Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Microbiol Methods ; 219: 106908, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38403133

RESUMO

1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. An important step towards this involves examining the occurrence of the functional genes associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To investigate this further, qPCR primers and probes were designed, and the assays were used to enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA were detected in all three, while gene copies of Rhodococcus jostii RHA1 prmA were detected in two of the three sample types (except impacted site sediment). Further, there was a statistically significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of Rhodococcus associated prmA, compared to other 1,4-dioxane degrading associated biomarkers, in three different microbial communities. Also, the newly designed qPCR assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach.


Assuntos
Dioxanos , Microbiota , Rhodococcus , Humanos , Biodegradação Ambiental , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Propano/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Biomarcadores/metabolismo
2.
Appl Environ Microbiol ; 89(10): e0118723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823642

RESUMO

Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or ß-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.


Assuntos
Oxigenases de Função Mista , Propano , Humanos , Oxigenases de Função Mista/metabolismo , Propano/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Ferro , Biodegradação Ambiental
3.
ISME J ; 16(7): 1705-1716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319019

RESUMO

Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using 13C-propane and 13C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70-99%) were recovered from both sites. Among these, 16 MAGs had genes encoding the soluble di-iron monooxygenase (SDIMO). The MAGs were affiliated to Actinobacteria (two MAGs), Alphaproteobacteria (ten MAGs), and Gammaproteobacteria (four MAGs). Additionally, three gaseous-alkane degraders were isolated in pure culture, all of which could grow on ethane, propane, and butane and possessed SDIMO-related genes. Two Rhodoblastus strains (PC2 and PC3) were from Pipe Creek and a Mycolicibacterium strain (ANDR5) from Andreiasu. Strains PC2 and PC3 encoded putative butane monooxygenases (MOs) and strain ANDR5 contained a propane MO. Mycolicibacterium strain ANDR5 and MAG19a, highly abundant in incubations with 13C-ethane, share an amino acid identity (AAI) of 99.3%. We show using a combination of enrichment and isolation, and cultivation-independent techniques, that these natural gas seeps contain a diverse community of active bacteria oxidising gaseous-alkanes, which play an important role in biogeochemical cycling of natural gas.


Assuntos
Alcanos , Gás Natural , Alcanos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Butanos/metabolismo , Etano/metabolismo , Gases/metabolismo , Oxigenases de Função Mista/genética , Filogenia , Propano/metabolismo
4.
Cancer Cell ; 40(2): 185-200.e6, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34951957

RESUMO

Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We find that microbial metabolites from healthy mice or humans are growth-repressive, and this response is attenuated in mice and patients with CRC. Microbial profiling reveals that Lactobacillus reuteri and its metabolite, reuterin, are downregulated in mouse and human CRC. Reuterin alters redox balance, and reduces proliferation and survival in colon cancer cells. Reuterin induces selective protein oxidation and inhibits ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricts colon tumor growth, increases tumor reactive oxygen species, and decreases protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Gliceraldeído/análogos & derivados , Oxirredução , Propano/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético , Glutationa/metabolismo , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metabolômica/métodos , Metagenômica/métodos , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Propano/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Appl Environ Microbiol ; 87(14): e0022721, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33962978

RESUMO

The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.


Assuntos
Proteínas de Bactérias/genética , Oxigenases de Função Mista/genética , Rhodococcus/genética , Etano/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Oxirredução , Plasmídeos , Propano/metabolismo , Rhodococcus/metabolismo
6.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804011

RESUMO

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efeitos dos fármacos , Organoides/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
7.
Braz. arch. biol. technol ; 63: e20190286, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132191

RESUMO

Abstract This study aimed to develop and evaluate fermented milk by Lactobacillus reuteri LR92 with addition of juçara pulp (FMJ) and reuterin production in situ. The fermentation process was analyzed for 24 hours and the storage of FMJ for 30 days at 4 °C. During the fermentation, there was consumption of 25% (w / v) of lactose and increase of 0.01 to 0.85% (w / v) of lactic acid. The FMJ presented 0.43 ± 0.01 mM of reuterin, inhibiting Staphylococcus aureus strains under in vitro test. For the carbohydrates, the percentages (g.100g-1) found were 7.31 ± 1.07; 9.19 ± 0.82; 1.60 ± 0.50 and 0.08 ± 0.00 for sucrose, lactose, galactose and fructose respectively. The survival of L. reuteri, present in FMJ, was 2.47 log CFU / mL after 6 hours of gastrointestinal simulation. In sensory analysis FMJ received a grade 7 for global acceptance indicating good acceptance of the product.


Assuntos
Animais , Produtos Fermentados do Leite/microbiologia , Alimento Funcional/microbiologia , Limosilactobacillus reuteri/metabolismo , Euterpe/metabolismo , Propano/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Ácido Láctico , Anti-Infecciosos
8.
Nutrients ; 11(4)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018609

RESUMO

Brassica vegetables such as cabbage or pak choi contain alkenyl glucosinolates which can release epithionitriles and to a lesser degree isothiocyanates upon enzymatic hydrolysis. Here, for the first time, the metabolism of an epithionitrile was investigated in humans, namely 1-cyano-2,3-epithiopropane (CETP). After consumption of Brassica oleracea var. capitata f. alba and Brassica carinata sprouts, the main urinary metabolite of CETP was identified as N-acetyl-S-(3-cyano-2-(methylsulfanyl)propyl-cysteine using an UHPLC-ESI-QToF-MS approach and synthesis of the metabolite. This urinary epithionitrile metabolite is an S-methylated mercapturic acid. No other metabolites were detected. Then, in a preliminary pilot experiment the excretion kinetics of CETP were investigated in three volunteers. After consumption of a B. carinata sprout preparation containing 50.8 µmol of CETP, urinary N-acetyl-S-(3-cyano-2-(methylsulfanyl)propyl-cysteine concentrations were the highest three hours after consumption, ranging from 23.9 to 37.2 µM, and declined thereafter. Thus, epithionitriles are bioavailable compounds that are metabolized similarly to isothiocyanates by the mercapturic acid pathway. In the future, more epithionitrile metabolites should be identified and the pharmacokinetics of these important class of dietary compounds should be assessed in more detail.


Assuntos
Acetilcisteína/análogos & derivados , Brassica/química , Nitrilas/metabolismo , Propano/análogos & derivados , Compostos de Sulfidrila/metabolismo , Acetilcisteína/química , Acetilcisteína/metabolismo , Acetilcisteína/urina , Humanos , Estrutura Molecular , Propano/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(14): 6653-6658, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886103

RESUMO

Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified 13C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process. This distinctive signature allows the detection and quantification of anaerobic oxidation of hydrocarbons in diverse natural gas reservoirs and suggests that this process may be more widespread than previously thought. Position-specific isotope analysis can elucidate the fate of natural gas hydrocarbons and provide insight into a major but previously cryptic process controlling the biogeochemical cycling of globally significant greenhouse gases.


Assuntos
Bactérias/metabolismo , Gás Natural/microbiologia , Propano/metabolismo , Anaerobiose/fisiologia , Isótopos de Carbono/metabolismo , Oxirredução
10.
Mol Nutr Food Res ; 63(10): e1801177, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30815965

RESUMO

SCOPE: Heterocyclic aromatic amines (HAAs) are process-induced food contaminants with high mutagenic and/or carcinogenic potential. Although the human gut microbiota is known to affect the metabolism of dietary constituents, its impact on HAA metabolism and toxicity has been little studied. Here, the glycerol-dependent metabolism of seven foodborne HAAs (AαC, Trp-P-1, harman, norharman, PhIP, MeIQx, and MeIQ) by the human fecal microbiota is investigated. METHODS AND RESULTS: As analyzed by HPLC-DAD/FLD, the extent of conversion is strongly dependent on glycerol supplementation and HAA structure. AαC (60-100%) and the 2-aminoimidazoazarenes (up to 58%) are especially prone to microbial conversion. Based on high-resolution MS and/or NMR spectroscopy data, 70 fecal metabolites are identified in total, mainly formed by chemical reactions with one or two molecules of microbially derived reuterin. Moreover, it has been demonstrated that the human fecal microbiota can further transform reuterin adducts by reduction and/or hydroxylation reactions. Upon isolation, some reuterin-induced HAA metabolites appear to be partially unstable, complicating structural identification. CONCLUSION: The formation of microbial metabolites needs to be incorporated into risk assessment considerations for HAAs in human health. In this study, several HAA metabolites, mainly reuterin-dependent, are identified in vitro, providing the basis for future human studies investigating microbial HAA metabolism.


Assuntos
Aminas/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Gliceraldeído/análogos & derivados , Compostos Heterocíclicos de Anéis Fundidos/metabolismo , Propano/metabolismo , Adulto , Aminas/farmacocinética , Animais , Carbolinas/metabolismo , Carbolinas/farmacocinética , Feminino , Contaminação de Alimentos , Gliceraldeído/metabolismo , Gliceraldeído/farmacocinética , Harmina/análogos & derivados , Harmina/metabolismo , Harmina/farmacocinética , Compostos Heterocíclicos de Anéis Fundidos/farmacocinética , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Propano/farmacocinética , Quinolinas/metabolismo , Quinolinas/farmacocinética , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Ratos Wistar
11.
Anal Chem ; 91(7): 4741-4746, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30855132

RESUMO

NMR spectroscopy and imaging (MRI) are two of the most important methods to study structure, function, and dynamics from atom to organism scale. NMR approaches often suffer from an insufficient sensitivity, which, however, can be transiently boosted using hyperpolarization techniques. One of these techniques is parahydrogen-induced polarization, which has been used to produce catalyst-free hyperpolarized propane gas with proton polarization that is 3 orders of magnitude greater than equilibrium thermal polarization at a 1.5 T field of a clinical MRI scanner. Here we show that more than 0.3 L of hyperpolarized propane gas can be produced in 2 s. This production rate is more than an order of magnitude greater than that demonstrated previously, and the reported production rate is comparable to that employed for in-human MRI using HP noble gas (e.g., 129Xe) produced via a spin exchange optical pumping (SEOP) hyperpolarization technique. We show that high polarization values can be retained despite the significant increase in the production rate of hyperpolarized propane. The enhanced signals of produced hyperpolarized propane gas were revealed by stopped-flow MRI visualization at 4.7 T. Achieving this high production rate enables the future use of this compound (already approved for unlimited use in foods by the corresponding regulating agencies, e.g., FDA in the USA, and more broadly as an E944 food additive) as a new inhalable contrast agent for diagnostic detection via MRI.


Assuntos
Imageamento por Ressonância Magnética , Propano/metabolismo , Gases/análise , Gases/metabolismo , Humanos , Propano/análise
12.
Microbiome ; 6(1): 118, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954460

RESUMO

BACKGROUND: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. RESULTS: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. CONCLUSION: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.


Assuntos
Beijerinckiaceae/classificação , Beijerinckiaceae/isolamento & purificação , Metano/metabolismo , Gás Natural/microbiologia , Oxigenases/genética , Sequência de Bases , Beijerinckiaceae/genética , Beijerinckiaceae/metabolismo , Filogenia , Propano/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
13.
J Am Chem Soc ; 140(27): 8487-8496, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894625

RESUMO

We present a series of QM/MM calculations aimed at understanding the mechanism of the biological dehydration of glycerol. Strikingly and unusually, this process is catalyzed by two different radical enzymes, one of which is a coenzyme-B12-dependent enzyme and the other which is a coenzyme-B12-independent enzyme. We show that glycerol dehydration in the presence of the coenzyme-B12-dependent enzyme proceeds via a 1,2-OH shift, which benefits from a significant catalytic reduction in the barrier. In contrast, the same reaction in the presence of the coenzyme-B12-independent enzyme is unlikely to involve the 1,2-OH shift; instead, a strong preference for direct loss of water from a radical intermediate is indicated. We show that this preference, and ultimately the evolution of such enzymes, is strongly linked with the reactivities of the species responsible for abstracting a hydrogen atom from the substrate. It appears that the hydrogen-reabstraction step involving the product-related radical is fundamental to the mechanistic preference. The unconventional 1,2-OH shift seems to be required to generate a product-related radical of sufficient reactivity to cleave the relatively inactive C-H bond arising from the B12 cofactor. In the absence of B12, it is the relatively weak S-H bond of a cysteine residue that must be homolyzed. Such a transformation is much less demanding, and its inclusion apparently enables a simpler overall dehydration mechanism.


Assuntos
Clostridium butyricum/enzimologia , Gliceraldeído/análogos & derivados , Glicerol/metabolismo , Hidroliases/metabolismo , Klebsiella pneumoniae/enzimologia , Propano/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Clostridium butyricum/química , Clostridium butyricum/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Glicerol/química , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Propano/química , Vitamina B 12/química
14.
Water Res ; 126: 361-371, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972939

RESUMO

The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 µg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 µg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater.


Assuntos
Reatores Biológicos , Dimetilaminas/metabolismo , Dimetilnitrosamina/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Subterrânea , Oxigênio/metabolismo , Propano/metabolismo , Tricloroetileno/metabolismo
15.
ACS Chem Biol ; 12(7): 1726-1731, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28535034

RESUMO

Thiopeptides are a growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Many biosynthetic enzymes for RiPPs, especially thiopeptides, are promiscuous and can accept a wide range of peptide substrates with different amino acid sequences; thus, these enzymes have been used as tools to generate new natural product derivatives. Here, we explore an alternative route to molecular complexity by engineering thiopeptide tailoring enzymes to do new or non-native chemistry. We explore cytochrome P450 enzymes as biocatalysts for cyclopropanation of dehydroalanines, chemical motifs found widely in thiopeptides and other RiPP-based natural products. We find that P450TbtJ1 and P450TbtJ2 selectively cyclopropanate dehydroalanines in a number of complex thiopeptide-based substrates and convert them into 1-amino-2-cyclopropane carboxylic acids (ACCAs), which are important pharmacophores. This chemistry takes advantage of the innate affinity of these biosynthetic enzymes for their substrates and enables incorporation of new pharmacophores into thiopeptide architectures. This work also presents a strategy for diversification of natural products through rationally repurposing biosynthetic enzymes as non-natural biocatalysts.


Assuntos
Alanina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos/metabolismo , Propano/metabolismo , Compostos de Sulfidrila/química , Alanina/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Peptídeos/química , Propano/química , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo
16.
Chemosphere ; 168: 1494-1497, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939660

RESUMO

1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant and suspected human carcinogen. TCP, a recalcitrant contaminant, has been detected in the subsurface near TCP manufacture facilities and many superfund sites. Considering the toxicity and the occurence of TCP, there is a need to seek for cost-effective treatment technologies for TCP-contaminated sites. This paper investigated TCP biodegradation by propane-oxidizing bacteria (PrOB) which are known to express propane monooxygenase (PrMO). PrMO can cometabolically degrade many different contaminants. Four PrOB, Rhodococus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus rubber ENV425 and one isolate Sphingopyxis sp. AX-A were examined for their ability to degrade TCP. All the four PrOB resting cells were able to degrade TCP. Strain JOB5 exhibited the best TCP degradation ability (vinitial = 9.7 ± 0.7 µg TCP (mg protein)-1h-1). No TCP was degraded in the presence of acetylene (an inhibitor for PrMO), suggesting that PrMO might be responsible for TCP degradation. Furthermore, competitive inhibition was observed between propane and TCP, and between trichloroethylene (TCE) and TCP.


Assuntos
Bactérias/metabolismo , Carcinógenos/metabolismo , Propano/análogos & derivados , Propano/metabolismo , Biodegradação Ambiental , Carcinógenos/análise , Água Subterrânea , Humanos , Oxigenases de Função Mista/metabolismo , Propano/análise , Rhodococcus/metabolismo , Tricloroetileno/metabolismo
17.
Sci Rep ; 6: 24586, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27087417

RESUMO

Recently, the International Agency for Research on Cancer issued a warning about the carcinogenicity of 1,2-dichloropropane (1,2-DCP) to humans based on an epidemiological study suggesting a relationship between the incidence of cholangiocarcinoma and occupational exposure to halogenated hydrocarbon solvent comprised mostly of 1,2-DCP. Although this dihaloalkane has been used in various industrial fields, there has been no biological evidence explaining the cholangiocarcinoma latency, as well as little understanding of general cholangiocarcinoma risk. In the present study, we explored the biliary excretion of 1,2-DCP metabolites by an untargeted metabolomics approach and the related molecular mechanism with in vitro and in vivo experiments. We hypothesized that the biliary excretion of carcinogens derived from 1,2-DCP contribute to the increased cholangiocarcinoma risk. We found that 1,2-DCP was conjugated with glutathione in the liver, and that the glutathione-conjugated forms of 1,2-DCP, including a potential carcinogen that contains a chloride atom, were excreted into bile by the bile canalicular membrane transporter, ABCC2. These results may reflect a risk in the backfiring of biliary excretion as a connatural detoxification systems for xenobiotics. Our findings would contribute to uncover the latent mechanism by which the chronic exposure to 1,2-DCP increases cholangiocarcinoma risk and future understanding of cholangiocarcinoma biology.


Assuntos
Ácidos e Sais Biliares/metabolismo , Carcinógenos/metabolismo , Colangiocarcinoma/induzido quimicamente , Glutationa/metabolismo , Metaboloma , Propano/análogos & derivados , Animais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Propano/metabolismo , Propano/farmacocinética , Solventes/química
19.
Toxicol Ind Health ; 32(9): 1589-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25681370

RESUMO

1,2-Dichloropropane (1,2-DCP), a solvent, which is the main component of the cleaner used in the offset printing companies in Japan, is suspected to be the causative agent of bile duct cancer, which has been recently reported at high incidence in those offset printing workplaces. While there are some reports about the acute toxicity of 1,2-DCP, no information about its metabolism related to toxicity in animals is available. As part of our efforts toward clarifying the role of 1,2-DCP in the development of cancer, we studied the metabolic pathways and the hepatotoxic effect of 1,2-DCP in mice with or without cytochrome P450 2E1 (CYP2E1) activity. In an in vitro reaction system containing liver homogenate, 1,2-DCP was only metabolized by liver tissue of wild-type mice but not by that of cyp2e1-null mice. Furthermore, the kinetics of the solvent in mice revealed a great difference between the two genotypes; 1,2-DCP administration resulted in dose-dependent hepatic damage, as shown biochemically and pathologically, but this effect was only observed in wild-type mice. The nuclear factor κB p52 pathway was involved in the liver response to 1,2-DCP. Our results clearly indicate that the oxidative metabolism of 1,2-DCP in mice is exclusively catalyzed by CYP2E1, and this step is indispensable for the manifestation of the hepatotoxic effect of the solvent.


Assuntos
Carcinógenos Ambientais/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Propano/análogos & derivados , Solventes/metabolismo , Ativação Metabólica , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Animais não Endogâmicos , Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/genética , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Inseticidas/administração & dosagem , Inseticidas/sangue , Inseticidas/metabolismo , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Subunidade p52 de NF-kappa B/metabolismo , Oxirredução , Propano/administração & dosagem , Propano/sangue , Propano/metabolismo , Propano/toxicidade , Solventes/administração & dosagem , Solventes/análise , Solventes/toxicidade , Toxicocinética
20.
Environ Microbiol Rep ; 8(2): 201-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26711372

RESUMO

2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) is the most abundant food-derived heterocyclic aromatic amine in well-cooked meats and may contribute to the recognized carcinogenicity of processed meats. In this study, a panel of human gut microbes was tested for their ability to convert PhIP to a conjugate PhIP-M1. Eubacterium hallii was newly identified to catalyse the conversion of PhIP to PhIP-M1 with high efficiency. The reaction was shown to involve the metabolism of glycerol to 3-hydroxypropionaldehyde as a key pathway. The proficiency of E. hallii in transforming PhIP in the presence of a complex intestinal microbiota was confirmed using batch fermentations inoculated with effluents from a continuous intestinal fermentation model mimicking human proximal and distal colon microbiota. In batch fermentations inoculated with proximal colon microbiota, PhIP-M1 transformation corresponded to an up to 300-fold increase of E. hallii. In contrast, PhIP transformation of distal colon microbiota was low but increased by 120-fold after supplementation with E. hallii. These findings indicate for the first time the relevance of the abundant commensal strict anaerobe E. hallii in the transformation of a dietary carcinogen that could contribute to its detoxification in the human colon.


Assuntos
Carcinógenos/metabolismo , Eubacterium/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Imidazóis/metabolismo , Microbiota , Anaerobiose , Biotransformação , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Glicerol/metabolismo , Humanos , Modelos Biológicos , Propano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA