Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681812

RESUMO

Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-ß (TGF-ß) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15-EGR1 signaling axis may be a good target in HNC patients.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Fator 15 de Diferenciação de Crescimento/genética , Neoplasias de Cabeça e Pescoço/patologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica/fisiologia , Regulação Neoplásica da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/fisiologia , Células HaCaT , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/genética , Células Tumorais Cultivadas
2.
Biol. Res ; 54: 9-9, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505802

RESUMO

BACKGROUND: PGF2α is essential for the induction of the corpus luteum regression which in turn reduces progesterone production. Early growth response (EGR) proteins are Cys2-His2-type zinc-finger transcription factor that are strongly linked to cellular proliferation, survival and apoptosis. Rapid elevation of EGR1 was observed after luteolytic dose of PGF2α. EGR1 is involved in the transactivation of many genes, including TGFß1, which plays an important role during luteal regression. METHODS: The current study was conducted in buffalo luteal cells with the aim to better understand the role of EGR1 in transactivation of TGFß1 during PGF2α induced luteal regression. Luteal cells from mid stage corpus luteum of buffalo were cultured and treated with different doses of PGF2α for different time durations. Relative expression of mRNAs encoding for enzymes within the progesterone biosynthetic pathway (3ßHSD, CYP11A1 and StAR); Caspase 3; AKT were analyzed to confirm the occurrence of luteolytic event. To determine if EGR1 is involved in the PGF2α induced luteal regression via induction of TGFß1 expression, we knocked out the EGR1 gene by using CRISPR/Cas9. RESULT: The present experiment determined whether EGR1 protein expression in luteal cells was responsive to PGF2α treatment. Quantification of EGR1 and TGFß1 mRNA showed significant up regulation in luteal cells of buffalo at 12 h post PGF2α induction. In order to validate the role of PGF2α on stimulating the expression of TGFß1 by an EGR1 dependent mechanism we knocked out EGR1. The EGR1 ablated luteal cells were stimulated with PGF2α and it was observed that EGR1 KO did not modulate the PGF2α induced expression of TGFß1. In PGF2α treated EGR1 KO luteal cell, the mRNA expression of Caspase 3 was significantly increased compared to PGF2α treated wild type luteal cells maintained for 12 h. We also studied the influence of EGR1 on steroidogenesis. The EGR1 KO luteal cells with PGF2α treatment showed no substantial difference either in the progesterone concentration or in StAR mRNA expression with PGF2α-treated wild type luteal cells. CONCLUSION: These results suggest that EGR1 signaling is not the only factor which plays a role in the regulation of PGF2α induced TGFß1 signaling for luteolysis.


Assuntos
Animais , Feminino , Búfalos , Dinoprosta/farmacologia , Corpo Lúteo/fisiologia , Luteólise , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transdução de Sinais , Células Cultivadas , Regulação da Expressão Gênica , Corpo Lúteo/citologia , Fator de Crescimento Transformador beta1/fisiologia
3.
Sci Rep ; 10(1): 15842, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985557

RESUMO

In mice, exercise, cold exposure and fasting lead to the differentiation of inducible-brown adipocytes, called beige adipocytes, within white adipose tissue and have beneficial effects on fat burning and metabolism, through heat production. This browning process is associated with an increased expression of the key thermogenic mitochondrial uncoupling protein 1, Ucp1. Egr1 transcription factor has been described as a regulator of white and beige differentiation programs, and Egr1 depletion is associated with a spontaneous increase of subcutaneous white adipose tissue browning, in absence of external stimulation. Here, we demonstrate that Egr1 mutant mice exhibit a restrained Ucp1 expression specifically increased in subcutaneous fat, resulting in a metabolic shift to a more brown-like, oxidative metabolism, which was not observed in other fat depots. In addition, Egr1 is necessary and sufficient to promote white and alter beige adipocyte differentiation of mouse stem cells. These results suggest that modulation of Egr1 expression could represent a promising therapeutic strategy to increase energy expenditure and to restrain obesity-associated metabolic disorders.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Adipócitos Bege/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Gordura Subcutânea/fisiologia
4.
Theranostics ; 10(9): 4233-4249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226550

RESUMO

Rationale: Subjects unable to sustain ß-cell compensation develop type 2 diabetes. Early growth response-1 protein (EGR-1), implicated in the regulation of cell differentiation, proliferation, and apoptosis, is induced by diverse metabolic challenges, such as glucose or other nutrients. Therefore, we hypothesized that deficiency of EGR-1 might influence ß-cell compensation in response to metabolic overload. Methods: Mice deficient in EGR-1 (Egr1-/-) were used to investigate the in vivo roles of EGR-1 in regulation of glucose homeostasis and beta-cell compensatory responses. Results: In response to a high-fat diet, Egr1-/- mice failed to secrete sufficient insulin to clear glucose, which was associated with lower insulin content and attenuated hypertrophic response of islets. High-fat feeding caused a dramatic impairment in glucose-stimulated insulin secretion and downregulated the expression of genes encoding glucose sensing proteins. The cells co-expressing both insulin and glucagon were dramatically upregulated in islets of high-fat-fed Egr1-/- mice. EGR-1-deficient islets failed to maintain the transcriptional network for ß-cell compensatory response. In human pancreatic tissues, EGR1 expression correlated with the expression of ß-cell compensatory genes in the non-diabetic group, but not in the diabetic group. Conclusion: These results suggest that EGR-1 couples the transcriptional network to compensation for the loss of ß-cell function and identity. Thus, our study highlights the early stress coupler EGR-1 as a critical factor in the development of pancreatic islet failure.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Oncogene ; 38(35): 6241-6255, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31312026

RESUMO

Early growth response-1 (EGR1) is a transcription factor correlated with prostate cancer (PC) progression in a variety of contexts. For example, EGR1 levels increase in response to suppressed androgen receptor signaling or loss of the tumor suppressor, PTEN. EGR1 has been shown to regulate genes influencing proliferation, apoptosis, immune cell activation, and matrix degradation, among others. Despite this, the impact of EGR1 on PC metastatic colonization is unclear. We demonstrate using a PC model (DU145/RasB1) of bone and brain metastasis that EGR1 expression regulates angiogenic and osteoclastogenic properties of metastases. We have shown previously that FN14 (TNFRSF12A) and downstream NF-κB signaling is required for metastasis in this model. Here we demonstrate that FN14 ligation also leads to NF-κB-independent, MEK-dependent EGR1 expression. EGR1-depletion in DU145/RasB1 cells reduced both the number and size of metastases but did not affect primary tumor growth. Decreased EGR1 expression led to reduced blood vessel density in brain and bone metastases as well as decreased osteolytic bone lesion area and reduced numbers of osteoclasts at the bone-tumor interface. TWEAK (TNFSF12) induced several EGR1-dependent angiogenic and osteoclastogenic factors (e.g., PDGFA, TGFB1, SPP1, IL6, IL8, and TGFA, among others). Consistent with this, in clinical samples of PC, the level of several genes encoding angiogenic/osteoclastogenic pathway effectors correlated with EGR1 levels. Thus, we show here that EGR1 has a direct effect on prostate cancer metastases. EGR1 regulates angiogenic and osteoclastogenic factors, informing the underlying signaling networks that impact autonomous and microenvironmental mechanisms of cancer metastases.


Assuntos
Adenocarcinoma/patologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Neovascularização Patológica/genética , Osteogênese/genética , Neoplasias da Próstata/patologia , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Neovascularização Patológica/patologia , Células PC-3 , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/genética , Células RAW 264.7 , Transdução de Sinais/genética , Células Tumorais Cultivadas , Microambiente Tumoral/genética
6.
Phytother Res ; 33(6): 1736-1747, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31006910

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Furanos/farmacologia , Glioblastoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Temozolomida/uso terapêutico , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Furanos/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Temozolomida/administração & dosagem , Transcrição Gênica/efeitos dos fármacos
7.
Mol Biol Rep ; 46(1): 317-324, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417207

RESUMO

Leptin is a cytokine that regulates energy metabolism. Leptin can promote breast cancer progression in obese women. However, the mechanism of regulation of leptin expression in breast cancer cells is unclear. Tumor necrosis factor-alpha (TNF-α) stimulated the transcription of the leptin gene. Using mutant promoter constructs, we demonstrated that the EGR1-binding motif in the proximal region of the leptin gene is required for leptin transcription by TNF-α. Forced expression of EGR1 stimulated leptin promoter activity, whereas silencing of EGR1 by RNA interference reduced TNF-α-induced leptin protein accumulation. The ERK1/2 pathway contributed to the expression of EGR1 and leptin by TNF-α. Our results suggest that EGR1 targets the leptin gene in response to TNF-α stimulation in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Leptina/fisiologia , Sítios de Ligação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leptina/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/fisiologia
8.
Cell Signal ; 55: 8-16, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557604

RESUMO

High level expression of lipocalin 2 (LCN2) usually indicates poor prognosis in esophageal squamous cell carcinoma (ESCC) and many other cancers. Our previous study showed LCN2 promotes migration and invasion of ESCC cells through a novel positive feedback loop. However, the key transcription activation protein (KTAP) in the loop had not yet been identified. In this study, we first predicted the most probable KTAPs by bioinformatic analysis. We then assessed the transcription regulatory regions in the human LCN2 gene by fusing deletions of its 5'-flanking region to a dual-luciferase reporter. We found that the region -720/-200 containing transcription factor 7-like 2 (TCF7L2) (-273/-209) and early growth response 1 (EGR1) (-710/-616) binding sites is crucial for LCN2 promoter activity. Chromatin immunoprecipitation (ChIP) experiments demonstrated that TCF7L2 and EGR1 bound directly to their binding sites within the LCN2 promoter as KTAPs. Mechanistically, overexpression of TCF7L2 and EGR1 increased endogenous LCN2 expression via the ERK signaling pathway. Treatment with recombinant human LCN2 protein enhanced activation of the ERK pathway to facilitate endogenous LCN2 expression, as well as increase the expression level of TCF7L2 and EGR1. Treatment with the MEK inhibitor U0126 inhibited the activation by TCF7L2 or EGR1 overexpression. Moreover, overexpression of TCF7L2 or EGR1 accelerated the migration and invasion of ESCC cells. A synergistic effect was observed between TCF7L2 and EGR1 in amplifying the induction of LCN2 and enhancing migration and invasion. Taken together, our study indicates that TCF7L2 and EGR1 are the KTAPs of LCN2, within a positive "LCN2 → MEK/ERK → LCN2" path, to promote the migration and invasion of ESCC cells. Based on their clinicopathological significance, LCN2 and its two expression regulators TCF7L2 and ERG1 might be therapeutic targets for ESCC.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lipocalina-2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas
9.
Biomed Pharmacother ; 108: 1282-1288, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372829

RESUMO

Keloid is a fibrous benign tumor of the skin caused by increased fibroblast proliferation and overproduction of extracellular matrix (ECM) in the dermis. Several miRNAs exhibit critical roles in regulating keloid development. This is study aimed to investigate the effects and mechanisms of miR-203 in keloid fibroblasts. The miR-203 expression was detected by qRT-PCR; The cell viability was measured by MTT assay; The cell proliferation was measured by BrdU assay; The cell invasion was measured by Transwell assay; The protein expression was detected by Western blot; The target relationship between miR-203 and mRNA was measured by dual-luciferase assay. We found that miR-203 was significantly downregulated in both keloid tissues and keloid fibroblasts from keloid patients. MiR-203 overexpression in vitro led to a significant decrease of proliferation, invasion, and ECM production in keloid fibroblasts, whereas miR-203 inhibition induced the opposite results. A dual-luciferase reporter assay identified early growth response 1 (EGR1) and fibroblast growth factor 2 (FGF2) as targets of miR-203. EGR1 and FGF2 were overexpressed in keloid fibroblasts and negatively regulated by miR-203. Furthermore, overexpression of EGR1 and FGF2 partially attenuated the suppressive effect of miR-203 on the proliferation, invasion, and ECM production of keloid fibroblasts. In conclusion, we demonstrated for the first time that miR-203 decreased the proliferation, invasion, and ECM production of keloid fibroblasts by repressing EGR1 and FGF2 expression, suggesting a potential role of miR-203 in preventing and treating keloids.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas da Matriz Extracelular/biossíntese , Fator 2 de Crescimento de Fibroblastos/genética , Queloide/patologia , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Adulto , Proliferação de Células , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fibroblastos/fisiologia , Humanos , Queloide/metabolismo , Masculino , Pessoa de Meia-Idade
10.
Cell Signal ; 45: 102-109, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408223

RESUMO

Egr-1 is known to function mainly as a tumor suppressor through direct regulation of multiple tumor suppressor genes. To determine the role of Egr-1 in breast tumors in vivo, we used mouse models of breast cancer induced by HER2/neu. We compared neu-overexpressing Egr-1 knockout mice (neu/Egr-1 KO) to neu-overexpressing Egr-1 wild type or heterozygote mice (neu/Egr-1 WT or neu/Egr-1 het) with regard to onset of tumor appearance and number of tumors per mouse. In addition, to examine the role of Egr-1 in vitro, we established neu/Egr-1 WT and KO tumor cell lines derived from breast tumors developed in each mouse. Egr-1 deletion delayed tumor development in vivo and decreased the rate of cell growth in vitro. These results suggest that Egr-1 plays an oncogenic role in HER2/neu-driven mammary tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Neoplasias Mamárias Experimentais/genética , Animais , Neoplasias da Mama/patologia , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Deleção de Genes , Neoplasias Mamárias Experimentais/patologia , Camundongos Knockout , Receptor ErbB-2/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
11.
FASEB J ; 32(3): 1184-1195, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29092905

RESUMO

The harmonized actions of ovarian E2 and progesterone (P4) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P4 signaling have been identified, few local factors that mediate E2 actions in the uterus have been revealed. Here, we demonstrate that estrogen induces the transcription factor, early growth response 1 ( Egr1), to fine-tune its actions in uterine epithelial cells (ECs) that are responsible for uterine receptivity for embryo implantation. In the presence of exogenous gonadotrophins, ovulation, fertilization, and embryonic development normally occur in Egr1-/- mice, but these animals experience the complete failure of embryo implantation with reduced artificial decidualization. Although serum levels of E2 and P4 were comparable between Egr1+/+ and Egr1-/- mice on d 4 of pregnancy, aberrantly reduced levels of progesterone receptor in Egr1-/- uterine ECs caused enhanced E2 activity and impaired P4 response. Ultrastructural analyses revealed that Egr1-/- ECs are not fully able to provide proper uterine receptivity. Uterine mRNA landscapes in Egr1-/- mice revealed that EGR1 controls the expression of a subset of E2-regulated genes. In addition, P4 signaling was unable to modulate estrogen actions, including those that are involved in cell-cycle progression, in ECs that were deficient in EGR1. Furthermore, primary coculture of Egr1-/- ECs with Egr1+/+ stromal cells, and vice versa, supported the notion that Egr1 is required to modulate E2 actions on ECs to prepare the uterine environment for embryo implantation. In contrast to its role in ECs, loss of Egr1 in stroma significantly reduced stromal cell proliferation. Collectively, our results demonstrate that E2 induces EGR1 to streamline its actions for the preparation of uterine receptivity for embryo implantation in mice.-Kim, H.-R., Kim, Y. S., Yoon, J. A., Yang, S. C., Park, M., Seol, D.-W., Lyu, S. W., Jun, J. H., Lim, H. J., Lee, D. R., Song, H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Epitélio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animais , Células Cultivadas , Implantação do Embrião/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Gravidez , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/patologia
12.
Acta Biochim Biophys Sin (Shanghai) ; 49(11): 1015-1021, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036495

RESUMO

Previous studies have shown that the differentiation potential declines with the age of progenitor cells and is linked to altered levels of senescence markers. The purpose of this study was to test whether senescence marker p16 affects age-related tenogenic differentiation in tendon stem/progenitor cells (TSPCs). Young and aged TSPCs were isolated from young/healthy and aged/degenerated human Achilles tendons, respectively. Cellular aging and capacity for tenogenic differentiation were examined. The results showed that the tenogenic differentiation capacity of TSPCs significantly decreases with advancing age. TSPCs from elderly donors showed upregulation of senescence-associated ß-galactosidase and p16 and concurrently a decrease in Type I collagen concentration and in the expressions of tendon-related markers: Scx, Tnmd, Bgn, Dcn, Col1, and Col3. Overexpression of p16 significantly inhibited tenogenic differentiation of young TSPCs. Analysis of the mechanism revealed that this effect is mediated by microRNA-217 and its target EGR1. These results indicated that p16 inhibits tenogenic differentiation of TSPCs via microRNA signaling pathways, which may serve as a potential target for the prevention or treatment in the future.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , MicroRNAs/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Tendões/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Diferenciação Celular , Humanos , Pessoa de Meia-Idade , Células-Tronco/citologia , Adulto Jovem
13.
PLoS One ; 12(1): e0170076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076410

RESUMO

PC12 cells are a well-established model to study how differences in signal transduction duration can elicit distinct cell behaviors. Epidermal growth factor (EGF) activates transient ERK signaling in PC12 cells that lasts 30-60 min, which in turn promotes proliferation; nerve growth factor (NGF) activates more sustained ERK signaling that lasts 4-6 h, which in turns induces neuronal differentiation. Data presented here extend a previous study by Mullenbrock et al. (2011) that demonstrated that sustained ERK signaling in response to NGF induces preferential expression of a 69-member gene set compared to transient ERK signaling in response to EGF and that the transcription factors AP-1 and CREB play a major role in the preferential expression of several genes within the set. Here, we examined whether the Egr family of transcription factors also contributes to the preferential expression of the gene set in response to NGF. Our data demonstrate that NGF causes transient induction of all Egr family member transcripts, but a corresponding induction of protein was detected for only Egr1 and 2. Chromatin immunoprecipitation experiments provided clearest evidence that, after induction, Egr1 binds 12 of the 69 genes that are preferentially expressed during sustained ERK signaling. In addition, Egr1 expression and binding upstream of its target genes were both sustained in response to NGF versus EGF within the same timeframe that its targets are preferentially expressed. These data thus provide evidence that Egr1 contributes to the transcriptional program activated by sustained ERK signaling in response to NGF, specifically by contributing to the preferential expression of its target genes identified here.


Assuntos
Diferenciação Celular/genética , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ativação Transcricional/efeitos dos fármacos
14.
Oncol Rep ; 37(1): 533-539, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27878298

RESUMO

Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E­hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.


Assuntos
Apoptose/genética , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Tolerância a Radiação/genética , Elementos de Resposta/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células A549 , Caspase 3/metabolismo , Hipóxia Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Transdução de Sinais/genética , Regulação para Cima/genética
15.
Oncotarget ; 7(29): 45302-45316, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27244890

RESUMO

EGR1 plays a critical role in cancer progression. However, its precise role in hepatocellular carcinoma has not been elucidated. In this study, we found that the overexpression of EGR1 suppresses hepatocellular carcinoma cell proliferation and increases cell apoptosis by binding to the miR-203a promoter sequence. In addition, we investigated the function of miR-203a on progression of HCC cells. We verified that the effect of overexpression of miR-203a is consistent with that of EGR1 in regulation of cell progression. Through bioinformatic analysis and luciferase assays, we confirmed that miR-203a targets HOXD3. Silencing HOXD3 could block transition of the G2/M phase, increase cell apoptosis, decrease the expression of cell cycle and apoptosis-related proteins, EGFR, p-AKT, p-ERK, CCNB1, CDK1 and Bcl2 by targeting EGFR through EGFR/AKT and ERK cell signaling pathways. Likewise, restoration of HOXD3 counteracted the effects of miR-203a expression.In conclusion, our findings are the first to demonstrate that EGR1 is a key player in the transcriptional control of miR-203a, and that miR-203a acts as an anti-oncogene to suppress HCC tumorigenesis by targeting HOXD3 through EGFR-related cell signaling pathways.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Receptores ErbB/fisiologia , Genes Supressores de Tumor/fisiologia , Proteínas de Homeodomínio/genética , MicroRNAs/fisiologia , Transdução de Sinais/fisiologia , Adulto , Idoso , Animais , Biologia Computacional , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/análise , Pessoa de Meia-Idade , Fatores de Transcrição
16.
Nat Commun ; 7: 11169, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27041221

RESUMO

A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/fisiologia , Neoplasias Renais/genética , MicroRNAs/fisiologia , Neovascularização Patológica/genética , Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Terapia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/terapia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/terapia , Fosfatidilcolinas , Carga Tumoral
17.
Tumour Biol ; 37(5): 5751-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880583

RESUMO

Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a membrane protein primarily located in the nuclear membrane and cell membrane. Several groups reported that NGX6 gene was down-regulated in nasopharyngeal carcinoma (NPC), gastric cancer, lung cancer, liver cancer, and colorectal cancer and even less in the carcinomas with metastasis. Current studies have demonstrated that NGX6 possesses various biological functions, such as regulating protein expression of related genes, involving cell signal transduction pathways, negatively controlling cell cycle progression, inhibiting angiogenesis, and increasing the sensitivity of patients to anti-cancer drugs. Some factors regulating the expression level of NGX6 gene also have been studied. The methylation of promoter of NGX6 and histone H3K9 negatively regulates its expression, similar to the function of transcription factor special protein-1 (Sp1). However, the regulatory factor early growth response gene 1 (Egr-1) is provided with positive regulation function. This review will summarize the progress of those studies on NGX6 and elucidate the potential application of NGX6 for some malignant diseases.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/fisiologia , Metástase Neoplásica/genética , Proteínas Supressoras de Tumor/fisiologia , Ciclo Celular , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Genes Supressores de Tumor , Código das Histonas , Humanos , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
18.
Behav Brain Res ; 296: 70-77, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320738

RESUMO

A growing body of evidence suggests that learned fear may be related to the function of the interoceptive insular cortex. Using an auditory fear conditioning paradigm in rats, we show that the inactivation of the posterior insular cortex (pIC), the target of the interoceptive thalamus, prior to training produced a marked reduction in fear expression tested 24h later. Accordingly, post-training anisomycin infused immediately, but not 6h after, also reduced fear expression tested the following day, supporting a role for the pIC in consolidation of fear memory. The long-term (ca. a week) and reversible inactivation of the pIC with the sodium channel blocker neosaxitoxin, immediately after fear memory reactivation induced a progressive decrease in the behavioral expression of conditioned fear. In turn, we observed that fear memory reactivation is accompanied by an enhanced expression of Fos and Zif268, early genes involved in neural activity and plasticity. Taken together these data indicate that the pIC is involved in the regulation of fear memories.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Interocepção/fisiologia , Memória/fisiologia , Animais , Anisomicina/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Inibidores Enzimáticos/farmacologia , Medo/efeitos dos fármacos , Genes fos/fisiologia , Interocepção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Saxitoxina/análogos & derivados , Saxitoxina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tálamo
19.
Cancer Lett ; 370(2): 222-31, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26519755

RESUMO

Human telomerase reverse transcriptase (hTERT) contributes to tumor progression as well as maintaining telomere length, however, the mechanism by which hTERT promotes invasiveness is not yet completely understood. This study aims to unravel the precise mechanism through which hTERT promotes cancer invasion. We established an hTERT-overexpressed immortalized cell line (IHOK/hTERT). In orthotopic xenograft models, IHOK/hTERT harbors higher tumorigenicity than IHOK/Control. IHOK/hTERT showed much higher migration and invasion activities compared to IHOK/Control. IHOK/hTERT co-cultured with fibroblasts displayed increased invasion compared to IHOK/hTERT without fibroblasts. We screened for genes that play an important role in intermodulation between cancer cells and fibroblasts using a microarray and identified fibroblast activation protein (FAP). hTERT knockdown showed decreased expression of FAP and early growth response (EGR)-1, one of the transcriptional regulators of FAP in IHOK/hTERT and oral cancer cell line YD10B. Furthermore, EGR-1 knockdown in IHOK/hTERT and YD10B showed reduced invasion and reduced cathepsin D expression compared to Control-siRNA cells. Taken together, this study provides evidence that hTERT overexpression is responsible for the upregulation of the cysteine protease cathepsin D by regulating EGR-1 to activate invasiveness in cancer progression.


Assuntos
Catepsina D/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Neoplasias Bucais/patologia , Telomerase/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica
20.
Oncol Rep ; 35(2): 1163-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26573109

RESUMO

The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Produtos do Gene tax/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteínas de Neoplasias/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Divisão Celular , Sequência Consenso , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Produtos do Gene tax/genética , Humanos , Células Jurkat , NF-kappa B/fisiologia , Proteínas de Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição AP-1/fisiologia , Transfecção , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA