Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834462

RESUMO

Autophagy is an evolutionarily conserved mechanism for degrading and recycling various cellular components, functioning in both normal development and stress conditions. This process is tightly regulated by a set of autophagy-related (ATG) proteins, including ATG2 in the ATG9 cycling system and ATG5 in the ATG12 conjugation system. Our recent research demonstrated that autophagy-mediated compartmental cytoplasmic deletion is essential for pollen germination. However, the precise mechanisms through which autophagy regulates pollen germination, ensuring its fertility, remain largely unknown. Here, we applied multi-omics analyses, including transcriptomic and metabolomic approaches, to investigate the downstream pathways of autophagy in the process of pollen germination. Although ATG2 and ATG5 play similar roles in regulating pollen germination, high-throughput transcriptomic analysis reveals that silencing ATG5 has a greater impact on the transcriptome than silencing ATG2. Cross-comparisons of transcriptome and proteome analysis reveal that gene expression at the mRNA level and protein level is differentially affected by autophagy. Furthermore, high-throughput metabolomics analysis demonstrates that pathways related to amino acid metabolism and aminoacyl-tRNA biosynthesis were affected by both ATG2 and ATG5 silencing. Collectively, our multi-omics analyses reveal the central role of autophagy in cellular metabolism, which is critical for initiating pollen germination and ensuring pollen fertility.


Assuntos
Autofagia , Multiômica , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Pólen/genética , Pólen/metabolismo , Germinação/genética
2.
Cell Death Dis ; 14(1): 10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624091

RESUMO

Circular RNAs are key regulators in regulating the progression and chemoresistance of gastric cancer (GC), suggesting circular RNAs as potential therapeutic targets for GC. The roles of a novel circular RNA circPOFUT1 in GC are unknown. Here, we found that circPOFUT1 was upregulated in GC tissues and cells, and increased circPOFUT1 expression indicated poor prognosis. Overexpression of circPOFUT1 enhanced cell proliferation, migration, invasion and autophagy-associated chemoresistance in GC, which were suppressed by miR-488-3p overexpression. CircPOFUT1 reduced miR-488-3p expression via sponging miR-488-3p in GC cells. PLAG1 interacted with ATG12 and promoted its expression. MiR-488-3p bound to PLAG1 and suppressed the expression of PLAG1 and ATG12 in GC cells. Overexpression of circPOFUT1 enhanced autophagy-associated chemoresistance of GC cells in vivo, but it was inhibited by overexpression of miR-488-3p. Collectively, circPOFUT1 directly sponged miR-488-3p to activate the expression of PLAG1 and ATG12, thus enhancing malignant phenotypes and autophagy-associated chemoresistance in GC. Our findings show the potential of circPOFUT1 as biomarkers and targeting circPOFUT1 as a therapeutic strategy for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Fenótipo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
3.
Pharmacology ; 108(1): 61-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36382664

RESUMO

INTRODUCTION: During breast cancer chemotherapy, the chemoresistance that frequently accompanies the treatment has become a big challenge. Long noncoding RNAs (LncRNAs) have been related to the development of chemoresistance in multiple cancer types. LncRNA DDX11-AS1 has shown a carcinogenic role in lung and colorectal cancer and was reported to enhance oxaliplatin resistance in gastric cancer and Taxol insensitivity in esophageal cancer. But its role in breast cancer chemotherapy drug resistance remains unknown. This study aimed to investigate the function and mechanism of lncRNA DDX11-AS1 in breast cancer chemoresistance. METHODS: The relationship between DDX11-AS1 and adriamycin (ADR) resistance was confirmed by qPCR, cell viability tests, and survival analysis. Then, RNA immunoprecipitation was conducted to evaluate the interaction between DDX11-AS1 and RNA-binding protein LIN28A. The regulation effect of LIN28A on autophagy-related genes ATG7 or ATG12 was detected by RNA stability assay and Western blot. Their correlation analysis was evaluated in GEO datasets and further validated by immunohistochemical results. The clinical significance of DDX11-AS1, ATG7, or ATG12 was evaluated by Kaplan-Meier Plotter analysis. RESULTS: Here, we reported DDX11-AS1 was significantly upregulated in chemoresistant breast cancer cells and overexpression of DDX11-AS1 promoted ADR resistance in breast cancer. LIN28A could interact with DDX11-AS1 and was involved in DDX11-AS1-mediated ADR resistance. Interfering with LIN28A reversed DDX11-AS1-induced ADR resistance. LIN28A could increase the protein level of ATG7 and ATG12 by increasing their mRNA stability. Survival analysis showed that ATG12 expression level was negatively correlated with the prognosis of breast cancer patients. CONCLUSION: This study clarifies the role of DDX11-AS1 in breast cancer chemoresistance and revealed a new mechanism, that is, interacting with LIN28A to stabilize ATG7 and ATG12 and jointly promote chemorefractory. These findings warrant further in vivo investigations to study DDX11-AS1 as a potential target to overcome chemoresistance.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
4.
J Cell Physiol ; 237(4): 2140-2154, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35019151

RESUMO

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.


Assuntos
Ornitina Descarboxilase , Lesões por Radiação , Apoptose/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Humanos , Ornitina Descarboxilase/genética , Raios Ultravioleta
5.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34870550

RESUMO

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína 12 Relacionada à Autofagia , Autofagia , Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas
6.
Autophagy ; 18(8): 1898-1914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34904929

RESUMO

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy. Paradoxically, in several cancer types, mutations or loss of essential autophagy genes have been reported that are associated with earlier onset of tumor growth. However, to our knowledge, the phenotypic and therapeutic consequences of autophagy deficiency have remained unexplored. In this study, we determined autophagy-defects in head and neck squamous cell carcinoma (HNSCC) and observed that expression of ATG12 (autophagy related 12) was lost in 25%-40% of HNSCC. In line, ATG12 loss is associated with absence of hypoxia, as determined by pimonidazole immunohistochemistry. Hence, ATG12 loss is associated with improved prognosis after therapy in two independent HNSCC cohorts and 7 additional cancer types. In vivo, ATG12 targeting resulted in decreased hypoxia tolerance, increased necrosis and sensitivity of the tumor to therapy, but in vitro ATG12-deficient cells displayed enhanced survival in nutrient-rich culture medium. Besides oxygen, delivery of glucose was hampered in hypoxic regions in vivo, which increases the reliance of cells on other carbon sources (e.g., L-glutamine). We observed decreased intracellular L-glutamine levels in ATG12-deficient cells during hypoxia and increased cell killing after L-glutamine depletion, indicating a central role for ATG12 in maintaining L-glutamine homeostasis. Our results demonstrate that ATG12low tumors represent a phenotypically different subtype that, due to the lowered hypoxia tolerance, display a favorable outcome after therapy.Abbreviations: ARCON:accelerated radiotherapy with carbogen and nicotinamide; ATG: autophagy related; BrdUrd: bromodeoxyuridine; CA9/CAIX: carbonic anhydrase 9; HIF1A/HIF1α: hypoxia inducible factor 1 subunit alpha; HNSCC: head and neck squamous cell carcinoma; HPV: human papilloma virus; HR: hazard ratio; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; mRNA: messenger ribonucleic acid; PCR: polymerase chain reaction; SLC2A1/GLUT1: solute carrier family 2 member 1; TCGA: the Cancer Genome Atlas; TME: tumor microenvironment; UTR: untranslated region; VEGF: vascular endothelial growth factor.


Assuntos
Proteína 12 Relacionada à Autofagia , Glutamina , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Fibroblastos/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Hipóxia Tumoral , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Technol Cancer Res Treat ; 20: 15330338211052150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723728

RESUMO

Background: Resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia (CML) remains a problem in clinical treatment, and the mechanism has not been fully clarified. Autophagy can protect cancer cells under chemotherapeutic stimulation. Long noncoding RNAs (lncRNAs) are critical in drug resistance of CML. The role of lncRNAs in autophagy and drug resistance of CML needs to be further explored. Methods: Western blot and immunofluorescence were used to evaluate the autophagy activity in the drug-resistant CML cell line K562/G01 and its parental cell line K562. Then the sensitivity of K562/G01 cells to the first generation TKI imatinib (IM) after autophagy inhibition was determined by CCK-8 assays. The lncRNA OIP5-AS1 related to the drug resistance of CML cells was determined by Gene Expression Omnibus database analysis. Western blot and drug-sensitivity assays were used to detect changes in autophagy and sensitivity to the IM in resistant CML cells after OIP5-AS1 knockdown. The interactions of OIP5-AS1, miR-30e-5p, and ATG12 were explored by RNA immunoprecipitation and dual-luciferase reporter assays. Results: In this study, we found that autophagy was associated with drug resistance in CML cells. Moreover, the upregulation of OIP5-AS1 in K562/G01 cells was related to the enhancement of autophagy. Knockdown of OIP5-AS1 suppressed autophagy and enhanced the sensitivity of K562/G01 cells to IM. Furthermore, OIP5-AS1 regulated ATG12 by competitively binding miR-30e-5p, thereby affecting autophagy-related drug resistance. Conclusion: Our study reveals that OIP5-AS1 promotes the autophagy-related IM resistance in CML cells by regulating miR-30e-5p/ATG12 axis, providing new insights into the drug resistance mechanism of CML.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Bases de Dados Genéticas , Técnicas de Silenciamento de Genes , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/genética , Interferência de RNA , Transcriptoma
8.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34699746

RESUMO

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Células-Tronco Neurais/enzimologia , Neurogênese , Neurônios/enzimologia , Proteoma , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteostase , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/genética
9.
Int J Mol Med ; 48(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608496

RESUMO

The main aim of the present study was to explore the role of long­chain non­coding RNA (lncRNA) growth arrest­specific transcript 5 (GAS5) in macrophage autophagy. Firstly, the expression of lncRNA GAS5 during cell starvation or following treatment with 3­methyladenine was determined using reverse transcription­quantitative PCR (RT­qPCR). Additionally, fluorescent in situ hybridization (FISH) assay was utilized to determine the localization of the expression of lncRNA GAS5 in RAW264.7 cells. In vitro cell models were established through the transfection of LV5­lncRNA GAS5 (LV5­GAS5) or LV3­shRNA­lnc GAS5 (sh­GAS5), in order to overexpress or knockdown lncRNA GAS5 expression in RAW264.7 cells. The potential target microRNAs (miRNAs/miRs) of lncRNA GAS5 were analyzed using bioinformatics. The formation of autophagic bodies was detected with the use of laser confocal and transmission electron microscopy. Dual­luciferase reporter assay was performed to determine the target specificities of miR­181c­5p or miR­1192 to lncRNA GAS5 and autophagy­related gene (ATG) or ATG12. The mRNA levels of miR181c­5p, miR­1192, as well as ATG5 and ATG12 were detected using RT­qPCR. The protein levels of microtubule­associated proteins 1A/1B light chain 3B (LC3), p62, ATG5 and ATG12 were measured using western blot analysis. It was revealed that lncRNA GAS5 expression in RAW264.7 macrophages increased significantly during starvation­induced autophagy, and that lncRNA GAS5 overexpression was able to markedly promote the formation of autophagic bodies. Bioinformatics analysis demonstrated that miR­181c­5p and miR­1192 were potential targets of lncRNA GAS5, which was further confirmed by RT­qPCR, western blot analysis and the dual­luciferase reporter assay. Finally, it was confirmed that lncRNA GAS5 promoted autophagy by sponging miR­181c­5p and miR­1192, and upregulating the expression levels of the key autophagic regulators, ATG5 and ATG12. On the whole, the present study demonstrates that total, lncRNA GAS5 promotes macrophage autophagy by targeting the miR­181c­5p/ATG5 and miR­1192/ATG12 axes.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Proteína 12 Relacionada à Autofagia/genética , Regulação da Expressão Gênica , Camundongos , Células RAW 264.7
10.
Int J Mol Med ; 47(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33907824

RESUMO

Circular (circ)RNA has been demonstrated to serve crucial roles in cell proliferation, differentiation and autophagy. However, to date, the function and mechanism of action of circRNA in preeclampsia have not been reported. The present study aimed to analyze the roles of circRNA­0004904 in preeclampsia and to clarify its underlying pathogenic mechanism. The expression levels of circ­0004904, microRNA (miR)­570 and autophagy­related 12 (ATG12) were detected by reverse transcription­quantitative (RT­q)PCR. In addition, the protein levels of ATG12, vascular endothelial growth factor (VEGF) and fused in sarcoma (FUS) were determined by western blot assay. The distribution of mRFP­GFP­LC3 in HTR8 and JEG3 cells was analyzed by confocal microscopy. Fluorescence in situ hybridization assay was utilized to identify the colocalization of circ­0004904 and miR­570. Cell proliferation was determined by 5­ethynyl­2'­deoxyuridine assay, and invasion was evaluated by Matrigel invasion assay. The results of the present study demonstrated that the expression levels of circ­0004904 were elevated in the placental tissues and plasma samples of patients with preeclampsia compared with those in the control group samples. Ectopic expression of circ­0004904 promoted autophagy, but inhibited migration and proliferation of HTR8 cells compared with those in the negative control group. Silencing of circ­0004904 inhibited autophagy, and induced migration and proliferation in JEG3 cells compared with those in the negative control group. In addition, circ­0004904 regulated the levels of ATG12 via interaction with miR­570. Furthermore, circ­0004904 regulated the FUS/VEGF axis in HTR8 and JEG3 cells. In conclusion, circ­0004904 was abnormally expressed in the plasma and placental tissues of patients with preeclampsia. In addition, circ­0004904 was involved in the regulation of proliferation, invasion and autophagy in HTR8 and JEG3 cells. Thus, circ­0004904 may be used as a potential diagnostic biomarker and therapeutic target for preeclampsia.


Assuntos
Autofagia/genética , Pré-Eclâmpsia/genética , RNA Circular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Sequência de Bases , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
11.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484718

RESUMO

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 5 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
12.
J Steroid Biochem Mol Biol ; 208: 105829, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513383

RESUMO

OBJECTIVE: Women with polycystic ovary syndrome (PCOS) are at higher risk for metabolic disorders compared to healthy women, and about 51 % of women with PCOS suffer from non-alcoholic fatty liver disease (NAFLD). Investigation into the pathological mechanism behind this association will provide insights for the prevention and treatment of this complication. METHODS: Dihydrotestosterone (DHT), a nonaromatic androgen, was used to mimic the pathological conditions of hyperandrogenism and insulin resistance. Hematoxylin and eosin staining, Oil Red O staining, immunofluorescent staining, Western blots, and qRT-PCR were used to verify the hepatic steatosis and inflammation, and the latter two methods were also used for energy and mitochondrion-related assays. ELISA was used to measure the level of reactive oxygen species. RESULTS: Twelve weeks of DHT exposure led to obesity and insulin resistance as well as hepatic steatosis, lipid deposition, and different degrees of inflammation. The expression of molecules involved in respiratory chain and aerobic respiration processes, such as electron transfer complex II, pyruvate dehydrogenase, and succinate dehydrogenase complex subunit A, was inhibited. In addition, molecules associated with apoptosis and autophagy were also abnormally expressed, such as increased Bak mRNA, an increased activated caspase-3 to caspase-3 ratio, and increased Atg12 protein expression. All of these changes are associated with the mitochondria and lead to lipid deposition and inflammation in the liver. CONCLUSIONS: Long-term androgen excess contributes to insulin resistance and hepatic steatosis by affecting mitochondrial function and causing an imbalance in apoptosis and autophagy, thus suggesting the pathogenesis of NAFLD in women with PCOS.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Resistência à Insulina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Síndrome do Ovário Policístico/genética , Androgênios/genética , Androgênios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Di-Hidrotestosterona/efeitos adversos , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/genética , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteína Killer-Antagonista Homóloga a bcl-2/genética
13.
Mol Ther ; 29(3): 1258-1278, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068778

RESUMO

Long non-coding RNAs (lncRNAs) are under active investigation in the development of cancers, including gastric cancer (GC). Oncogenic autophagy is required for cancer cell survival. The present study aimed to investigate the regulatory role of lncRNA small nucleolar host gene 11 (SNHG11) in GC. We show that SNHG11 is upregulated in GC, and that its upregulation correlated with dismal patient outcomes. Functionally, SNHG11 aggravated oncogenic autophagy to facilitate cell proliferation, stemness, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in GC. Mechanistically, SNHG11 post-transcriptionally upregulated catenin beta 1 (CTNNB1) and autophagy related 12 (ATG12) through miR-483-3p/miR-1276, while the processing of precursor (pre-)miR-483/pre-miR-1276 was hindered by SNHG11. SNHG11 induced GSK-3ß ubiquitination through interacting with Cullin 4A (CUL4A) to further activate the Wnt/ß-catenin pathway. Intriguingly, SNHG11 regulated autophagy in a manner dependent on ATG12 rather than the Wnt/ß-catenin pathway, whereas SNHG11 contributed to the malignant behaviors of GC cells via both pathways. Finally, SNHG11 upregulation in GC cells was shown to be transcriptionally induced by TCF7L2. In conclusion, we reveal that SNHG11 is an onco-lncRNA in GC and might be a promising prognostic and therapeutic target for GC.


Assuntos
Autofagia , Carcinogênese , Transição Epitelial-Mesenquimal , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Proteínas Culina/genética , Proteínas Culina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
14.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147747

RESUMO

In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/genética , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Humanos , Sistema Imunitário , Inflamação , Lisossomos/metabolismo , Prognóstico
15.
Cell Death Dis ; 11(10): 883, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082306

RESUMO

Stereotactic body radiotherapy (SBRT) has emerged as a standard treatment for non-small-cell lung cancer. However, its therapeutic advantages are limited with the development of SBRT resistance. The SBRT-resistant cell lines (A549/IR and H1975/IR) were established after exposure with hypofractionated irradiation. The differential lncRNAs were screened by microarray assay, then the expression was detected in LUAD tumor tissues and cell lines by qPCR. The influence on radiation response was assessed via in vitro and in vivo assays, and autophagy levels were evaluated by western blot and transmission electron microscopy. Bioinformatics prediction and rescue experiments were used to identify the pathways underlying SBRT resistance. High expression of KCNQ1OT1 was identified in LUAD SBRT-resistant cells and tissues, positively associated with a large tumor, advanced clinical stage, and a lower response rate to concurrent therapy. KCNQ1OT1 depletion significantly resensitized A549/IR and H1975/IR cells to radiation by inhibiting autophagy, which could be attenuated by miR-372-3p knockdown. Furthermore, autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) were confirmed as direct targets of miR-372-3p. Restoration of either ATG5 or ATG12 abrogated miR-372-3p-mediated autophagy inhibition and radiosensitivity. Our data describe that KCNQ1OT1 is responsible for SBRT resistance in LUAD through induction of ATG5- and ATG12-dependent autophagy via sponging miR-372-3p, which would be a potential strategy to enhance the antitumor effects of radiotherapy in LUAD.


Assuntos
Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Adenocarcinoma de Pulmão/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
16.
Cell Death Dis ; 11(1): 69, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988284

RESUMO

Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5-ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.


Assuntos
Proteína 12 Relacionada à Autofagia/metabolismo , Autofagia/genética , Carcinoma de Células Renais/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Processamento Alternativo/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Mutação , Prognóstico , RNA Interferente Pequeno
17.
J Cell Mol Med ; 24(5): 2917-2930, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989778

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) tumours exhibit a high level of heterogeneity which is associated with hypoxia and strong resistance to chemotherapy. The RNA splicing protein polypyrimidine tract-binding protein 3 (PTBP3) regulates hypoxic gene expression by selectively binding to hypoxia-regulated transcripts. We have investigated the role of PTBP3 in tumour development and chemotherapeutic resistance in human PDAC tissues and pancreatic cancer cells. In addition, we determined the sensitivity of cancer cells to gemcitabine with differential levels of PTBP3 and whether autophagy and hypoxia affect gemcitabine resistance in vitro. PTBP3 expression was higher in human pancreatic cancer than in paired adjacent tissues. PTBP3 overexpression promoted PDAC proliferation in vitro and tumour growth in vivo, whereas PTBP3 depletion had opposing effects. Hypoxia significantly increased the expression of PTBP3 in pancreatic cancer cells in vitro. Under hypoxic conditions, cells were more resistance to gemcitabine. Knockdown of PTBP3 results in decreased resistance to gemcitabine, which was attributed to attenuated autophagy. We propose that PTBP3 binds to multiple sites in the 3'-UTR of ATG12 resulting in overexpression. PTBP3 increases cancer cell proliferation and autophagic flux in response to hypoxic stress, which contributes to gemcitabine resistance.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Hipóxia Tumoral/genética , Regulação para Cima/genética , Regiões 3' não Traduzidas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Sequência de Bases , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Estresse Fisiológico/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Gencitabina
18.
Autophagy ; 16(7): 1186-1199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31462126

RESUMO

Long noncoding RNAs (lncRNAs) are proved to be critical regulators in numerous cellular processes. However, the potential involvement of lncRNAs in macroautophagy/autophagy is largely unknown. Autophagy is a highly regulated cellular degradation system, and its dysregulation is involved in many human diseases, including cancers. Here, we show that the lncRNA ZNNT1 is induced by PP242 and MTORC1 selective inhibitor rapamycin in uveal melanoma (UM) cells. Overexpression of ZNNT1 promotes autophagy by upregulating ATG12 expression, whereas knockdown of ZNNT1 attenuates PP242-induced autophagy. Overexpression of ZNNT1 inhibits tumorigenesis and the migration of UM cells, and knockdown of ATG12 can partially rescue the ZNNT1-induced inhibition of UM tumorigenesis. In summary, our study reveals that ZNNT1 acts as a potential tumor suppressor in UM by inducing autophagy. ABBREVIATIONS: ADCD: autophagy dependent cell death; ANXA2R: annexin A2 receptor; ATG12: autophagy- related 12; ATG5: autophagy -related 5; ceRNA: competing endogenous RNAs; CQ: chloroquine; iTRAQ: isobaric tags for relative and absolute quantitation; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR cmplex 2; PP242: Torkinib; RACE: rapid amplification of cDNA ends; SQSTM1/p62: sequestosome 1; UM: uveal melanoma.


Assuntos
Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/patologia , RNA Longo não Codificante/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Dev Comp Immunol ; 105: 103587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31875516

RESUMO

Although the toxicity of Aeromonas hydrophila infection to common carp has been characterized, the mechanisms underlying this toxicity have not been fully explored. The present study assessed the effects of A. hydrophila infection on oxidative stress, nonspecific immunity, autophagy, and apoptosis in the common carp (Cyprinus carpio). We measured the effects of 7.55 × 105 CFU/mL and 4.87 × 107 CFU/mL A. hydrophila on carp after 1, 3, 5, and 7 d of infection. GSH and SOD activity levels in the serum, liver, intestine, and gills generally increased during the early stage of infection, but significantly decreased (P < 0.05) on the seventh day. In addition, MDA levels were significantly increased throughout the infection period. The activity levels of ACP, AKP, and LZM in the liver and intestine increased on the first day after infection, then decreased on the fifth and seventh days. The mRNA expressions levels of the autophagy-associated genes atg12, atg5, LC3-II, and BECN1 in the liver, kidney, and brain substantially increased on the third day after infection (P < 0.05), while mTOR was significantly downregulated on the first and third days (P < 0.05). Western blot analysis indicated that the ratio of LC3B-ǁ/LC3B-ǀ significantly increased (P < 0.05) on days 3 and 5 post infection. Furthermore, the apoptosis-related gene Bcl-2 was significantly (P < 0.05) upregulated in the liver, kidney, and brain of the treatment group on the first and third days, while caspase3 was significantly downregulated (P < 0.05). In conclusion, our results demonstrate that A. hydrophila infection causes oxidative stress, stimulates nonspecific immune reactions, and results in autophagy in the common carp, possibly initiating apoptosis in the late stage of infection. The results of this study provide new insights into the mechanism of A. hydrophila infection in carp.


Assuntos
Aeromonas hydrophila/fisiologia , Carpas/imunologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Animais , Apoptose , Autofagia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Células Cultivadas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Humanos , Imunidade Inata , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
20.
Eur Rev Med Pharmacol Sci ; 23(24): 10708-10720, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31858580

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers globally. LncRNA HLA complex group 11 (HCG11) has been reported to play an oncogenic role in multiple cancers. Nevertheless, the role and regulatory mechanism of HCG11 in HCC are not fully addressed. PATIENTS AND METHODS: The abundance of HCG11 and miR-26a-5p was measured by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) in HCC tissues and cells. Cell proliferation, apoptosis, metastasis, and autophagy were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, transwell migration, invasion assays, and Western blot assay, respectively. The binding sites between miR-26a-5p and HCG11 or autophagy-related 12 (ATG12) were predicted by starBase bioinformatic software, and the combination was confirmed by Dual-Luciferase reporter assay. The abundance of ATG12 was examined by Western blot assay. Murine xenograft model was established to validate the function of HCG11 in vivo. RESULTS: The enrichment of HCG11 was enhanced in HCC tissues and cells and was negatively related to the prognosis of HCC patients. The abundance of miR-26a-5p was inversely correlated with the level of HCG11 in HCC tissues. HCG11 interference suppressed the proliferation, metastasis, and autophagy while promoted the apoptosis of HCC cells. MiR-26a-5p bound to lncRNA HCG11 and ATG12. The depletion of miR-26a-5p or the accumulation of ATG12 could alleviate the suppressive effects induced by HCG11 intervention on the proliferation, metastasis, autophagy, and the promoting impact on the apoptosis of HCC cells. HCG11 promoted the growth of murine xenograft tumor and autophagy through miR-26a-5p/ATG12 axis in vivo. CONCLUSIONS: LncRNA HCG11 accelerated the proliferation, metastasis, and autophagy while impeded the apoptosis of HCC cells via HCG11/miR-26a-5p/ATG12 axis. HCG11 might be a potential therapeutic target for the treatment of HCC.


Assuntos
Proteína 12 Relacionada à Autofagia/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA