Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3775, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710701

RESUMO

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Assuntos
Domínio Catalítico , Microscopia Crioeletrônica , Proteína 1 com Domínio SAM e Domínio HD , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Regulação Alostérica , Humanos , Estrutura Quaternária de Proteína , Catálise , Biocatálise , HIV-1/metabolismo , Modelos Moleculares
2.
Nucleic Acids Res ; 51(13): 7014-7024, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246644

RESUMO

SAMHD1 dNTP hydrolase activity places it at the crossroad of several important biological pathways, such as viral restriction, cell cycle regulation, and innate immunity. Recently, a dNTPase independent function for SAMHD1 in homologous recombination (HR) of DNA double-strand breaks has been identified. SAMHD1 function and activity is regulated by several post-translational modifications, including protein oxidation. Here, we showed that oxidation of SAMHD1 increases ssDNA binding affinity and occurs in a cell cycle-dependent manner during S phase consistent with a role in HR. We determined the structure of oxidized SAMHD1 in complex with ssDNA. The enzyme binds ssDNA at the regulatory sites at the dimer interface. We propose a mechanism that oxidation of SAMHD1 acts as a functional switch to toggle between dNTPase activity and DNA binding.


Assuntos
Modelos Moleculares , Proteína 1 com Domínio SAM e Domínio HD , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ligação Proteica , DNA de Cadeia Simples/metabolismo , Estrutura Terciária de Proteína , Células PC-3 , Humanos
3.
J Biol Chem ; 297(4): 101170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492268

RESUMO

Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.


Assuntos
Neoplasias do Colo , Leucemia , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Proteína 1 com Domínio SAM e Domínio HD , Substituição de Aminoácidos , Linhagem Celular , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Ciclina A2/química , Ciclina A2/genética , Ciclina A2/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Leucemia/enzimologia , Leucemia/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Relação Estrutura-Atividade
4.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33988981

RESUMO

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Assuntos
Desoxirribonucleotídeos/química , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/química , Regulação Alostérica , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Nucleotídeos de Desoxiguanina/química , Desoxirribonucleotídeos/metabolismo , Humanos , Hidrólise , Cinética , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia
5.
Nat Commun ; 11(1): 3165, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576829

RESUMO

SAMHD1 regulates cellular 2'-deoxynucleoside-5'-triphosphate (dNTP) homeostasis by catalysing the hydrolysis of dNTPs into 2'-deoxynucleosides and triphosphate. In CD4+ myeloid lineage and resting T-cells, SAMHD1 blocks HIV-1 and other viral infections by depletion of the dNTP pool to a level that cannot support replication. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome and hypermutated cancers. Furthermore, SAMHD1 sensitises cancer cells to nucleoside-analogue anti-cancer therapies and is linked with DNA repair and suppression of the interferon response to cytosolic nucleic acids. Nevertheless, despite its requirement in these processes, the fundamental mechanism of SAMHD1-catalysed dNTP hydrolysis remained unknown. Here, we present structural and enzymological data showing that SAMHD1 utilises an active site, bi-metallic iron-magnesium centre that positions a hydroxide nucleophile in-line with the Pα-O5' bond to catalyse phosphoester bond hydrolysis. This precise molecular mechanism for SAMHD1 catalysis, reveals how SAMHD1 down-regulates cellular dNTP and modulates the efficacy of nucleoside-based anti-cancer and anti-viral therapies.


Assuntos
Nucleosídeo-Trifosfatase/química , Proteína 1 com Domínio SAM e Domínio HD/química , Água/química , Doenças Autoimunes do Sistema Nervoso/metabolismo , Domínio Catalítico , Cristalografia por Raios X , HIV-1/genética , HIV-1/fisiologia , Humanos , Hidrólise , Interferons , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/metabolismo , Polifosfatos , Conformação Proteica , Proteína 1 com Domínio SAM e Domínio HD/genética , Replicação Viral/fisiologia
6.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244340

RESUMO

Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.


Assuntos
Proteína 1 com Domínio SAM e Domínio HD/fisiologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Reparo do DNA , Desoxirribonucleotídeos/metabolismo , Humanos , Imunidade Inata , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Viroses/imunologia , Viroses/virologia , Replicação Viral
7.
J Biol Chem ; 295(13): 4252-4264, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32075911

RESUMO

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


Assuntos
HIV/genética , Lentivirus/genética , Transcrição Reversa/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Gatos , Bovinos , Células HEK293 , HIV/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Lentivirus/patogenicidade , Células Mieloides/virologia , Domínios Proteicos/genética , Proteína 1 com Domínio SAM e Domínio HD/química , Linfócitos T/virologia , Replicação Viral/genética
8.
Virology ; 531: 260-268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959264

RESUMO

SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Motivos de Aminoácidos , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Resistência a Myxovirus/genética , Fosforilação , Ligação Proteica , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Especificidade da Espécie
9.
Proteins ; 87(9): 748-759, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31017331

RESUMO

HIV-1 is restricted in macrophages and certain quiescent myeloid cells due to a "Scorched Earth" dNTP starvation strategy attributed to the sterile alpha motif and HD domain protein-SAMHD1. Active SAMHD1 tetramers are assembled by GTP-Mg+2-dNTP cross bridges and cleave the triphosphate groups of dNTPs at a K m of ~10 µM, which is consistent with dNTP concentrations in cycling cells, but far higher than the equivalent concentration in quiescent cells. Given the substantial disparity between the dNTP concentrations required to activate SAMHD1 tetramers (~10 µM) and the dNTP concentrations in noncycling cells (~10 nM), the possibility of alternate enzymatically active forms of SAMHD1, including monomers remains open. In particular, the possibility of redox regulation of such monomers is also an open question. There have been experimental studies on the regulation of SAMHD1 by Glutathione driven redox reactions recently. Therefore, in this work, we have performed all-atom molecular dynamics simulations to study the dynamics of monomeric SAMHD1 constructs in the context of the three redox-susceptible Cysteine residues and compared them to monomers assembled within a tetramer. Our results indicate that assembly into a tetramer causes ordering of the catalytic core and increased solvent accessibility of the Catalytic Site. We have also found that glutathionylation of surface exposed C522 causes long range allosteric disruptions extending into the protein core. Finally, we see evidence suggesting a transient interaction between C522 and C341. Such a disulfide linkage has been hypothesized by experimental models, but has never been observed in crystal structures before.


Assuntos
Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Oxirredução , Estrutura Secundária de Proteína , Proteína 1 com Domínio SAM e Domínio HD/genética
10.
Nat Commun ; 10(1): 1844, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015445

RESUMO

Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus-host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response.


Assuntos
Infecções por HIV/imunologia , HIV-2/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Imidazóis/farmacologia , Tolerância Imunológica , Simulação de Dinâmica Molecular , Monócitos , Fosforilação/imunologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/imunologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/imunologia , Proteólise/efeitos dos fármacos , Proteômica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/imunologia , Piridazinas/farmacologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Serina/metabolismo , Tiazolidinas/farmacologia , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/isolamento & purificação , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
11.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764952

RESUMO

Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCE Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Adolescente , Adulto , Motivos de Aminoácidos , Antivirais/farmacologia , Feminino , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Interferons/genética , Interferons/imunologia , Macrófagos/imunologia , Masculino , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Adulto Jovem
12.
Nat Commun ; 9(1): 411, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379009

RESUMO

Human SAMHD1 (hSAMHD1) is a retroviral restriction factor that blocks HIV-1 infection by depleting the cellular nucleotides required for viral reverse transcription. SAMHD1 is allosterically activated by nucleotides that induce assembly of the active tetramer. Although the catalytic core of hSAMHD1 has been studied extensively, previous structures have not captured the regulatory SAM domain. Here we report the crystal structure of full-length SAMHD1 by capturing mouse SAMHD1 (mSAMHD1) structures in three different nucleotide bound states. Although mSAMHD1 and hSAMHD1 are highly similar in sequence and function, we find that mSAMHD1 possesses a more complex nucleotide-induced activation process, highlighting the regulatory role of the SAM domain. Our results provide insights into the regulation of SAMHD1 activity, thereby facilitating the improvement of HIV mouse models and the development of new therapies for certain cancers and autoimmune diseases.


Assuntos
Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Sítio Alostérico , Animais , Cristalografia por Raios X , Hidrólise , Camundongos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Proteína 1 com Domínio SAM e Domínio HD/genética
13.
Rev Med Virol ; 27(4)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444859

RESUMO

The enzyme, sterile α motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) diminishes infection of human immunodeficiency virus type 1 (HIV-1) by hydrolyzing intracellular deoxynucleotide triphosphates (dNTPs) in myeloid cells and resting CD4+ T cells. This dNTP degradation reduces the dNTP concentration to a level insufficient for viral cDNA synthesis, thereby inhibiting retroviral replication. This antiviral enzymatic activity can be inhibited by viral protein X (Vpx). The HIV-2/SIV Vpx causes degradation of SAMHD1, thus interfering with the SAMHD1-mediated restriction of retroviral replication. Recently, SAMHD1 has been suggested to restrict HIV-1 infection by directly digesting genomic HIV-1 RNA through a still controversial RNase activity. Here, we summarize the current knowledge about structure, antiviral mechanisms, intracellular localization, interferon-regulated expression of SAMHD1. We also describe SAMHD1-deficient animal models and an antiviral drug on the basis of disrupting proteasomal degradation of SAMHD1. In addition, the possible roles of SAMHD1 in regulating innate immune sensing, Aicardi-Goutières syndrome and cancer are discussed in this review.


Assuntos
Antivirais/metabolismo , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Neoplasias/fisiopatologia , Malformações do Sistema Nervoso/fisiopatologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Viroses/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos Knockout , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética
14.
Antioxid Redox Signal ; 27(16): 1317-1331, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398823

RESUMO

AIMS: Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. RESULTS: Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.


Assuntos
Cisteína/química , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Domínio Catalítico , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Dicroísmo Circular , Difusão Dinâmica da Luz , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Nucleotídeos/metabolismo , Multimerização Proteica
15.
Sci Rep ; 6: 31353, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511536

RESUMO

SAMHD1, a dNTP triphosphohydrolase, contributes to interferon signaling and restriction of retroviral replication. SAMHD1-mediated retroviral restriction is thought to result from the depletion of cellular dNTP pools, but it remains controversial whether the dNTPase activity of SAMHD1 is sufficient for restriction. The restriction ability of SAMHD1 is regulated in cells by phosphorylation on T592. Phosphomimetic mutations of T592 are not restriction competent, but appear intact in their ability to deplete cellular dNTPs. Here we use analytical ultracentrifugation, fluorescence polarization and NMR-based enzymatic assays to investigate the impact of phosphomimetic mutations on SAMHD1 tetramerization and dNTPase activity in vitro. We find that phosphomimetic mutations affect kinetics of tetramer assembly and disassembly, but their effects on tetramerization equilibrium and dNTPase activity are insignificant. In contrast, the Y146S/Y154S dimerization-defective mutant displays a severe dNTPase defect in vitro, but is indistinguishable from WT in its ability to deplete cellular dNTP pools and to restrict HIV replication. Our data suggest that the effect of T592 phosphorylation on SAMHD1 tetramerization is not likely to explain the retroviral restriction defect, and we hypothesize that enzymatic activity of SAMHD1 is subject to additional cellular regulatory mechanisms that have not yet been recapitulated in vitro.


Assuntos
HIV/fisiologia , Nucleotídeos/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Tirosina/genética , Regulação Alostérica , Substituição de Aminoácidos , Linhagem Celular , Humanos , Modelos Moleculares , Mutação , Fosforilação , Multimerização Proteica , Proteína 1 com Domínio SAM e Domínio HD/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA