Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(10): 168569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604527

RESUMO

Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.


Assuntos
Inibidores Enzimáticos , Proteína 2 Glutamina gama-Glutamiltransferase , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
2.
Bioorg Chem ; 143: 107061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154386

RESUMO

Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Imidazóis/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Simulação de Acoplamento Molecular , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902226

RESUMO

Enzymatic modification of gliadin peptides by human transglutaminase 2 (TG2) is a key mechanism in the pathogenesis of celiac disease (CD) and represents a potential therapeutic target. Recently, we have identified the small oxidative molecule PX-12 as an effective inhibitor of TG2 in vitro. In this study, we further investigated the effect of PX-12 and the established active-site directed inhibitor ERW1041 on TG2 activity and epithelial transport of gliadin peptides. We analyzed TG2 activity using immobilized TG2, Caco-2 cell lysates, confluent Caco-2 cell monolayers and duodenal biopsies from CD patients. TG2-mediated cross-linking of pepsin-/trypsin-digested gliadin (PTG) and 5BP (5-biotinamidopentylamine) was quantified by colorimetry, fluorometry and confocal microscopy. Cell viability was tested with a resazurin-based fluorometric assay. Epithelial transport of promofluor-conjugated gliadin peptides P31-43 and P56-88 was analyzed by fluorometry and confocal microscopy. PX-12 reduced TG2-mediated cross-linking of PTG and was significantly more effective than ERW1041 (10 µM, 15 ± 3 vs. 48 ± 8%, p < 0.001). In addition, PX-12 inhibited TG2 in cell lysates obtained from Caco-2 cells more than ERW1041 (10 µM; 12 ± 7% vs. 45 ± 19%, p < 0.05). Both substances inhibited TG2 comparably in the intestinal lamina propria of duodenal biopsies (100 µM, 25 ± 13% vs. 22 ± 11%). However, PX-12 did not inhibit TG2 in confluent Caco-2 cells, whereas ERW1041 showed a dose-dependent effect. Similarly, epithelial transport of P56-88 was inhibited by ERW1041, but not by PX-12. Cell viability was not negatively affected by either substance at concentrations up to 100 µM. PX-12 did not reduce TG2 activity or gliadin peptide transport in confluent Caco-2 cells. This could be caused by rapid inactivation or degradation of the substance in the Caco-2 cell culture. Still, our in vitro data underline the potential of the oxidative inhibition of TG2. The fact that the TG2-specific inhibitor ERW1041 reduced the epithelial uptake of P56-88 in Caco-2 cells further strengthens the therapeutic potential of TG2 inhibitors in CD.


Assuntos
Doença Celíaca , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Biópsia , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/enzimologia , Gliadina/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Transglutaminases/metabolismo , Intestinos/enzimologia
4.
Exp Eye Res ; 226: 109338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470430

RESUMO

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Assuntos
Lesões da Córnea , Cisteamina , Cistinose , Epitélio Corneano , Animais , Coelhos , Cicatriz/metabolismo , Córnea/efeitos dos fármacos , Córnea/metabolismo , Doenças da Córnea/patologia , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cisteamina/metabolismo , Cistinose/metabolismo , Cistinose/patologia , Epitélio Corneano/patologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Cicatrização/efeitos dos fármacos
5.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890280

RESUMO

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Assuntos
Cistamina/farmacologia , Dieta Ocidental/efeitos adversos , Inibidores Enzimáticos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Colágeno/metabolismo , Elasticidade , Feminino , Humanos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Análise de Onda de Pulso
6.
Clin Exp Hypertens ; 44(2): 167-174, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-34889160

RESUMO

To investigate the relationship between transglutaminase type 2 (TG2) and pulmonary vascular remodeling in the formation of pulmonary arterial hypertension (PAH), and to investigate the effect of the inhibitor cystamine dihydrochloride on pulmonary vascular remodeling in rats with PAH.Thirty healthy male Sprague Dawley rats were randomly divided into a control group, a PAH model group, and an intervention group. The mean pulmonary artery pressure (mPAP), the right ventricular hypertrophy index (RVHI), the percentage wall thickness of the pulmonary artery (WT%), and the degree of neointimal proliferation were measured, and the pathological changes in the pulmonary tissues were observed.Messenger ribonucleic acid (mRNA) and protein expressions of TG2, 5-hydroxytryptamine transporter (5-HTT), and Rho-associated protein kinase 2 (ROCK2) in the pulmonary tissues of the three groups of rats were detected.Compared with the control group, the mPAP, RVHI, and WT% were significantly higher in the model group, the degree of neointimal proliferation was significantly increased, and the mRNA and protein expressions of TG2, 5-HTT, and ROCK2 in the pulmonary tissue were significantly increased. Compared with the model group, the mPAP, RVHI, WT%, and the degree of neointimal proliferation were significantly lower in the intervention group, as were the mRNA and protein expressions of TG2, 5-HTT, and ROCK2 in the pulmonary tissue.The TG2 inhibitor cystamine dihydrochloride can prevent the formation of PAH to some extent. This might be due to the inhibition of the TG2 activity, 5-HTT expression, and possibly the inhibition of RhoA/ROCK signaling pathway activation.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Masculino , Artéria Pulmonar , Ratos , Ratos Sprague-Dawley
7.
Curr Comput Aided Drug Des ; 18(1): 41-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34225635

RESUMO

AIM: This study aimed at screening and development of TG2 inhibitors as anti lung cancer agent. BACKGROUND: Transglutaminase 2 (TG2) is multifunctional and ubiquitously expressed protein from the transglutaminase family. It takes part in various cellular processes and plays an important role in the pathogenesis of autoimmune, neurodegerative diseases, and also cancer. OBJECTIVE: The proposed study focused on screening potent inhibitors of TG2 by in-silico method and synthesize their derivative as well as analyse its activity by utilizing an in-vitro approach. MATERIALS AND METHODS: Molecular docking studies have been carried out on the different classes of TG2 inhibitors against the target protein. Nearly thirty TG2 inhibitors were selected from literature and docking was performed against transglutaminase 2. The computational ADME property screening was also carried out to check their pharmacokinetic properties. The compounds which exhibited positive ADME properties with good interaction while possessing the least binding energy were further validated for their anti-lung cancer inhibition property against A549 cell lines using cytotoxicity studies. RESULTS: The results of the present study indicate that the docked complex formed by cystamine showed better binding affinity towards target protein, so this derivative of cystamine was formed using 2,5 dihydrobenzoic acid. Invitro results revealed that both molecules proved to be good cytotoxic agents against A549 lung cancer (875.10, 553.22 µg/ml), respectively. Further, their activity needs to be validated on TG2 expressing lung cancer. CONCLUSION: Cystamine and its derivative can act as a potential therapeutic target for lung cancer but its activity should be further validated on TG2 expressing lung cancer.


Assuntos
Inibidores Enzimáticos , Neoplasias Pulmonares , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Células A549 , Detecção Precoce de Câncer , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular
8.
J Vasc Res ; 58(4): 237-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910208

RESUMO

INTRODUCTION: Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS: Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS: Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS: Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cistamina/farmacologia , Inibidores Enzimáticos/farmacologia , Hipertensão Pulmonar/prevenção & controle , Hipóxia/tratamento farmacológico , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/complicações , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/prevenção & controle , Ratos Wistar , Remodelação Vascular/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA