Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838666

RESUMO

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina , Núcleo Celular , Neurogênese , Neurônios , Proteína I de Ligação a Poli(A) , RNA Circular , RNA , RNA Circular/metabolismo , RNA Circular/genética , Neurônios/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Animais , RNA/metabolismo , RNA/genética , Linhagem Celular , Diferenciação Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
2.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38811166

RESUMO

Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.


Assuntos
Axônios , Peptídeo 1 Semelhante ao Glucagon , Neurônios , Rombencéfalo , Animais , Masculino , Feminino , Ratos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Neurônios/metabolismo , Axônios/metabolismo , Rombencéfalo/metabolismo , Vias Neurais/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Hipotálamo/citologia , Prosencéfalo/metabolismo , Sistema Límbico/metabolismo , Núcleo Solitário/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
3.
Biochem Pharmacol ; 224: 116201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608783

RESUMO

Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.


Assuntos
Neurônios Colinérgicos , Colo , Histamina , Permeabilidade , Ratos Sprague-Dawley , Receptor A2B de Adenosina , Nervo Vago , Animais , Histamina/metabolismo , Histamina/farmacologia , Ratos , Masculino , Receptor A2B de Adenosina/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Nervo Vago/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo
4.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Síndrome do QT Longo , Oligonucleotídeos Antissenso , Sindactilia , Animais , Feminino , Humanos , Masculino , Camundongos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Movimento Celular/efeitos dos fármacos , Dendritos/metabolismo , Éxons/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Sindactilia/tratamento farmacológico , Sindactilia/genética , Interneurônios/citologia , Interneurônios/efeitos dos fármacos
5.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427475

RESUMO

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/patologia , Suramina/farmacologia , Suramina/metabolismo , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Prosencéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA