Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Chem Biol Interact ; 395: 111026, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679115

RESUMO

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Nitrocompostos , Piperazinas , Propionatos , Animais , Propionatos/toxicidade , Nitrocompostos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Piperazinas/farmacologia , Piperazinas/química , Humanos , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Masculino , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos
2.
Toxicol Appl Pharmacol ; 485: 116910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521372

RESUMO

3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.


Assuntos
Meiose , Nitrocompostos , Oócitos , Estresse Oxidativo , Propionatos , Triterpenos , Ácido Ursólico , Animais , Nitrocompostos/toxicidade , Propionatos/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Feminino , Meiose/efeitos dos fármacos , Camundongos , Triterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Autofagia/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos ICR
3.
Toxicol Lett ; 381: 48-59, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116597

RESUMO

Redox homeostasis, mitochondrial functions, and mitochondria-endoplasmic reticulum (ER) communication were evaluated in the striatum of rats after 3-nitropropionic acid (3-NP) administration, a recognized chemical model of Huntington's disease (HD). 3-NP impaired redox homeostasis by increasing malondialdehyde levels at 28 days, decreasing glutathione (GSH) concentrations at 21 and 28 days, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione S-transferase at 7, 21, and 28 days, catalase at 21 days, and glutathione reductase at 21 and 28 days. Impairment of mitochondrial respiration at 7 and 28 days after 3-NP administration was also observed, as well as reduced activities of succinate dehydrogenase (SDH) and respiratory chain complexes. 3-NP also impaired mitochondrial dynamics and the interactions between ER and mitochondria and induced ER-stress by increasing the levels of mitofusin-1, and of DRP1, VDAC1, Grp75 and Grp78. Synaptophysin levels were augmented at 7 days but reduced at 28 days after 3-NP injection. Finally, bezafibrate prevented 3-NP-induced alterations of the activities of SOD, GPx, SDH and respiratory chain complexes, DCFH oxidation and on the levels of GSH, VDAC1 and synaptophysin. Mitochondrial dysfunction and synaptic disruption may contribute to the pathophysiology of HD and bezafibrate may be considered as an adjuvant therapy for this disorder.


Assuntos
Doença de Huntington , Ratos , Animais , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Ratos Wistar , Bezafibrato/efeitos adversos , Bezafibrato/metabolismo , Sinaptofisina/metabolismo , Modelos Químicos , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias/metabolismo , Propionatos/toxicidade , Nitrocompostos/toxicidade , Nitrocompostos/metabolismo
4.
Eur J Med Chem ; 229: 114092, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998055

RESUMO

Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 µM to 16.35 µM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 µM, comparable to that of verinurad (IC50 = 0.17 µM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 µM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Hiperuricemia/tratamento farmacológico , Naftalenos/química , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Propionatos/química , Piridinas/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Rim , Naftalenos/toxicidade , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Propionatos/toxicidade , Piridinas/toxicidade , Ácido Úrico/sangue
5.
Drug Chem Toxicol ; 45(1): 44-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31495239

RESUMO

Oxidative stress is implicated in pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The study demonstrates diarylpropionitrile (DPN), an antioxidant selective agonist of estrogen receptor ß, protected human neuroblastoma SH-SY5Y cells against H2O2-induced toxicity by attenuating production of reactive oxygen species, apoptosis, autophagy, NF-κB activation, MAPK p38, JNK and ERK 1/2 signaling pathways, and ß-site amyloid precursor protein cleaving enzyme level, but, interestingly, stimulating Akt pathway. These findings indicate the important potential of DPN to ameliorate oxidative stress-associated damage in neurodegenerative disorders.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Apoptose , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Nitrilas , Estresse Oxidativo , Propionatos/toxicidade , Espécies Reativas de Oxigênio
6.
Andrologia ; 54(1): e14248, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541692

RESUMO

We assessed the individual and combined consequence of 3-indolepropionic acid on aflatoxin B1-induced reproductive toxicity in rats. The experimental cohorts were dosed for four consecutive weeks with aflatoxin B1 (50 µg/kg), 3-indolepropionic acid (50 mg/kg), and both (aflatoxin B1: 50 µg/kg + 3-indolepropionic acid: 25 or 50 mg/kg), and the untreated control. Following sacrifice, biomarkers of testicular, epididymal and hypothalamic oxidative status, lipid peroxidation, reactive oxygen and nitrogen species, nitric oxide levels and myeloperoxidase activity were determined. Besides, tumour necrosis factor-alpha, Bcl-2 and Bax proteins were also assessed. Aflatoxin B1-induced testicular, epididymal and hypothalamic oxidative stress was significantly alleviated with 3-indolepropionic acid co-treatment. Also, increases in biomarkers of oxidative stress and reduced levels of antioxidants were abated significantly in rats co-treated with 3-indolepropionic acid. Aflatoxin B1-mediated increase in tumour necrosis factor-alpha, Bax, nitric oxide and myeloperoxidase activity in the examined organs was decreased significantly in aflatoxin B1 and 3-indolepropionic acid co-treated rats. Also, 3-indolepropionic acid dose dependently reduced Bcl-2 levels in the treated rats. The degree of aflatoxin B1-induced histopathological injuries was minimised in rats co-treated with 3-indolepropionic acid. Our results demonstrated that 3-indolepropionic acid protected experimental rats from aflatoxin B1-induced oxido-inflammatory stress and apoptotic response in the examined organs.


Assuntos
Aflatoxina B1 , Propionatos , Aflatoxina B1/toxicidade , Animais , Antioxidantes/metabolismo , Indóis , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Propionatos/toxicidade , Ratos , Ratos Wistar
7.
Environ Pollut ; 292(Pt B): 118483, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763017

RESUMO

As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) have raised concerns of their potential health risks. Human bone marrow mesenchymal stem cell was employed as an in vitro model to investigate the molecular targets and the adverse effects of HFPOs in stem cells in concentrations range starting at human relevant levels. Unsupervised transcriptomic analysis identified 1794 and 1429 DEGs affected by HFPO-TA and HFPO-DA, respectively. Cell cycle-associated biological processes were commonly altered by both chemicals. 18 and 35 KEGG pathways were enriched in HFPO-TA and HFPO-DA treatment group, respectively, among which multiple pathways were related to cancer and pluripotency. Few genes in PPAR signalling pathway were disturbed by HFPOs suggesting the involvement of PPAR-independent toxic mechanism. HFPO-TA promoted cell proliferation with significance at 1 µM mRNA levels of CDK and MYC were down-regulated by HFPOs, suggesting the negative feedback regulation to the abnormal cell proliferation. Decreased expression of CD44 protein, and ENG and THY1 mRNA levels demonstrated HFPOs-caused changes of hBMSCs phenotype. The osteogenic differentiation was also inhibited by HFPOs with reduced formation of calcium deposition. Furthermore, gene and protein expression of core pluripotency regulators NANOG was enhanced by HFPO-TA. The present study provides human relevant mechanistic evidence for health risk assessment of HFPOs, prioritizing comprehensive carcinogenicity assessment of this type of PFOA alternatives.


Assuntos
Fluorocarbonos , Hidrocarbonetos Fluorados , Células-Tronco Mesenquimais , Propionatos , Proliferação de Células , Fluorocarbonos/toxicidade , Humanos , Hidrocarbonetos Fluorados/toxicidade , Osteogênese , Propionatos/toxicidade , Transcriptoma
8.
Neurobiol Dis ; 162: 105581, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871739

RESUMO

Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.


Assuntos
Ciclina D1 , Propionatos , Corpo Estriado/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Propionatos/metabolismo , Propionatos/toxicidade
9.
J Pharm Pharmacol ; 73(3): 310-321, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33793881

RESUMO

OBJECTIVES: Hydrogen sulfide (H2S) is a neuromodulator that plays a protective role in multiple neurodegenerative diseases including Alzheimer's (AD) and Parkinson's (PD). However, the precise mechanisms underlying its effects against Huntington's disease (HD) are still questioned.This study aimed to examine the neuroprotective effects of sodium hydrogen sulfide (NaHS; H2S donor) against 3-nitropropionic acid (3NP)-induced HD like pathology in rats. Methods: Male Wistar rats were randomly allocated into four groups; (1) normal control receiving saline; (2) NaHS control receiving (0.5 mg/kg/day, i.p.) for 14 days; (3,4) receiving 3NP (10 mg/kg/day, i.p.) for 14 days, with NaHS 30 min later in group 4. KEY FINDINGS: NaHS improved cognitive and locomotor deficits induced by 3NP as confirmed by the striatal histopathological findings. These former events were biochemically supported by the increment in cystathionine ß-synthase (CBS) gene expression, reduction of glutamate (Glu), dopamine (DA), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), cytochrome-c, cleaved caspase-3 and pc-FOS indicating antioxidant, anti-inflammatory as well as anti-apoptotic effects. Furthermore, NaHS pretreatment improved cholinergic dysfunction and increased brain-derived neurotropic factor (BDNF) and nuclear factor erythroid-2-related factor 2 (Nrf2). CONCLUSIONS: These findings suggest that appropriate protection with H2S donors might represent a novel approach to slow down HD-like symptoms.


Assuntos
Cistationina beta-Sintase/genética , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Sulfetos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Locomoção/efeitos dos fármacos , Masculino , Síndromes Neurotóxicas/etiologia , Nitrocompostos/toxicidade , Propionatos/toxicidade , Ratos , Ratos Wistar , Sulfetos/metabolismo
10.
Brain Res ; 1762: 147444, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33745925

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder which begins in the striatum and then spreads to other neural areas. Known as a progressive movement cognitive disorder, HD has no efficient therapy. Although the exact mechanism of HD is still unknown, several different etiological processes such as oxidative stress have been shown to play critical roles. Also, the current evidence indicates a strong correlation between immune activation and neural damage induced by neuroinflammatory and apoptotic agents in neurodegenerative disorders. Thus, natural products like Elderberry (EB) could be considered as a novel and potential therapeutic candidate for the treatment of this disease. In this study EB was added to the daily ration of ordinary rats for two months in order to ameliorate inflammatory and oxidative responses in rats injected with 3-nitropropionic acid (3-NP) in an experimental model of HD. Using Rotarod and electromyography setups, we showed that EB diet significantly recovered motor failure and muscle incoordination in 3-NP injected rats compared to the control group. Also, the molecular findings implied that EB diet led to a significant drop in 3-NP induced growth in caspase-3 and TNF-α concentration. The treatment also improved striatal antioxidative capacity by a significant reduction in ROS and a remarkable rise in GSH, which might be correlated with motor recovery in the tests. In sum, the findings demonstrate the advantages of EB treatment in the HD rat model with a score of beneficial anti-oxidative and anti-inflammatory effects.


Assuntos
Doença de Huntington/induzido quimicamente , Doença de Huntington/dietoterapia , Atividade Motora/fisiologia , Nitrocompostos/toxicidade , Estresse Oxidativo/fisiologia , Propionatos/toxicidade , Sambucus , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Eletromiografia/métodos , Doença de Huntington/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
11.
Mol Divers ; 25(3): 1761-1773, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33201386

RESUMO

SARS-CoV-2 is a new strain of Coronavirus that caused the pneumonia outbreak in Wuhan, China and has spread to over 200 countries of the world. It has received worldwide attention due to its virulence and high rate of infection. So far, several drugs have experimented against SARS-CoV-2, but the failure of these drugs to specifically interact with the viral protease necessitates urgent measure to boost up researches for the development of effective therapeutics against SARS-CoV-2. Papain-like protease (PLpro) of the viral polyproteins is essential for maturation and infectivity of the virus, making it one of the prime targets explored for SARS-CoV-2 drug design. This study was conducted to evaluate the efficacy of ~ 50,000 natural compounds retrieved from IBS database against COVID-19 PLpro using computer-aided drug design. Based on molecular dock scores, molecular interaction with active catalytic residues and molecular dynamics (MD) simulations studies, STOCK1N-69160 [(S)-2-((R)-4-((R)-2-amino-3-methylbutanamido)-3-(4-chlorophenyl) butanamido) propanoic acid hydrochloride] has been proposed as a novel inhibitor against COVID-19 PLpro. It demonstrated favourable docking score, the free energy of binding, interacted with key amino acid residues necessary for PLpro inhibition and also showed significant moderation for parameters investigated for ADME/tox (Adsorption, distribution, metabolism, excretion and toxicological) properties. The edge of the compound was further established by its stability in MD simulation conducted for 30 ns employing GROMACS software. We propose that STOCK1N-69160 is worth further investigation for preventing SARS-CoV-2.


Assuntos
Absorção Fisico-Química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Propionatos/química , Propionatos/farmacologia , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Desenho de Fármacos , Propionatos/metabolismo , Propionatos/toxicidade , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Software
12.
Biochim Biophys Acta Gen Subj ; 1865(1): 129768, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148501

RESUMO

BACKGROUND: Extensive research is being carried out globally to design and develop new selenium compounds for various biological applications such as antioxidants, radio-protectors, anti-carcinogenic agents, biocides, etc. In this pursuit, 3,3'-diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention for its biological activities. SCOPE OF REVIEW: This review intends to give a comprehensive account of research on DSePA so as to facilitate further research activities on this organoselenium compound and to realize its full potential in different areas of biological and pharmacological sciences. MAJOR CONCLUSIONS: It is an interesting diselenide structurally related to selenocystine. It shows moderate glutathione peroxidase (GPx)-like activity and is an excellent scavenger of reactive oxygen species (ROS). Exposure to radiation, as envisaged during radiation therapy, has been associated with normal tissue side effects and also with the decrease in selenium levels in the body. In vitro and in vivo evaluation of DSePA has confirmed its ability to reduce radiation induced side effects into normal tissues. Administration of DSePA through intraperitoneal (IP) or oral route to mice in a dose range of 2 to 2.5 mg/kg body weight has shown survival advantage against whole body irradiation and a significant protection to lung tissue against thoracic irradiation. Pharmacokinetic profiling of DSePA suggests its maximum absorption in the lung. GENERAL SIGNIFICANCE: Research work on DSePA reported in fifteen years or so indicates that it is a promising multifunctional organoselenium compound exhibiting many important activities of biological relevance apart from radioprotection.


Assuntos
Antioxidantes/farmacologia , Propionatos/farmacologia , Protetores contra Radiação/farmacologia , Compostos de Selênio/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/farmacocinética , Antioxidantes/toxicidade , Humanos , Oxirredução/efeitos dos fármacos , Propionatos/síntese química , Propionatos/farmacocinética , Propionatos/toxicidade , Protetores contra Radiação/síntese química , Protetores contra Radiação/farmacocinética , Protetores contra Radiação/toxicidade , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosotióis/metabolismo , Compostos de Selênio/síntese química , Compostos de Selênio/farmacocinética , Compostos de Selênio/toxicidade
13.
J Neuroinflammation ; 17(1): 290, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023623

RESUMO

BACKGROUND: Evidence shows significant heterogeneity in astrocyte gene expression and function. We previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts protective effects on whole brain primary cultured rat astrocytes treated with 3-nitropropionic acid (3NP), a mitochondrial toxin widely used as an in vitro model of Huntington's disease (HD). Therefore, we now investigated 3NP and BDNF effects on astrocytes from two areas involved in HD: the striatum and the entire cortex, and their involvement in neuron survival. METHODS: We prepared primary cultured rat cortical or striatal astrocytes and treated them with BDNF and/or 3NP for 24 h. In these cells, we assessed expression of astrocyte markers, BDNF receptor, and glutamate transporters, and cytokine release. We prepared astrocyte-conditioned medium (ACM) from cortical and striatal astrocytes and tested its effect on a cellular model of HD. RESULTS: BDNF protected astrocytes from 3NP-induced death, increased expression of its own receptor, and activation of ERK in both cortical and striatal astrocytes. However, BDNF modulated glutamate transporter expression differently by increasing GLT1 and GLAST expression in cortical astrocytes but only GLT1 expression in striatal astrocytes. Striatal astrocytes released higher amounts of tumor necrosis factor-α than cortical astrocytes in response to 3NP but BDNF decreased this effect in both populations. 3NP decreased transforming growth factor-ß release only in cortical astrocytes, whereas BDNF treatment increased its release only in striatal astrocytes. Finally, we evaluated ACM effect on a cellular model of HD: the rat striatal neuron cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15). Neither striatal nor cortical ACM modified the viability of Q15 cells. Only ACM from striatal astrocytes treated with BDNF and ACM from 3NP + BDNF-treated striatal astrocytes protected Q120 cells, whereas ACM from cortical astrocytes did not. CONCLUSIONS: Data suggest that cortical and striatal astrocytes respond differently to mitochondrial toxin 3NP and BDNF. Moreover, striatal astrocytes secrete soluble neuroprotective factors in response to BDNF that selectively protect neurons expressing mutant huntingtin implicating that BDNF modulation of striatal astrocyte function has therapeutic potential against neurodegeneration.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/toxicidade , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/biossíntese , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Proteína Huntingtina/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/efeitos dos fármacos , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Wistar
14.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443829

RESUMO

3-Nitropropionic acid (NPA) administration to rodents produces degeneration of the striatum, accompanied by neurological disturbances that mimic Huntington's disease (HD) motor neurological dysfunctions. It has been shown that inflammation mediates NPA-induced brain degeneration, and activated microglia secreting cytokines interleukin-1α (IL-1α) and tumor necrosis factor α (TNFα) can induce a specific type of reactive neurotoxic astrocytes, named A1, which have been detected in post-mortem brain samples of Huntington's, Alzheimer's, and Parkinson's diseases. In this work we used an experimental model based on the intraperitoneal (i.p.) administration of NPA to adult Wistar rats at doses that can elicit extensive brain degeneration, and brain samples were taken before and after extensive brain damage monitored using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Western blots and immunohistochemistry of brain slices show that i.p. NPA injections elicit significant increase in the expression levels of C3α subunit, a marker of generation of neurotoxic A1 astrocytes, and of cytokines IL-1α, TNFα, and C1q within the striatum, hippocampus, and cerebellum before the appearance of the HD-related neurological dysfunctions and neuronal death induced by NPA. Noteworthy, NPA administration primarily induces the generation of A1 astrocytes in the more recent phylogenetic area of the rat cerebellum. We conclude that the activation of complement C3 protein in the brain from Wistar rats is an early event in NPA-induced brain neurodegeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Complemento C1q/metabolismo , Interleucina-1/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol In Vitro ; 65: 104797, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32068100

RESUMO

Perfluorooctanoic acid (PFOA), an extremely persistent perfluoroalkyl substance (PFAS), and 2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX), its shorter chain alternative, have been implicated in hepatocellular damage with unusual fat deposit and liver enlargement. In this study we explored the underlying mechanisms of PFOA and GenX induced hepatocellular damage. Liver hepatocellular carcinoma cell line HepG2 was used as a model to study induced liver inflammation in vitro at the cellular, genetic, and epigenetic levels. HepG2 cells were exposed to PFOA or GenX for 48 h and the DNA and RNA were extracted and analyzed. mRNA expression analysis of PFOA exposed cells showed that cell cycle homeostasis genes were affected significantly, as well as the ten-eleven translocation methylcytosine dioxygenases (TETs) and the essential lipid metabolism genes. GenX did not have as significant an effect. Global methylation levels of HepG2 cells were found to be inversely proportional to PFOA exposure levels. With GenX, the global methylation level decreased and then increased. Our work points to the fact that PFOA may contribute to higher overall epigenetic toxicity than GenX, and its induced epigenetic changes may play a major role in lipid metabolism gene regulation and fat deposits.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Propionatos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epigênese Genética , Células Hep G2 , Humanos , Transcriptoma/efeitos dos fármacos
16.
J Biochem Mol Toxicol ; 34(4): e22449, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31967697

RESUMO

Propionic acid (PRA) is used as a food preservative. This study was aimed to investigate the neuroprotective effect of acetyl-l-carnitine (ALC) and nano-Coenzyme Q (N-CoQ) on brain intoxication induced by PRA in rats. Rats were divided into five groups: group I: control; group II: received PRA; group III: received ALC; group IV: received N-CoQ; and group V: received ALC and N-CoQ for 5 days. The antioxidants in question markedly ameliorated serum interleukin-1ß and tumor necrosis factor-α, and brain NO, lipid peroxide, glutathione, and superoxide dismutase levels as well as protein expression of brain-derived neurotrophic factor (BDNF) and P-cyclic-AMP response element-binding protein (CREB) that were altered by a toxic dose of PRA, as well as histopathological alterations, including improvement of the cerebellum architecture. Interestingly, the combination therapy of ALC and N-CoQ achieved the most neuroprotective effect compared with monotherapies. The current study established that N-CoQ is considered as a useful tool to prevent brain injury induced by PRA. BDNF and CREB proteins are involved in both PRA neurotoxicity and treatment.


Assuntos
Acetilcarnitina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Conservantes de Alimentos/toxicidade , Fármacos Neuroprotetores/farmacologia , Propionatos/toxicidade , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Nanopartículas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/farmacologia
17.
Environ Pollut ; 259: 113817, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918129

RESUMO

2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propanoate (known as GenX) has been used as an alternative to perfluorooctanoic acid (PFOA) which was phased out of formulations for industrial and consumer product applications in 2015. While the effects of GenX on lab animals have been studied, little is known about its effects on plants. This study examined and compared the accumulation and toxicity of GenX and PFOA in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Both plants showed reduction in biomass and root growth following exposure to PFOA or GenX in a dosage-dependent manner. The bioaccumulation factors (BFs) of GenX and PFOA were plant species-dependent, with higher BFs in A. thaliana compared to N. bethanminana. Additionally, GenX and PFOA were more readily accumulated into shoot tissues of A. thaliana than in N. bethanminana. Exposure to GenX also caused a reduction in chlorophyll content (18%) and total phenolic compounds (26%). However, GenX exposure increased superoxide dismutase activity and H2O2 content (1.6 and 2.6 folds increase, respectively) in N. benthamiana. Overall, our result suggest that GenX is bioaccumulative, and that its accumulation likely inhibits plant growth and photosynthesis as well as inducing oxidative stress.


Assuntos
Arabidopsis , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Nicotiana , Propionatos/toxicidade , Animais , Peróxido de Hidrogênio
18.
Chemosphere ; 235: 1030-1040, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561292

RESUMO

Organic pesticides are one of the main environmental pollutants, and how to reduce their environmental risks is an important issue. In this contribution, we disclose the molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides using site-directed mutagenesis and molecular modeling and then construct an effective screening model. The results indicated that the target-site mutation (Trp-1999-Leu) in acetyl-coenzyme A carboxylase (ACCase) can affect the effectiveness of the pesticides (clodinafop, fenoxaprop, cyhalofop, and metamifop), and the plant resistance to fenoxaprop, clodinafop, cyhalofop, and metamifop was found to be 564, 19.5, 10, and 0.19 times, respectively. The established computational models (i.e. wild-type/mutant ACCase models) could be used for rational screening and evaluation of the resistance to pesticides. The resistance induced by target gene mutation can markedly reduce the bioreactivity of the ACCase-clodinafop/fenoxaprop adducts, and the magnitudes are 10 and 102, respectively. Such event will seriously aggravate environmental pollution. However, the biological issue has no distinct effect on cyhalofop (RI=10), and meanwhile it may markedly increase the bioefficacy of metamifop (RI=0.19). We could selectively adopt the two chemicals so as to decrease the residual pesticides in the environment. Significantly, research findings from the computational screening models were found to be negatively correlated with the resistance level derived from the bioassay testing, suggesting that the screening models can be used to guide the usage of pesticides. Obviously, this story may shed novel insight on the reduction of environmental risks of pesticides and other organic pollutants.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Biologia Computacional/métodos , Resistência a Herbicidas/genética , Praguicidas/toxicidade , Proteínas de Plantas/antagonistas & inibidores , Poaceae/crescimento & desenvolvimento , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Anilidas/toxicidade , Benzoxazóis/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/enzimologia , Propionatos/toxicidade , Conformação Proteica , Piridinas/toxicidade , Estados Unidos
19.
Neurotoxicology ; 75: 116-122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526819

RESUMO

Studies in animal models have shown that the short-chain fatty acid, propionic acid (PPA), interferes with mitochondrial metabolism leading to mitochondrial dysfunction and behavioral abnormalities. The aim of this study was to investigate the effects of PPA on mitochondrial function and gene expression in neuronal cells. SH-SY5Y cells and normal human neural progenitor (NHNP) cells were exposed to 1, 5 mM PPA for 4 or 24 h and we found that the mitochondrial potential measured in SH-SY5Y cells decreased in a dose-dependent manner after PPA treatment. Electron microscopy analysis revealed that the size of the mitochondria was significantly reduced following PPA treatment. A dose-dependent increase in the mitochondrial DNA copy number was observed in the PPA-treated cells. The expression of the mitochondrial biogenesis-related proteins PGC-1α, TFAM, SIRT3, and COX4 was significantly increased after PPA treatment. Transcriptome analysis revealed that mRNA expression in the notch signaling-related genes ASCL1 and LFNG changed after PPA treatment and the positive correlated protein expression changes were also observed. These results revealed that PPA treatment may affect neurodevelopment by altering mitochondrial function and notch signaling-related gene expression.


Assuntos
Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Propionatos/toxicidade , Western Blotting , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transcriptoma/efeitos dos fármacos
20.
Chem Biol Interact ; 311: 108758, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348919

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in children. It is diagnosed by two main behavioral phenotypes i.e. social-communication impairments and repetitive behavior. ASD is complex disorder with unsolved etiology due to multiple genes involvement, epigenetic mechanism and environmental factors. The clinical and preclinical studies have been indicating the association of propionic acid with autism spectrum disorder. Numerous studies suggest the potential therapeutic effects of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in different brain disorders. This research evaluates the utility of selective agonist of PPAR-γ, pioglitazone in postnatal propionic acid induced ASD related symptomatology in male Wistar rats. PPA (250 mg/kg, p.o.) was administered to male offspring for three consecutive days from postnatal 21st day to 23rd day. PPA induced social impairment, repetitive behavior, hyperlocomotion, anxiety and low exploratory activity in rats. Also, postnatal propionic acid-treated rats showed higher levels of oxidative stress (increased in thiobarbituric acid reactive species and decreased in reduced glutathione) as well as inflammation (increased in interleukin-6, tumor necrosis factor-alpha and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. The rats were treated daily with pioglitazone (10 mg/kg and 20 mg/kg, p.o.) from postnatal 24th day to end of the study. Treatment with pioglitazone, significantly attenuated the postnatal propionic acid-induced social impairment, repetitive behavior, hyperactivity, anxiety and low exploratory activity. Furthermore, pioglitazone also reduced the postnatal propionic acid-induced oxidative stress and neuroinflammation in aforementioned brain regions. Hence, pioglitazone improved the propionic acid-induced neurobehavioral and biochemical impairments in rats.


Assuntos
Transtorno do Espectro Autista/patologia , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/agonistas , Pioglitazona/farmacologia , Animais , Ansiedade/prevenção & controle , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/prevenção & controle , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Locomoção/efeitos dos fármacos , Masculino , PPAR gama/metabolismo , Fenótipo , Pioglitazona/uso terapêutico , Propionatos/toxicidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA