyrroline. Our data showed that P5C, derived from the conversion of l-proline by the purified recombinant PRODH, might react directly with methylglyoxal to form 2-AP. P5C/methylglyoxal pathway represents the first report of a biological mechanism by which 2-AP may be synthesized in vitro by PRODH.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/genética , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Pirróis/metabolismo , Sequência de Aminoácidos , Expressão Gênica , Dados de Sequência Molecular , Prolina Oxidase/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
15.
J Biol Chem ; 280(35): 31045-9, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16027125

RESUMO

Two novel types of dye-linked L-proline dehydrogenase complex (PDH1 and PDH2) were found in a hyperthermophilic archaeon, Pyrococcus horikoshii OT3. Here we report the first crystal structure of PDH1, which is a heterooctameric complex (alphabeta)4 containing three different cofactors: FAD, FMN, and ATP. The structure was determined by x-ray crystallography to a resolution of 2.86 angstroms. The structure of the beta subunit, which is an L-proline dehydrogenase catalytic component containing FAD as a cofactor, was similar to that of monomeric sarcosine oxidase. On the other hand, the alpha subunit possessed a unique structure composed of a classical dinucleotide fold domain with ATP, a central domain, an N-terminal domain, and a Cys-clustered domain. Serving as a third cofactor, FMN was located at the interface between the alpha and beta subunits in a novel configuration. The observed structure suggests that FAD and FMN are incorporated into an electron transfer system, with electrons passing from the former to the latter. The function of ATP is unknown, but it may play a regulatory role. Although the structure of the alpha subunit differs from that of the beta subunit, except for the presence of an analogous dinucleotide domain with a different cofactor, the structural characteristics of PDH1 suggest that each represents a divergent enzyme that arose from a common ancestral flavoenzyme and that they eventually formed a complex to gain a new function. The structural characteristics described here reveal the PDH1 complex to be a unique diflavin dehydrogenase containing a novel electron transfer system.


Assuntos
Trifosfato de Adenosina/química , Proteínas Arqueais/química , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Prolina Oxidase/química , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/enzimologia , Proteínas Arqueais/genética , Cristalografia por Raios X , Modelos Moleculares , Complexos Multienzimáticos , Prolina Oxidase/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA