Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arch Dermatol Res ; 316(8): 523, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150635

RESUMO

Dermal papilla cells (DPCs) exhibit self-recovery ability, which may be involved in hair growth. Therefore, we tested whether DPCs subjected to temporary growth-inhibiting stress (testosterone, 17ß-estradiol, mitomycin C, or undernutrition) treatments exhibit self-recovery behavior that can activate hair follicle growth, and examined the changes in cell proliferation capacity and gene expression. Related proteins were identified and their relationships with the hair cycle was examined using a mouse model. Recovery-period DPCs (i.e., from day 3 after loading) were subjected to microarray analysis to detect genetic variations common to each stress treatment. Co-culture of recovery-period DPCs and outer root sheath cells (ORSCs) confirmed the promotion of ORSC proliferation, suggesting that the activation of hair follicle growth is promoted via signal transduction. Chitinase 3-like 1 (CHI3L1) and C-X-C motif chemokine 5 (CXCL5) exhibited ORSC proliferation-promoting effects. Measurement of protein content in the skin during each phase of the hair cycle in mice revealed that CHI3L1 and CXCL5 secretion increased immediately after anagen transition. In a hair-loss mouse model treated with testosterone or 17ß-estradiol, CHI3L1 and CXCL5 secretion was lower in treated telogen skin than in untreated skin. Our results suggest that CHI3L1 and CXCL5 secreted by recovery-state DPCs promote hair growth.


Assuntos
Proliferação de Células , Quimiocina CXCL5 , Proteína 1 Semelhante à Quitinase-3 , Folículo Piloso , Animais , Camundongos , Folículo Piloso/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Quimiocina CXCL5/metabolismo , Testosterona/metabolismo , Testosterona/farmacologia , Estradiol/metabolismo , Estradiol/farmacologia , Alopecia/metabolismo , Alopecia/patologia , Masculino , Modelos Animais de Doenças , Cabelo/crescimento & desenvolvimento , Técnicas de Cocultura , Humanos , Mitomicina/farmacologia , Transdução de Sinais , Células Cultivadas , Camundongos Endogâmicos C57BL
2.
Gut Microbes ; 16(1): 2388801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132842

RESUMO

The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Neoplasias Colorretais , Células T Matadoras Naturais , Porphyromonas gingivalis , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Células T Matadoras Naturais/imunologia , Porphyromonas gingivalis/imunologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Humanos , Animais , Camundongos , Microambiente Tumoral/imunologia , Evasão da Resposta Imune , Evasão Tumoral , Microbioma Gastrointestinal/imunologia , Linhagem Celular Tumoral , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Feminino , Camundongos Endogâmicos C57BL , Masculino
3.
Front Immunol ; 15: 1410948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975344

RESUMO

Background: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting more than 10% of the global adult population. It is classified into Th1, Th2, and Th17 endotypes and eosinophilic and non-eosinophilic types. Th2-based inflammation and eosinophilic CRS (ECRS) are associated with tissue remodeling and fibrinolytic system impairment. Objective: To elucidate the role of eosinophils in inducing fibrin deposition in CRS nasal polyp tissues and explore potential regulatory mechanisms. Methods: We analyzed the expression of genes related to the serpin family and fibrinolytic system using Gene Expression Omnibus and Next-generation sequencing data. Differentially expression genes (DEGs) analysis was used to compare control and nasal polyp tissues, followed by KEGG and Gene ontology (GO) analysis. We measured the expression and correlation of plasminogen activator-1 (PAI-1), tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA), and urokinase plasminogen activator surface receptor (u-PAR) in CRS tissues, and evaluated the effect of eosinophils on the fibrinolytic system using a cytokine array and co-culture. Results: Nasal polyp tissues showed upregulated PAI-1, u-PA, and u-PAR expression and downregulated t-PA expression. Fibrinolytic system-related genes positively correlated with Th2 cytokines, except for t-PA. Eosinophil-derived Chitinase-3-like protein 1 (CHI3L1) increased PAI-1 expression and decreased t-PA levels in fibroblasts and epithelial cells. The inhibition of CHI3L1 suppresses these alterations. Conclusion: CHI3L1 contributes to fibrin deposition by impairing the fibrinolytic system during nasal polyp formation. The regulation of CHI3L1 expression may inhibit fibrin deposition and edema in ECRS, presenting a potential treatment for this condition.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Eosinófilos , Fibrinólise , Pólipos Nasais , Inibidor 1 de Ativador de Plasminogênio , Rinite , Sinusite , Humanos , Pólipos Nasais/metabolismo , Pólipos Nasais/imunologia , Sinusite/metabolismo , Sinusite/imunologia , Rinite/metabolismo , Rinite/imunologia , Doença Crônica , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Eosinófilos/imunologia , Eosinófilos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/genética , Citocinas/metabolismo , Rinossinusite
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000203

RESUMO

The role of Chitinase-3-like protein 1 (CHI3L1) in tumor progression has been gradually clarified in different kinds of solid tumors. Hence, we aim to elucidate its prognostic value for glioma. In this study, we analyzed RNA sequencing data combined with corresponding clinical information obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed genes (DEGs) were acquired based on CHI3L1 expression profiles and were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cox regression, least absolute shrinkage and selection operator (LASSO) regression methods, along with a nomogram, were employed to establish a predictive model. Compared with the corresponding non-tumor tissues, CHI3L1 expression was significantly upregulated in various types of solid tumors, correlating with poor clinical outcomes including glioma. GO analysis identified oxidative stress-related genes (ORGs) that were differentially expressed and modulated by CHI3L1, with 11 genes subsequently identified as potential predictors, using Univariate-Cox regression and LASSO regression. In addition, an index of oxidative stress-related genes (ORGI) was established, demonstrating its prognostic value in conjunction with CHI3L1 expression. The aberrant expression of CHI3L1 was proved in glioma patients through immunohistochemistry (IHC). Meanwhile, the knockdown of CHI3L1 inhibited glioma growth in vitro, and real-time Quantitative PCR (qPCR) confirmed decreased ORG expression upon CHI3L1 knockdown, suggesting the potential prognostic value of CHI3L1 as a therapeutic target for glioma.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Proteína 1 Semelhante à Quitinase-3 , Regulação Neoplásica da Expressão Gênica , Glioma , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Perfilação da Expressão Gênica
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928474

RESUMO

Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or ß-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/ß-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that ß-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the ß conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. ß-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.


Assuntos
Quitina , Proteína 1 Semelhante à Quitinase-3 , Quitosana , Melanócitos , Oligossacarídeos , Quitosana/química , Quitosana/farmacologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Humanos , Quitina/análogos & derivados , Quitina/farmacologia , Quitina/química , Oligossacarídeos/farmacologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia
6.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918734

RESUMO

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Assuntos
Biomarcadores , Restrição Calórica , Taxa de Filtração Glomerular , Túbulos Renais , Metformina , Rim Policístico Autossômico Dominante , Humanos , Metformina/uso terapêutico , Rim Policístico Autossômico Dominante/urina , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/dietoterapia , Masculino , Feminino , Biomarcadores/urina , Pessoa de Meia-Idade , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Adulto , Lipocalina-2/urina , Quimiocina CCL2/urina , Proteínas de Ligação a Ácido Graxo/urina , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/análise , Proteína 1 Semelhante à Quitinase-3/urina , Hipoglicemiantes/uso terapêutico
7.
Biochem Pharmacol ; 225: 116335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824968

RESUMO

Drugs specifically targeting YKL-40, an over-expressed gene (CHI3L1) in various diseases remain developed. The current study is to create a humanized anti-YKL-40 neutralizing antibody and characterize its potentially therapeutic signature. We utilized in silico CDR-grafting bioinformatics to replace the complementarity determining regions (CDRs) of human IgG1 with mouse CDRs of our previously established anti-YKL-40 antibody (mAY). In fifteen candidates (VL1-3/VH1-5) of heavy and light chain variable region combination, one antibody L3H4 named Rosazumab demonstrated strong binding affinity with YKL-40 (KD = 4.645 × 10-8 M) and high homology with human IgG (80 %). In addition, we established different overlapping amino acid peptides of YKL-40 and found that Rosazumab specifically bound to residues K337, K342, and R344, the KR-rich functional domain of YKL-40. Rosazumab inhibited migration and tube formation of YKL-40-expressing tumor cells and induced tumor cell apoptosis. Mechanistically, Rosazumab induced interaction of N-cadherin with ß-catenin and activation of downstream MST1/RASSF1/Histone H2B axis, leading to chromosomal DNA breakage and cell apoptosis. Treatment of xenografted tumor mice with Rosazumab twice a week for 4 weeks inhibited tumor growth and angiogenesis, but induced tumor apoptosis. Rosazumab injected in mice distributed to blood, tumor, and other multiple organs, but did not impact in function or structure of liver and kidney, indicating non-detectable toxicity in vivo. Collectively, the study is the first one to demonstrate that a humanized YKL-40 neutralizing antibody offers a valuable means to block tumor development.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína 1 Semelhante à Quitinase-3 , Neoplasias , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/antagonistas & inibidores , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791588

RESUMO

Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aß infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aß-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aß infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.


Assuntos
Peptídeos beta-Amiloides , Proteína 1 Semelhante à Quitinase-3 , Disfunção Cognitiva , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Doenças Neuroinflamatórias , Animais , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína C-Reativa/metabolismo , Feminino , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Regulação para Baixo , Modelos Animais de Doenças , Idoso , Camundongos Endogâmicos C57BL
9.
Cytokine ; 179: 156631, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710115

RESUMO

BACKGROUND: Chitinase 3 like-1 (CHI3L1) has been reported to function as an oncogene in many types of cancer. However, the biological function of CHI3L1 in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: Differentially expressed genes (DEGs) in NPC tissues in GSE64634 and GSE12452 were downloaded from Gene Expression Omnibus (GEO). CHI3L1, interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) mRNA expression was examined by qRT-PCR. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Western blot analysis was used to measure the changes of CHI3L1, nuclear factor-κappaB (NF-κB), and protein kinase B (Akt) pathways. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses were performed using DAVID database. RESULTS: We identified 3 overlapping DEGs using Draw Venn diagram, among which CHI3L1 was chosen for the following analyses. CHI3L1 was upregulated in NPC tissues and cells. CHI3L1 silencing suppressed inflammatory response by inactivating the NF-κB pathway and inhibited cell proliferation in NPC cells. On the contrary, CHI3L1 overexpression induced inflammatory response by activating the NF-κB pathway and promoted cell proliferation in NPC cells. According to GO and KEGG analyses, CHI3L1 positive regulates Akt signaling and is enriched in the PI3K-Akt pathway. CHI3L1 knockdown inhibited the Akt pathway, and CHI3L1 overexpression activated the Akt pathway in NPC cells. Akt overexpression abolished the effects of CHI3L1 knockdown on inflammatory response, NF-κB pathway, and proliferation in NPC cells. On the contrary, Akt knockdown abolished the effects of CHI3L1 overexpression on inflammatory response, NF-κB pathway, and proliferation in NPC cells. CONCLUSION: CHI3L1 knockdown inhibited NF-κB-dependent inflammatory response and promoting proliferation in NPC cells by inactivating the Akt pathway.


Assuntos
Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Citocinas , NF-kappa B , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Inflamação/metabolismo , Inflamação/genética
10.
Lung ; 202(3): 269-273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753183

RESUMO

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Assuntos
Biomarcadores , Progressão da Doença , Doenças Pulmonares Intersticiais , Sistema de Registros , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Capacidade Vital , Idoso , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/diagnóstico , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/diagnóstico , Proteína D Associada a Surfactante Pulmonar/sangue , Pulmão/fisiopatologia , Valor Preditivo dos Testes , Proteína 1 Semelhante à Quitinase-3/sangue , Quimiocinas CC , Osteopontina , Receptor para Produtos Finais de Glicação Avançada/sangue , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/diagnóstico
11.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750795

RESUMO

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Assuntos
Quitina , Proteína 1 Semelhante à Quitinase-3 , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/química , Humanos , Quitina/metabolismo , Quitina/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/química , Evolução Molecular , Hexosaminidases/metabolismo , Hexosaminidases/química , Hexosaminidases/genética , Domínio Catalítico , Substituição de Aminoácidos , Éxons , Sequência de Aminoácidos
12.
Biomed Pharmacother ; 176: 116825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820971

RESUMO

Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.


Assuntos
Anticorpos Monoclonais , Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Neoplasias Colorretais , Fibrose , Neoplasias Pulmonares , Neovascularização Patológica , Neoplasias Pancreáticas , Animais , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/antagonistas & inibidores , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Anticorpos Neutralizantes/farmacologia , Antineoplásicos Imunológicos/farmacologia , Angiogênese
13.
Ren Fail ; 46(1): 2338929, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38632963

RESUMO

OBJECTIVE: To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS: Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and ß2-microglobulin (ß2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS: The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, ß2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, ß2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION: HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.


Assuntos
Cresóis , Hemodiafiltração , Metilaminas , Humanos , Hemodiafiltração/efeitos adversos , Projetos Piloto , Toxinas Urêmicas , Proteína 1 Semelhante à Quitinase-3 , Interleucina-6 , Fator de Necrose Tumoral alfa , Diálise Renal , Aminoácidos de Cadeia Ramificada , Albumina Sérica
14.
Cells ; 13(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667293

RESUMO

Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Inflamação , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Animais , Inflamação/patologia , Inflamação/metabolismo , Doença Crônica
15.
Genet Test Mol Biomarkers ; 28(5): 199-206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634621

RESUMO

Background: Oxidative stress has been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS). To develop novel antioxidant drugs, it is necessary to explore the key regulatory molecules involved in oxidative stress in PCOS. Plasma YKL-40 levels are elevated in patients with PCOS; however, its role remains unclear. Methods: The follicular fluids of 20 women with PCOS and 12 control subjects with normal ovarian function were collected, and YKL-40 in follicular fluids was measured by enzyme-linked immunosorbent assay. A letrozole-induced PCOS rat model was established and the expression level of YKL-40 in the ovaries was detected by immunohistochemistry. KGN cells were treated with H2O2 to generate an ovarian granulosa cell (OGC) model of oxidative stress. The siRNA was transfected into the cells for knockdown. The effect of YKL-40 knockdown on H2O2-treated KGN cells was evaluated by measuring proliferation, apoptosis, activities of T-SOD, GSH-Px, and CAT, levels of MDA, IL-1ß, IL-6, IL-8, and TNF-α, and the PI3K/AKT/NF-κB signaling pathway. Results: YKL-40 levels were elevated in the follicular fluids of women with PCOS compared with control subjects with normal ovarian function. The expression level of YKL-40 in the ovaries of rats with PCOS is obviously higher than that in the ovaries of the control group rats. H2O2 treatment enhanced YKL-40 mRNA expression and protein secretion. YKL-40 knockdown enhanced cell proliferation and antioxidant capacity while decreasing apoptosis and inflammatory factor levels in KGN cells following H2O2 treatment. The knockdown activated the PI3K/AKT signaling pathway and suppressed NF-κB nuclear translocation from the cytoplasm. Conclusion: YKL-40 levels were elevated in the follicular fluids of women with PCOS and the ovaries of rats with PCOS. YKL-40 expression can be induced by oxidative stress, and YKL-40 knockdown can decrease oxidative stress damage in OGCs.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Líquido Folicular , Células da Granulosa , Estresse Oxidativo , Síndrome do Ovário Policístico , Transdução de Sinais , Adulto , Animais , Feminino , Humanos , Ratos , Apoptose , Proliferação de Células , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Modelos Animais de Doenças , Líquido Folicular/metabolismo , Técnicas de Silenciamento de Genes , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/metabolismo , NF-kappa B/metabolismo , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Ratos Sprague-Dawley
16.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427954

RESUMO

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Assuntos
Quitinases , Proteína 1 Semelhante à Quitinase-3 , Glicoproteínas , Ensaios de Triagem em Larga Escala , Heparitina Sulfato
17.
Inflamm Res ; 73(4): 515-530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308760

RESUMO

OBJECTIVE AND DESIGN: We aimed to identify cytokines whose concentrations are related to lung damage, radiomic features, and clinical outcomes in COVID-19 patients. MATERIAL OR SUBJECTS: Two hundred twenty-six patients with SARS-CoV-2 infection and chest computed tomography (CT) images were enrolled. METHODS: CCL18, CHI3L1/YKL-40, GAL3, ANG2, IP-10, IL-10, TNFα, IL-6, soluble gp130, soluble IL-6R were quantified in plasma samples using Luminex assays. The Mann-Whitney U test, the Kruskal-Wallis test, correlation and regression analyses were performed. Mediation analyses were used to investigate the possible causal relationships between cytokines, lung damage, and outcomes. AVIEW lung cancer screening software, pyradiomics, and XGBoost classifier were used for radiomic feature analyses. RESULTS: CCL18, CHI3L1, and ANG2 systemic levels mainly reflected the extent of lung injury. Increased levels of every cytokine, but particularly of IL-6, were associated with the three outcomes: hospitalization, mechanical ventilation, and death. Soluble IL-6R showed a slight protective effect on death. The effect of age on COVID-19 outcomes was partially mediated by cytokine levels, while CT scores considerably mediated the effect of cytokine levels on outcomes. Radiomic-feature-based models confirmed the association between lung imaging characteristics and CCL18 and CHI3L1. CONCLUSION: Data suggest a causal link between cytokines (risk factor), lung damage (mediator), and COVID-19 outcomes.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Interleucina-6 , SARS-CoV-2 , Proteína 1 Semelhante à Quitinase-3 , Detecção Precoce de Câncer , Radiômica , Pulmão/diagnóstico por imagem , Citocinas , Quimiocinas CC
18.
Medicine (Baltimore) ; 103(6): e37169, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335422

RESUMO

This study aimed to assess the utility of serum YKL-40 and serum dipeptidyl peptidase IV (DPP4) as biomarkers for distinguishing between type 2 (T2)-high and T2-low asthma in the Chinese population. Additionally, we sought to explore the associations of serum YKL-40 and DPP4 levels with asthma characteristics and conventional markers. A real-world observational cross-sectional study was conducted, involving a total of 75 adult asthma patients. We collected general information, including demographics and medical history. Measurements included complete blood count, fractional exhaled nitric oxide (FeNO), post-bronchodilator spirometry, serum YKL-40 and serum DPP4 levels. Asthma endotypes, T2-high and T2-low, were defined through a comprehensive review of existing literature and expert group discussions. Logistic and linear regression models were employed. Our findings indicated no significant association between serum YKL-40 or serum DPP4 levels and T2-high asthma across all models. In the fully adjusted model, their odds ratios (OR) were 0.967 (95% CI: 0.920-1.017) and 0.997 (95% CI: 0.993-1.001), respectively. Notably, serum YKL-40 exhibited a positive correlation with FeNO (ß = 0.382, 95% CI: 0.230-0.533) after adjusting for confounding factors. This association, however, diminished in patients under 40 years old (P = .24), males (P = .25), and those with FEV1%pred of 80% or higher (P = .25). Serum DPP4 demonstrated a negative correlation with FEV1/FVC in the fully adjusted model (ß: -0.005, 95% CI: -0.009, -0.000). Among Chinese adult asthma patients, a positive correlation was observed between serum YKL-40 levels and FeNO in females aged over 40 with FEV1%pred less than 80%. Additionally, a weak negative correlation was found between serum DPP4 levels and FEV1/FVC. However, neither serum YKL-40 nor serum DPP4 levels exhibited the capability to differentiate between T2-high and T2-low asthma.


Assuntos
Asma , Dipeptidil Peptidase 4 , Masculino , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Proteína 1 Semelhante à Quitinase-3 , Estudos Transversais , Óxido Nítrico/análise , Biomarcadores , China/epidemiologia
19.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320988

RESUMO

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Semelhante à Quitinase-3
20.
Cell Commun Signal ; 22(1): 81, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291404

RESUMO

BACKGROUND: Previous research has revealed that the 18 glycoside hydrolase gene family (GH18) member Chitinase 3-like 1 (Chi3l1) can regulate osteoclast differentiation and bone resorption. However, its downstream receptors and molecular mechanisms during osteoclastogenesis have yet to be elucidated. METHODS: Initially, we conducted a comprehensive investigation to evaluate the effects of recombinant Chi3l1 protein or Chi3l1 siRNA on osteoclast differentiation and the RANKL-induced MAPK/AKT signaling pathways. Moreover, we used immunofluorescence and immunoprecipitation assays to identify IL13Rα2 as the downstream receptor of Chi3l1. Subsequently, we investigated the impact of IL13Rα2 recombinant protein or IL13Rα2-siRNA on osteoclast differentiation and the associated signaling pathways. Finally, we performed in vivo experiments to examine the effect of recombinant IL13Rα2 protein in an LPS-induced mouse model of cranial osteolysis. RESULTS: Our findings highlight that the administration of recombinant Chi3l1 protein increased the formation of osteoclasts and bolstered the expression of several osteoclast-specific genes (TRAP, NFATC1, CTR, CTSK, V-ATPase d2, and Dc-STAMP). Additionally, Chi3l1 significantly promoted the RANKL-induced MAPK (ERK/P38/JNK) and AKT pathway activation, whereas Chi3l1 silencing inhibited this process. Next, using immunofluorescence and co-immunoprecipitation assays, we identified IL13Rα2 as the binding partner of Chi3l1 during osteoclastogenesis. IL13Rα2 recombinant protein or IL13Rα2-siRNA also inhibited osteoclast differentiation, and IL13Rα2-siRNA attenuated the RANKL-induced activation of the MAPK (ERK/P38/JNK) and AKT pathways, similar to the effects observed upon silencing of Chi3l1. Moreover, the promoting effect of recombinant Chi3l1 protein on osteoclastogenesis and the activation of the MAPK and AKT pathways was reversed by IL13Rα2 siRNA. Finally, recombinant LI13Rα2 protein significantly attenuated the LPS-induced cranial osteolysis and the number of osteoclasts in vivo. CONCLUSIONS: Our findings suggested that IL13Rα2 served as a crucial receptor for Chi3l1, enhancing RANKL-induced MAPK and AKT activation to promote osteoclast differentiation. These findings provide valuable insights into the molecular mechanisms of Chi3l1 in osteoclastogenesis, with potential therapeutic implications for osteoclast-related diseases. Video Abstract.


Assuntos
Reabsorção Óssea , Subunidade alfa2 de Receptor de Interleucina-13 , Osteólise , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Proteína 1 Semelhante à Quitinase-3/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/uso terapêutico , Lipopolissacarídeos/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteólise/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Proteínas Recombinantes/farmacologia , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA