Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Proteína 1A de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Brain Pathol ; 34(3): e13217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37865975

RESUMO

Glioma stem cells (GSCs) exhibit diverse molecular subtypes with the mesenchymal (MES) population representing the most malignant variant. The oncogenic potential of Salmonella pathogenicity island 1 (SPI1), an oncogenic transcription factor, has been established across various human malignancies. In this study, we explored the association between the SPI1 pathway and the MES GSC phenotype. Through comprehensive analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas glioma databases, along with patient-derived GSC cultures, we analyzed SPI1 expression. Using genetic knockdown and overexpression techniques, we assessed the functional impact of SPI1 on GSC MES marker expression, invasion, proliferation, self-renewal, and sensitivity to radiation in vitro, as well as its influence on tumor formation in vivo. Additionally, we investigated the downstream signaling cascades activated by SPI1. Our findings revealed a positive correlation between elevated SPI1 expression and the MES phenotype, which in turn, correlated with poor survival. SPI1 enhanced GSC MES differentiation, self-renewal, and radioresistance in vitro, promoting tumorigenicity in vivo. Mechanistically, SPI1 augmented the transcriptional activity of both TGF-ß1 and FKBP12 while activating the non-canonical PI3K/Akt pathway. Notably, inhibition of TGF-ß1/PI3K/Akt signaling partially attenuated SPI1-induced GSC MES differentiation and its associated malignant phenotype. Collectively, our results underscore SPI1's role in activating TGF-ß1/PI3K/Akt signaling through transcriptional upregulation of FKBP12, thereby supporting the aggressive MES phenotype of GSCs. Therefore, SPI1 emerges as a potential therapeutic target in glioma treatment.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Regulação para Cima , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Ilhas Genômicas , Células-Tronco Neoplásicas/metabolismo , Glioma/patologia , Fenótipo , Linhagem Celular Tumoral , Proliferação de Células
3.
Cell Rep Med ; 4(12): 101306, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38052214

RESUMO

Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.


Assuntos
Caquexia , Neoplasias , Humanos , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Tacrolimo/metabolismo , Tacrolimo/farmacologia , Músculo Esquelético/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias/patologia
4.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37678918

RESUMO

BACKGROUND: Immunosuppressive drugs such as tacrolimus have revolutionized our ability to transplant organs between individuals. Tacrolimus acts systemically to suppress the activity of T-cells within and around transplanted organs. However, tacrolimus also suppresses T-cell function in the skin, contributing to a high incidence of skin cancer and associated mortality and morbidity in solid organ transplant recipients. Here, we aimed to identify a compound capable of re-establishing antitumor T-cell control in the skin despite the presence of tacrolimus. METHODS: In this study, we performed time-resolved fluorescence resonance energy transfer to identify molecules capable of antagonizing the interaction between tacrolimus and FKBP12. The capacity of these molecules to rescue mouse and human T-cell function in the presence of tacrolimus was determined in vitro, and the antitumor effect of the lead compound, Q-2361, was assessed in "regressor" models of skin cancer in immunosuppressed mice. Systemic CD8 T-cell depletion and analyses of intratumoral T-cell activation markers and effector molecule production were performed to determine the mechanism of tumor rejection. Pharmacokinetic studies of topically applied Q-2361 were performed to assess skin and systemic drug exposure. RESULTS: Q-2361 potently blocked the interaction between tacrolimus and FKBP12 and reversed the inhibition of the nuclear factor of activated T cells activation by tacrolimus following T-cell receptor engagement in human Jurkat cells. Q-2361 rescued T-cell function in the presence of tacrolimus, rapamycin, and everolimus. Intratumoral injection of Q-2361-induced tumor regression in mice systemically immune suppressed with tacrolimus. Mechanistically, Q-2361 treatment permitted T-cell activation, proliferation, and effector function within tumors. When CD8 T cells were depleted, Q-2361 could not induce tumor regression. A simple solution-based Q-2361 topical formulation achieved high and sustained residence in the skin with negligible drug in the blood. CONCLUSIONS: Our findings demonstrate that the local application of Q-2361 permits T-cells to become activated driving tumor rejection in the presence of tacrolimus. The data presented here suggests that topically applied Q-2361 has great potential for the reactivation of T-cells in the skin but not systemically, and therefore represents a promising strategy to prevent or treat skin malignancies in immunosuppressed organ transplant recipients.


Assuntos
Neoplasias Cutâneas , Tacrolimo , Humanos , Animais , Camundongos , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Hospedeiro Imunocomprometido
5.
Int J Med Sci ; 20(8): 1060-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484811

RESUMO

Background: Solute Carrier Family 3 Member 2 (SLC3A2) is a member of the solute carrier family that plays pivotal roles in regulation of intracellular calcium levels and transports L-type amino acids. However, there are insufficient scientific researches on the prognostic and immunological roles of SLC3A2 in breast cancer (BC) and whether everolimus regulates novel SLC3A2 related molecular mechanism in the immuno-oncology context of the tumor microenvironment (TME), therefore, we see a necessity to conduct the current in silico and biological experimental study. Methods: Using diverse online databases, we investigated the role of SLC3A2 in therapy response, clinicopathological characteristics, tumor immune infiltration, genetic alteration, methylation and single cell sequencing in BC. WB, Co-IP, cell proliferation assay, Edu staining, ROS and GSH assay and in vivo tumor xenograft assays were performed to verify FKBP1A/SLC3A2 axis in everolimus inducing ferroptosis of breast cancer. Co-cultures and IL-9 ELISA were performed to demonstrate the T lymphocyte function. Results: We demonstrated that SLC3A2 was aberrantly expressed among various BC cohorts. Our results also suggested that SLC3A2 expression was associated with chemotherapeutic outcome in BC patients. Our results further indicated that SLC3A2 was associated with tumor infiltration of cytotoxic T cell but not other immune cells among BC TME. The alterations in SLC3A2 gene had a significant correlation to relapse free survival and contributed a significant impact on BC tumor mutational burden. Finally, SLC3A2 was illustrated to be expressed in diverse BC cellular populations at single cell level, and negatively linked to angiogenesis, inflammation and quiescence, but positively correlated with other functional phenotypes. Noteworthily, everolimus (a targeted therapy drug for BC) related protein, FK506-binding protein 1A (FKBP1A) was found to bind with SLC3A2, and negatively regulated SLC3A2 expression during the processes of everolimus inducing ferroptosis of BC cells and promoting anti-proliferation of Th9 lymphocytes. Conclusions: Altogether, our study strongly implies that SLC3A2 is an immuno-oncogenic factor and FKBP1A/SLC3A2 axis would provide insights for a novel immunotherapy approach for the treatment of BC in the context of TME.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Everolimo/farmacologia , Everolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ferroptose/genética , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298320

RESUMO

Efficient delivery of functional factors into target cells remains challenging. Although extracellular vesicles (EVs) are considered to be potential therapeutic delivery vehicles, a variety of efficient therapeutic delivery tools are still needed for cancer cells. Herein, we demonstrated a promising method to deliver EVs to refractory cancer cells via a small molecule-induced trafficking system. We generated an inducible interaction system between the FKBP12-rapamycin-binding protein (FRB) domain and FK506 binding protein (FKBP) to deliver specific cargo to EVs. CD9, an abundant protein in EVs, was fused to the FRB domain, and the specific cargo to be delivered was linked to FKBP. Rapamycin recruited validated cargo to EVs through protein-protein interactions (PPIs), such as the FKBP-FRB interaction system. The released EVs were functionally delivered to refractory cancer cells, triple negative breast cancer cells, non-small cell lung cancer cells, and pancreatic cancer cells. Therefore, the functional delivery system driven by reversible PPIs may provide new possibilities for a therapeutic cure against refractory cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo , Proteínas de Ligação a Tacrolimo/metabolismo
7.
Cell Commun Signal ; 21(1): 25, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717825

RESUMO

BACKGROUND: The immunophilin FKBP12 binds to TGF-ß family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS: Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS: FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS: In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.


Assuntos
Receptores de Ativinas Tipo I , Mieloma Múltiplo , Proteína 1A de Ligação a Tacrolimo , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , RNA Interferente Pequeno , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Receptores de Ativinas Tipo I/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(38): e2204083119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095197

RESUMO

Mammalian target of rapamycin (mTOR) is a highly conserved eukaryotic protein kinase that coordinates cell growth and metabolism, and plays a critical role in cancer, immunity, and aging. It remains unclear how mTOR signaling in individual tissues contributes to whole-organism processes because mTOR inhibitors, like the natural product rapamycin, are administered systemically and target multiple tissues simultaneously. We developed a chemical-genetic system, termed selecTOR, that restricts the activity of a rapamycin analog to specific cell populations through targeted expression of a mutant FKBP12 protein. This analog has reduced affinity for its obligate binding partner FKBP12, which reduces its ability to inhibit mTOR in wild-type cells and tissues. Expression of the mutant FKBP12, which contains an expanded binding pocket, rescues the activity of this rapamycin analog. Using this system, we show that selective mTOR inhibition can be achieved in Saccharomyces cerevisiae and human cells, and we validate the utility of our system in an intact metazoan model organism by identifying the tissues responsible for a rapamycin-induced developmental delay in Drosophila.


Assuntos
Inibidores de Proteínas Quinases , Sirolimo , Serina-Treonina Quinases TOR , Humanos , Especificidade de Órgãos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo
9.
Nature ; 609(7928): 822-828, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104566

RESUMO

On-target-off-tissue drug engagement is an important source of adverse effects that constrains the therapeutic window of drug candidates1,2. In diseases of the central nervous system, drugs with brain-restricted pharmacology are highly desirable. Here we report a strategy to achieve inhibition of mammalian target of rapamycin (mTOR) while sparing mTOR activity elsewhere through the use of the brain-permeable mTOR inhibitor RapaLink-1 and the brain-impermeable FKBP12 ligand RapaBlock. We show that this drug combination mitigates the systemic effects of mTOR inhibitors but retains the efficacy of RapaLink-1 in glioblastoma xenografts. We further present a general method to design cell-permeable, FKBP12-dependent kinase inhibitors from known drug scaffolds. These inhibitors are sensitive to deactivation by RapaBlock, enabling the brain-restricted inhibition of their respective kinase targets.


Assuntos
Encéfalo , Inibidores de MTOR , Sirolimo , Serina-Treonina Quinases TOR , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Quimioterapia Combinada , Glioblastoma/tratamento farmacológico , Ligantes , Inibidores de MTOR/metabolismo , Inibidores de MTOR/farmacocinética , Inibidores de MTOR/farmacologia , Sirolimo/análogos & derivados , Proteína 1A de Ligação a Tacrolimo/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
11.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576105

RESUMO

In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the 'four-dimensional' protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the 'toolbox' of mass spectrometry researchers studying higher-order protein structure.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Proteínas/química , Álcool Desidrogenase/química , Sítios de Ligação , Heme/química , Modelos Moleculares , Mioglobina/química , Oxirredução , Peptídeos/química , Conformação Proteica , Estabilidade Proteica , Proteína 1A de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/química
12.
ACS Synth Biol ; 9(11): 3104-3113, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33104325

RESUMO

Monitoring microbial reactions in highly opaque or autofluorescent environments like soils, seawater, and wastewater remains challenging. To develop a simple approach for observing post-translational reactions within microbes situated in environmental matrices, we designed a methyl halide transferase (MHT) fragment complementation assay that reports by synthesizing an indicator gas. We show that backbone fission within regions of high sequence variability in the Rossmann domain yields split MHT (sMHT) AND gates whose fragments cooperatively associate to synthesize CH3Br. Additionally, we identify a sMHT whose fragments require fusion to pairs of interacting partner proteins for maximal activity. We also show that sMHT fragments fused to FKBP12 and the FKBP-rapamycin binding domain of mTOR display significantly enhanced CH3Br production in the presence of rapamycin. This gas production is reversed in the presence of the competitive inhibitor of FKBP12/FKPB dimerization, indicating that sMHT is a reversible reporter of post-translational reactions. This sMHT represents the first genetic AND gate that reports on protein-protein interactions via an indicator gas. Because indicator gases can be measured in the headspaces of complex environmental samples, this assay should be useful for monitoring the dynamics of diverse molecular interactions within microbes situated in hard-to-image marine and terrestrial matrices.


Assuntos
Gases/metabolismo , Transferases/genética , Dimerização , Pentosiltransferases/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética
13.
FEBS Lett ; 594(23): 3986-4000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125703

RESUMO

Post-transcriptional regulation of ATP-binding cassette (ABC) proteins has been so far shown to encompass protein phosphorylation, maturation, and ubiquitination. Yet, recent accumulating evidence implicates FK506-binding proteins (FKBPs), a type of peptidylprolyl cis-trans isomerase (PPIase) proteins, in ABC transporter regulation. In this perspective article, we summarize current knowledge on ABC transporter regulation by FKBPs, which seems to be conserved over kingdoms and ABC subfamilies. We uncover striking functional similarities but also differences between regulatory FKBP-ABC modules in plants and mammals. We dissect a PPIase- and HSP90-dependent and independent impact of FKBPs on ABC biogenesis and transport activity. We propose and discuss a putative new mode of transient ABC transporter regulation by cis-trans isomerization of X-prolyl bonds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/classificação , Animais , Transporte Biológico , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunofilinas/metabolismo , Modelos Moleculares , Prolina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
14.
Nat Commun ; 11(1): 4687, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948771

RESUMO

Chemical biology strategies for directly perturbing protein homeostasis including the degradation tag (dTAG) system provide temporal advantages over genetic approaches and improved selectivity over small molecule inhibitors. We describe dTAGV-1, an exclusively selective VHL-recruiting dTAG molecule, to rapidly degrade FKBP12F36V-tagged proteins. dTAGV-1 overcomes a limitation of previously reported CRBN-recruiting dTAG molecules to degrade recalcitrant oncogenes, supports combination degrader studies and facilitates investigations of protein function in cells and mice.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Modelos Animais , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
Cell Death Dis ; 11(7): 551, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686662

RESUMO

A series of fluorescent thiazole-pyrazoline derivatives was synthesized and their structures were characterized by 1H NMR, 13C NMR, and HRMS. Biological evaluation demonstrated that these compounds could effectively inhibit the growth of human non-small cell lung cancer (NSCLC) A549 cells in a dose- and time-dependent manner in vitro and inhibit tumor growth in vivo. The structure-activity relationship (SAR) of the compounds was analyzed. Further mechanism research revealed they could induce autophagy and cell cycle arrest while had no influence on cell necrosis. Compound 5e inhibited the activity of mTOR via FKBP12, which could be reversed by 3BDO, an mTOR activator and autophagy inhibitor. Compound 5e inhibited growth, promoted autophagy of A549 cells in vivo. Moreover, compound 5e showed good selectivity with no influence on normal vascular endothelial cell growth and the normal chick embryo chorioallantoic membrane (CAM) capillary formation. Therefore, our research provides potential lead compounds for the development of new anticancer drugs against human lung cancer.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Pirazóis/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tiazóis/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Fluorescência , Fluoruracila/farmacologia , Humanos , Concentração Inibidora 50 , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tiazóis/síntese química , Tiazóis/química
16.
Cell Physiol Biochem ; 54(3): 457-473, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32369692

RESUMO

BACKGROUND/AIMS: Orthotopic liver transplantation (OLT) is the recommended treatment for patients at early stages of hepatocarcinoma (HCC) with portal hypertension and/or increased bilirubinemia, but without vascular-associated diseases. Tumor recurrence, which is the main drawback for the survival of patients submitted to OLT for HCC, has been related to tumor-related variables and the immunosuppressive therapies. We have previously shown that Tacrolimus (FK506) exerts a more potent pro-apoptotic and anti-proliferative effects than the mammalian target of rapamycin (mTOR) inhibitors (Sirolimus and Everolimus) in liver cancer cells. This study identified the role of the immunosuppressant partners such as FK506-binding proteins (FKBPs) in the induction of cell death and arrest of cell proliferation by immunosuppressants in two representative liver cancer cells. METHODS: The regulation of endoplasmic reticulum (ER) stress, apoptosis/autophagy, cell proliferation, and FKBPs expression was determined in Tacrolimus-, Sirolimus- and Everolimus-treated primary human hepatocytes, and hepatoma HepG2 and Huh7 cell lines. The functional repercussion of FKBPs on cell death and proliferation was also addressed using the siRNA technology. The assessed antitumoral properties of the immunosuppressants were associated to microRNAs (miRNAs) pattern. RESULTS: The enhanced pro-apoptotic and anti-proliferative properties of Tacrolimus versus mTOR inhibitors were associated with increased protein kinase RNA-like endoplasmic reticulum kinase (PERK)-related ER stress, Ser15P-p53/p53 ratio and p21 protein expression that may counterbalance the risk of proliferative upregulation caused by enhanced Thr172P-Cdk4/Cdk4 activation in liver cancer cells. The inhibition of the mTOR pathway by Sirolimus and Everolimus was related to an induction of autophagy; and at a high dose, these drugs impaired translation likely at a very early step of the elongation phase. Tacrolimus and mTOR inhibitors increased the protein expression of FKBP12 and FKBP51 that appeared to play pro-survival role. Interestingly, the administration of immunosuppressants yields a specific pattern of miRNAs. Tacrolimus and mTOR inhibitors decreased miR-92a-1-5p, miR-197-3p, miR-483-3p and miR-720, and increased miR-22-3p, miR-376a-3p, miR-663b, miR-886-5p, miR-1300 and miR-1303 expressions in HepG2 cells. CONCLUSION: The more potent pro-apoptotic and anti-proliferative properties of Tacrolimus versus mTOR inhibitors were associated with an increased activation of PERK and p53 signaling, and p21 protein expression. FKBP12 and FKBP51 appeared to be the most relevant partners of Tacrolimus and mTOR inhibitors exerting a pro-survival effect in HepG2 cells. The observed effects of immunosuppressants were related to a specific miRNA signature in liver cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Imunossupressores/farmacologia , Neoplasias Hepáticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tacrolimo/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína Supressora de Tumor p53/metabolismo , eIF-2 Quinase/metabolismo
17.
Sci Adv ; 6(8): eaay5064, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128406

RESUMO

PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.


Assuntos
Fenômenos Ópticos , Proteólise , Linhagem Celular Tumoral , Humanos , Luz , Proteólise/efeitos da radiação , Proteína 1A de Ligação a Tacrolimo/metabolismo
18.
ACS Comb Sci ; 22(3): 156-164, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32027120

RESUMO

On the basis of computational design, a focused one-bead one-compound library has been prepared on microparticle-encoded PEGA1900 beads consisting of small tripeptides with a triazole-capped N-terminal. The library was screened towards a double point-mutated version of the human FKBP12 protein, known as the destabilizing domain (DD). Inspired by the decoded library hits, unnatural peptide structures were screened in a novel on-bead assay, which was useful for a rapid structure evaluation prior to off-bead resynthesis. Subsequently, a series of 19 compounds were prepared and tested using a competitive fluorescence polarization assay, which led to the discovery of peptide ligands with low micromolar binding affinity towards the DD. The methodology represents a rapid approach for identification of a novel structure scaffold, where the screening and initial structure refinement was accomplished using small quantities of library building blocks.


Assuntos
Técnicas de Química Combinatória , Peptídeos/química , Proteína 1A de Ligação a Tacrolimo/química , Sítios de Ligação , Humanos , Modelos Moleculares , Estrutura Molecular
19.
Biochem Biophys Res Commun ; 523(2): 473-480, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31882118

RESUMO

The inducible activation system is valuable for investigating spatiotemporal roles of molecules. A chemically inducible activation system for Fas (CD95/APO-1), which works efficiently to induce apoptosis and leads non-apoptotic pathways, has not yet been developed. Here, we engineered a rapamycin-induced dimerization system of Fas consisting of FKBP and FRB proteins. Treatment of rapamycin specifically induces cellular apoptosis. In neurons and cells with high c-FLIP expression, rapamycin-induced Fas activation triggered the activation of the non-apoptotic pathway components instead of cell death. Intracranial delivery of the system could be utilized to induce apoptosis of tumor cells upon rapamycin treatment. Our results demonstrate a novel inducible Fas activation system which operates with high efficiency and temporal precision in vitro and in vivo promising a potential therapeutic strategy.


Assuntos
Engenharia de Proteínas/métodos , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Gravidez , Ratos Sprague-Dawley , Proteína 1A de Ligação a Tacrolimo/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/genética
20.
Chem Commun (Camb) ; 56(2): 281-284, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31807738

RESUMO

Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions and protein folding in vivo. Conventional BRET systems have solely depended on an overlap of the energy donor and acceptor spectra. In this study, we engineered a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length Artificial Luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched between a protein pair of interest, FRB and FKBP12, and linked to a fluorescent protein as the energy acceptor. A specific ligand, rapamycin, then activates inter- and intramolecular interactions of FRB and FKBP12, which develop molecular strain in the sandwiched ALuc23 to accelerate further folding. We found that this system greatly enhanced both the total bioluminescence spectrum and the BRET signal in the far-red (FR) region. We characterized the molecular construct by studying 18 different designs categorized into four groups. The best BRET system design allowed an approximately 5-fold enhancement of the bioluminescence intensities in the FR region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR bioluminescence signals in cells and living animal models.


Assuntos
Luciferases/química , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Linhagem Celular Tumoral , Humanos , Ligantes , Limite de Detecção , Luciferases/genética , Proteínas Luminescentes/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Ligação Proteica , Sirolimo/química , Sirolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA