Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Hepatol ; 80(2): 309-321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918568

RESUMO

BACKGROUND & AIMS: Post-hepatectomy liver failure (PHLF) leads to poor prognosis in patients undergoing hepatectomy, with hepatic vascular reconstitution playing a critical role. However, the regulators of hepatic vascular reconstitution remain unclear. In this study, we aimed to investigate the regulatory mechanisms of hepatic vascular reconstitution and identify biomarkers predicting PHLF in patients undergoing hepatectomy. METHODS: Candidate genes that were associated with hepatic vascular reconstitution were screened using adeno-associated virus vectors in Alb-Cre-CRISPR/Cas9 mice subjected to partial hepatectomy. The biological activities of candidate genes were estimated using endothelial precursor transfusion and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) models. The level of candidates was detected in biopsies from patients undergoing ALPPS. Risk factors for PHLF were also screened using retrospective data. RESULTS: Downregulation of Gata3 and upregulation of Ramp2 in hepatocytes promoted the proliferation of liver sinusoidal endothelial cells and hepatic revascularization. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor A (VEGFA) played opposite roles in regulating the migration of endothelial precursors from bone marrow and the formation of new sinusoids after hepatectomy. Gata3 restricted endothelial cell function in patient-derived hepatic organoids, which was abrogated by a Gata3 inhibitor. Moreover, overexpression of Gata3 led to higher mortality in ALPPS mice, which was improved by a PEDF-neutralizing antibody. The expression of Gata3/RAMP and PEDF/VEGFA tended to have a negative correlation in patients undergoing ALPPS. A nomogram incorporating multiple factors, such as serum PEDF/VEGF index, was constructed and could efficiently predict the risk of PHLF. CONCLUSIONS: The balance of Gata3 and Ramp2 in hepatocytes regulates the proliferation of liver sinusoidal endothelial cells and hepatic revascularization via changes in the expression of PEDF and VEGFA, revealing potential targets for the prevention and treatment of PHLF. IMPACT AND IMPLICATIONS: In this study, we show that the balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution by promoting a shift from pigment epithelium-derived factor (PEDF) to vascular endothelial growth factor A (VEGFA) expression during hepatectomy- or ALLPS (associating liver partition and portal vein ligation for staged hepatectomy)-induced liver regeneration. We also identified serum PEDF/VEGFA index as a potential predictor of post-hepatectomy liver failure in patients who underwent hepatectomy. This study improves our understanding of how hepatocytes contribute to liver regeneration and provides new targets for the prevention and treatment of post-hepatectomy liver failure.


Assuntos
Falência Hepática , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Fator A de Crescimento do Endotélio Vascular , Estudos Retrospectivos , Células Endoteliais , Fígado/cirurgia , Hepatectomia/efeitos adversos , Hepatócitos/fisiologia , Veia Porta/cirurgia , Falência Hepática/etiologia , Ligadura , Fator de Transcrição GATA3 , Proteína 2 Modificadora da Atividade de Receptores
2.
Pathol Res Pract ; 243: 154383, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36827885

RESUMO

The transcriptional profile of adrenomedullin (AM), a new metastasis-related factor involved in hepatocellular carcinoma (HCC), and its specific receptors (CLR, RAMP1, RAMP3) were evaluated in liver tissues of HCV-positive HCC subjects undergoing liver transplantation (LR) and in donors (LD). AM and its specific receptor expression were also assessed in extracellular vesicles (EVs) secreted by tumorigenic (HepG2) and non-tumorigenic (WRL68) cells by Real-Time PCR. AM expression resulted significantly elevated in LR concerning LD (p = 0.0038) and, for the first time, significantly higher levels in HCC patients as a function of clinical severity (MELD score), were observed. RAMP3 and CLR expression increased in LR as a function of clinical severity while RAMP1 decreased. Positive correlations were found among AM, its receptors, and apoptotic markers. No AM mRNA expression difference was observed between HepG2 and WRL68 EVs. RAMP1 and RAMP3 resulted lower in HepG2 concerning WRL68 while significantly higher levels were observed for CLR. While results at tissue level characterize AM as a regulator of carcinogenesis-tumor progression, those obtained in EVs do not indicate AM as a target candidate, neither as a pathological biomarker nor as a marker involved in cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Carcinoma Hepatocelular/genética , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Neoplasias Hepáticas/genética , Linhagem Celular , Carcinogênese
3.
Cell Mol Biol (Noisy-le-grand) ; 69(14): 9-14, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279501

RESUMO

As the most common subtype of lung cancer, non-small cell lung cancer (NSCLC)is responsible for a large proportion of global cancer-caused deaths. The implication of long non-coding RNAs (lncRNAs) as tumor-suppressor or carcinogenic genes in NSCLC has been widely documented. Our study sought to investigate the performance of lncRNA RAMP2 antisense RNA1 (RAMP2-AS1) in NSCLC. GEPIA bioinformatics tool and RT-qPCR were applied for assessing the expression of RAMP2-AS1 and its neighboring gene receptor activity-modifying protein 2 (RAMP2) in NSCLC. Functional assays including CCK-8 assay, colony formation assay as well as caspase-3 activity analysis and Transwell invasion assays were applied for detecting the biological phenotypes of NSCLC cells. Interaction among RAMP2-AS1, RAMP2 and T-cell intracellular antigen 1cytotoxic granule associated RNA binding protein (TIA1) was evaluated by RNA immunoprecipitation and pulldown assays. We found that RAMP2-AS1 and RAMP2 were downregulated in NSCLC. Overexpression of RAMP2-AS1 hampered proliferation and invasion, whereas induced apoptosis of NSCLC cells. Mechanistically, RAMP2-AS1 interacted with TIA1 to stabilize the mRNA of RAMP2. In conclusion, we first uncovered that RAMP2-AS1 stabilized RAPM2 mRNA through TIA1 to inhibit the progression of NSCLC, providing new insight to improve the treatment efficacy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Movimento Celular/genética , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362188

RESUMO

Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.


Assuntos
Adrenomedulina , Hormônios Peptídicos , Gravidez , Feminino , Ratos , Humanos , Animais , Proteína 2 Modificadora da Atividade de Receptores , Células Endoteliais , Ratos Endogâmicos SHR , Géis
5.
Expert Opin Drug Discov ; 17(8): 839-848, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35733389

RESUMO

INTRODUCTION: Adrenomedullin (AM) is a peptide responsible for many physiological processes including vascular health and hormone regulation. Dysregulation of AM signaling can stimulate cancers by promoting proliferation, angiogenesis and metastasis. Two AM receptors contribute to tumor progression in different ways. Adrenomedullin-1 receptor (AM1R) regulates blood pressure and blocking AM signaling via AM1R would be clinically unacceptable. Therefore, antagonizing adrenomedullin-2 receptor (AM2R) presents as an avenue for anti-cancer drug development. AREAS COVERED: We review the literature to highlight AM's role in cancer as well as delineating the specific roles AM1R and AM2R mediate in the development of a pro-tumoral microenvironment. We highlight the importance of exploring the residue differences between the receptors that led to the development of first-in-class selective AM2R small molecule antagonists. We also summarize the current approaches targeting AM and its receptors, their anti-tumor effects and their limitations. EXPERT OPINION: As tool compounds, AM2R antagonists will allow the dissection of the functions of CGRPR (calcitonin gene-related peptide receptor), AM1R and AM2R, and has considerable potential as a first-in-class oncology therapy. Furthermore, the lack of detectable side effects and good drug-like pharmacokinetic properties of these AM2R antagonists support the promise of this class of compounds as potential anti-cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias , Adrenomedulina , Antineoplásicos/farmacologia , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Neoplasias/tratamento farmacológico , Proteína 2 Modificadora da Atividade de Receptores/química , Proteína 3 Modificadora da Atividade de Receptores/química , Receptores de Adrenomedulina/química , Microambiente Tumoral
6.
Exp Cell Res ; 416(2): 113139, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390315

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in women populations. METHODS: RAMP2-AS1 and CXCL11 expression in breast cancer tissues and cells were determined using RT-qPCR or Western blot. RIP analysis confirmed the interaction between DNMT1, DNMT3B and RAMP2-AS1. ChIP assay verified that RAMP2-AS1 recruited DNMT1 and DNMT3B to the promoter region of CXCL11. FISH detected the sub-localization of RAMP2-AS1 in breast cancer cells. Bisulfite sequencing PCR (BSP) tested the methylation level of CXCL11. The cell viability, proliferation, migration and apoptosis were assessed by CCK-8, colony formation, transwell and flow cytometry assays, respectively. IHC was performed to evaluate the expression of Ki67, CXCL11, MMP2 in tumor tissues. RESULTS: The level of RAMP2-AS1 was decreased in breast cancer tissues and cells, whereas CXCL11 was highly expressed. Patients with decreased RAMP2-AS1 had a poor prognosis. RAMP2-AS1 inhibited breast cancer cell malignant phenotype. Besides, RAMP2-AS1 regulated the methylation of CXCL11 by recruiting DNMT1 and DNMT3B to the promoter region of CXCL11. RAMP2-AS1 overexpression suppressed the malignant phenotype through CXCL11 and inhibited tumor growth in vivo. CONCLUSION: RAMP2-AS1 suppresses breast cancer malignant phenotype via DNMT1 and DNMT3B mediated inhibition of CXCL11.


Assuntos
Neoplasias da Mama , Quimiocina CXCL11 , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases , RNA Longo não Codificante , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , RNA Longo não Codificante/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , DNA Metiltransferase 3B
7.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558598

RESUMO

RATIONALE: Calcitonin gene-related peptide (CGRP) and its family members adrenomedullin (ADM) and adrenomedullin 2 (ADM2; also known as intermedin) support vascular adaptions in rat pregnancy. OBJECTIVE: This study aimed to assess the relaxation response of uterine artery (UA) for CGRP, ADM, and ADM2 in nonpregnant and pregnant women and identify the involved mechanisms. FINDINGS: (1) Segments of UA from nonpregnant women that were precontracted with U46619 (1µM) in vitro are insensitive to the hypotensive effects of CGRP, ADM, and ADM2; (2) CGRP, ADM, and ADM2 (0.1-100nM) dose dependently relax UA segments from pregnant women with efficacy for CGRP > ADM = ADM2; (3) the relaxation responses to CGRP, ADM, and ADM2 are differentially affected by the inhibitors of nitric oxide (NO) synthase (L-NAME), adenylyl cyclase (SQ22536), apamin, and charybdotoxin; (4) UA smooth muscle cells (UASMC) express mRNA for calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP)1 and RAMP2 but not RAMP3; (5) receptor heterodimer comprising CRLR/RAMP1 and CRLR/RAMP2 but not CRLR/RAMP3 is present in UA; (6) soluble fms-like tyrosine kinase (sFLT-1) and TNF-α treatment decrease the expression of RAMP1 mRNA (P < 0.05) in UASMC; and (7) sFLT-1 treatment impairs the association of CRLR with all 3 peptides while TNF-α inhibits the interaction of CGRP but not ADM or ADM2 with CRLR in UASMC (P < 0.05). CONCLUSIONS: Relaxation sensitivity of UA for CGRP, ADM, and ADM2 is increased during pregnancy via peptide-specific involvement of NO system and endothelium-derived hyperpolarizing factors; vascular disruptors such as sFLT-1 and TNFα adversely impact their receptor system in UASMC.


Assuntos
Adrenomedulina/fisiologia , Hormônios Peptídicos/fisiologia , Artéria Uterina/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Apamina , Charibdotoxina , Dimerização , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Mol Metab ; 53: 101296, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271220

RESUMO

OBJECTIVES: Receptor Activity-Modifying Protein 2 (RAMP2) is a chaperone protein which allosterically binds to and interacts with the glucagon receptor (GCGR). The aims of this study were to investigate the effects of RAMP2 on GCGR trafficking and signalling in the liver, where glucagon (GCG) is important for carbohydrate and lipid metabolism. METHODS: Subcellular localisation of GCGR in the presence and absence of RAMP2 was investigated using confocal microscopy, trafficking and radioligand binding assays in human embryonic kidney (HEK293T) and human hepatoma (Huh7) cells. Mouse embryonic fibroblasts (MEFs) lacking the Wiskott-Aldrich Syndrome protein and scar homologue (WASH) complex and the trafficking inhibitor monensin were used to investigate the effect of halted recycling of internalised proteins on GCGR subcellular localisation and signalling in the absence of RAMP2. NanoBiT complementation and cyclic AMP assays were used to study the functional effect of RAMP2 on the recruitment and activation of GCGR signalling mediators. Response to hepatic RAMP2 upregulation in lean and obese adult mice using a bespoke adeno-associated viral vector was also studied. RESULTS: GCGR is predominantly localised at the plasma membrane in the absence of RAMP2 and exhibits remarkably slow internalisation in response to agonist stimulation. Rapid intracellular accumulation of GCG-stimulated GCGR in cells lacking the WASH complex or in the presence of monensin indicates that activated GCGR undergoes continuous cycles of internalisation and recycling, despite apparent GCGR plasma membrane localisation up to 40 min post-stimulation. Co-expression of RAMP2 induces GCGR internalisation both basally and in response to agonist stimulation. The intracellular retention of GCGR in the presence of RAMP2 confers a bias away from ß-arrestin-2 recruitment coupled with increased activation of Gαs proteins at endosomes. This is associated with increased short-term efficacy for glucagon-stimulated cAMP production, although long-term signalling is dampened by increased receptor lysosomal targeting for degradation. Despite these signalling effects, only a minor disturbance of carbohydrate metabolism was observed in mice with upregulated hepatic RAMP2. CONCLUSIONS: By retaining GCGR intracellularly, RAMP2 alters the spatiotemporal pattern of GCGR signalling. Further exploration of the effects of RAMP2 on GCGR in vivo is warranted.


Assuntos
Hepatócitos/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptores de Glucagon/metabolismo , Linhagem Celular , Humanos , Transdução de Sinais
9.
Gen Comp Endocrinol ; 306: 113752, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711314

RESUMO

The adrenomedullin (AM) family is involved in diverse biological functions, including cardiovascular regulation and body fluid homeostasis, in multiple vertebrate lineages. The AM family consists of AM1, AM2, and AM5 in tetrapods, and the receptor for mammalian AMs has been identified as the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3. However, the receptors for AM in amphibians have not been identified. In this study, we identified the cDNAs encoding calcrl (clr), ramp2, and ramp3 receptor components from the western clawed frog (Xenopus tropicalis). Messenger RNAs of amphibian clr and ramp2 were highly expressed in the heart, whereas that of ramp3 was highly expressed in the whole blood. In HEK293T cells expressing clr-ramp2, cAMP response element luciferase (CRE-Luc) reporter activity was activated by am1. In HEK293T cells expressing clr-ramp3, CRE-Luc reporter activity was increased by the treatment with am2 at the lowest dose, but with am5 and am1 at higher dose. Our results provided new insights into the roles of AM family peptides through CLR-RAMP receptor complexes in the tetrapods.


Assuntos
Adrenomedulina , Hormônios Peptídicos , Receptores da Calcitonina , Adrenomedulina/genética , Animais , Proteína Semelhante a Receptor de Calcitonina/genética , Células HEK293 , Humanos , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores da Calcitonina/genética , Xenopus
10.
Am J Pathol ; 191(4): 652-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385343

RESUMO

Age-related macular degeneration (AMD) is a leading cause of visual impairment. Anti-vascular endothelial growth factor drugs used to treat AMD carry the risk of inducing subretinal fibrosis. We investigated the use of adrenomedullin (AM), a vasoactive peptide, and its receptor activity-modifying protein 2, RAMP2, which regulate vascular homeostasis and suppress fibrosis. The therapeutic potential of the AM-RAMP2 system was evaluated after laser-induced choroidal neovascularization (LI-CNV), a mouse model of AMD. Neovascular formation, subretinal fibrosis, and macrophage invasion were all enhanced in both AM and RAMP2 knockout mice compared with those in wild-type mice. These pathologic changes were suppressed by intravitreal injection of AM. Comprehensive gene expression analysis of the choroid after LI-CNV with or without AM administration revealed that fibrosis-related molecules, including Tgfb, Cxcr4, Ccn2, and Thbs1, were all down-regulated by AM. In retinal pigment epithelial cells, co-administration of transforming growth factor-ß and tumor necrosis factor-α induced epithelial-mesenchymal transition, which was also prevented by AM. Finally, transforming growth factor-ß and C-X-C chemokine receptor type 4 (CXCR4) inhibitors eliminated the difference in subretinal fibrosis between RAMP2 knockout and wild-type mice. These findings suggest the AM-RAMP2 system suppresses subretinal fibrosis in LI-CNV by suppressing epithelial-mesenchymal transition.


Assuntos
Adrenomedulina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Animais , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Fibrose/metabolismo , Humanos , Injeções Intravítreas/métodos , Camundongos Knockout , Proteína 2 Modificadora da Atividade de Receptores/genética , Epitélio Pigmentado da Retina/metabolismo
11.
FEBS Open Bio ; 11(1): 195-206, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227824

RESUMO

The calcitonin receptor (CTR) has a large extracellular domain (ECD) with multiple N-glycosylation sites. An asparagine (Asn)-linked N-acetylglucosamine (GlcNAc) of CTR ECD N130 was previously reported to enhance peptide hormone binding affinity for CTR ECD. CTR forms a complex with an accessory protein RAMP, and the RAMP:CTR complex gains affinity for peptide hormone amylin as the amylin receptor (AMY). Although N-glycosylation of AMY ECD was reported to enhance peptide hormone affinity, it remains underexplored which N-glycosites of AMY ECD are responsible for peptide affinity enhancement and it is unclear whether an Asn-linked GlcNAc of the N-glycosites plays a critical role. Here, I investigated the role of the Asn-linked GlcNAc of CTR N130 in the affinity of an antagonistic amylin analog (AC413) for AMY2 ECD (the RAMP2 ECD:CTR ECD complex). I used Endo H-treated CTR ECD in which N-glycans were trimmed to an Asn-linked GlcNAc on each of the N-glycosites. I incubated Endo H-treated CTR ECD with excess of glycan-free RAMP2 ECD to produce the RAMP2 ECD:CTR ECD complex. Using this coincubation system, I found that the RAMP2 ECD complex with Endo H-treated CTR ECD with N130D mutation showed a fourfold decrease in AC413 affinity compared with the RAMP2 ECD complex with Endo H-treated CTR ECD WT. In contrast, RAMP2 ECD N-glycosylation did not affect peptide binding affinity. These results indicate that the Asn-linked GlcNAc of CTR N130 is an important peptide affinity enhancer for AMY2 ECD and reveals a significant role of the Asn-linked GlcNAc in AMY2 function.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Acetilglucosamina/metabolismo , Asparagina/metabolismo , Glicosilação , Células HEK293 , Humanos , Domínios Proteicos , Receptores da Calcitonina/química
12.
Biophys Chem ; 267: 106477, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137565

RESUMO

The peptide hormone amylin receptor is a complex of the calcitonin receptor (CTR) and an accessory protein called receptor activity-modifying proteins (RAMPs). The soluble extracellular domain (ECD) of CTR is an important binding site of peptide hormone calcitonin. RAMPs also have an ECD and the association of CTR ECD with RAMP ECD enhances the affinity of peptide hormone amylin. However, the mechanism of how RAMP ECD association enhances amylin affinity remains elusive. Here, we report evidence supporting direct molecular interaction between an antagonistic amylin analog AC413 and RAMP2 ECD. We measured FITC-labeled peptide affinity for purified receptor ECD using fluorescence polarization (FP). We first found that RAMP2 ECD addition to maltose-binding protein (MBP)-tagged CTR ECD and an engineered MBP-tagged RAMP2 ECD-CTR ECD fusion protein (MBP-RAMP2-CTR ECD fusion) enhanced AC413 affinity. This suggests that these recombinant ECD systems represent functional amylin receptors. Interestingly, AC413 C-terminal residue Tyr25 (Y25) to Pro mutation eliminated its selective affinity for the MBP-RAMP2-CTR ECD fusion suggesting the critical role of the AC413 C-terminal residue in amylin receptor selectivity. Our structural model of the RAMP2 ECD:CTR ECD complex predicted molecular interaction of AC413 C-terminal residue Y25 with RAMP2 Glu101 (E101). Our FP peptide-binding assay showed that the RAMP2 E101A mutation of MBP-RAMP2-CTR ECD fusion decreased AC413 affinity by 7-fold, while the affinity of AC413 with the Y25P mutation was minimally changed. Consistently, AC413 binding affinity for the MBP-free RAMP2-CTR ECD fusion protein was also markedly decreased by the RAMP2 E101A mutation, while the affinity of AC413 with the Y25P mutation was moderately decreased. Together, our results support the molecular interaction between the AC413 C-terminal residue Y25 and RAMP2 E101 expanding our understanding of how the accessory protein RAMP2 enhances affinity of peptide hormone amylin for its receptor.


Assuntos
Polarização de Fluorescência , Peptídeos/química , Proteína 2 Modificadora da Atividade de Receptores/química , Animais , Humanos , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Modelos Moleculares , Peptídeos/genética , Ratos , Proteína 2 Modificadora da Atividade de Receptores/genética , Salmão , Alinhamento de Sequência
13.
Sci Rep ; 10(1): 16740, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028903

RESUMO

Chondrocyte apoptosis may have a pivotal role in the development of osteoarthritis. Interest has increased in the use of anti-apoptotic compounds to protect against osteoarthritis development. In this work, we investigated the effect of adrenomedullin (AM), a 52 amino-acid hormone peptide, and a 31 amino-acid truncated form, AM(22-52), on chondrocyte apoptosis. Bovine articular chondrocytes (BACs) were cultured under hypoxic conditions to mimic cartilage environment and then treated with Fas ligand (Fas-L) to induce apoptosis. The expression of AM and its calcitonin receptor-like receptor (CLR)/receptor activity-modifying protein (RAMP) (receptor/co-receptor) was assessed by immunostaining. We evaluated the effect of AM and AM(22-52) on Fas-L-induced chondrocyte apoptosis. FAS expression was appreciated by RT-qPCR and immunostainings. The expression of hypoxia-inducible factor 1α (HIF-1α), CLR and one co-receptor (RAMP2) was evidenced. With BACs under hypoxia, cyclic adenosine monophosphate production increased dose-dependently with AM stimulation. AM significantly decreased caspase-3 activity (mean 35% decrease; p = 0.03) as a marker of Fas-L-induced apoptosis. Articular chondrocytes treated with AM showed significantly reduced cell death, along with downregulated Fas expression and production, as compared with AM(22-52). AM decreased articular chondrocyte apoptosis by downregulating a Fas receptor. These findings may pave the way for novel therapeutic approaches in osteoarthritis.


Assuntos
Adrenomedulina/farmacologia , Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Proteína Ligante Fas/farmacologia , Fragmentos de Peptídeos/farmacologia , Adrenomedulina/metabolismo , Animais , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Cartilagem Articular/metabolismo , Bovinos , Condrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/metabolismo
14.
Pharmacol Res Perspect ; 8(3): e00595, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32529807

RESUMO

The corticotropin-releasing factor (CRF) receptors represent potential drug targets for the treatment of anxiety, stress, and other disorders. However, it is not known if endogenous CRF receptor agonists display biased signaling, how effective CRF receptor antagonists are at blocking different agonists and signaling pathways or how receptor activity-modifying proteins (RAMPs) effect these processes. This study aimed to address this by investigating agonist and antagonist action at CRF1 and CRF2 receptors. We used CRF1 and CRF2 receptor transfected Cos7 cells to assess the ability of CRF and urocortin (UCN) peptides to activate cAMP, inositol monophosphate (IP1 ), and extracellular signal-regulated kinase 1/2 signaling and determined the ability of antagonists to block agonist-stimulated cAMP and IP1 accumulation. The ability of RAMPs to interact with CRF receptors was also examined. At the CRF1 receptor, CRF and UCN1 activated signaling in the same manner. However, at the CRF2 receptor, UCN1 and UCN2 displayed similar signaling profiles, whereas CRF and UCN3 displayed bias away from IP1 accumulation over cAMP. The antagonist potency was dependent on the receptor, agonist, and signaling pathway. CRF1 and CRF2 receptors had no effect on RAMP1 or RAMP2 surface expression. The presence of biased agonism and agonist-dependent antagonism at the CRF receptors offers new avenues for developing drugs tailored to activate a specific signaling pathway or block a specific agonist. Our findings suggest that the already complex CRF receptor pharmacology may be underappreciated and requires further investigation.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Urocortinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Desenvolvimento de Medicamentos , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptores de Hormônio Liberador da Corticotropina/agonistas
15.
Am J Pathol ; 190(3): 711-722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32093901

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear. Consequently, we hypothesized that AM resolves hyperoxia-induced BPD and PH via endothelial nitric oxide synthase (NOS3). AM-sufficient (ADM+/+) or -deficient (ADM+/-) mice were exposed to normoxia or hyperoxia through postnatal days (PNDs) 1 to 14, and the hyperoxia-exposed mice were allowed to recover in normoxia for an additional 56 days. Lung injury and development and PH were quantified at different time points. Human pulmonary microvascular endothelial cells were also used to examine the effects of AM signaling on the NOS3 pathway and angiogenesis. Lung blood vessels and NOS3 expression decreased and the extent of hyperoxia-induced BPD and PH increased in ADM+/- mice compared with ADM+/+ mice. Hyperoxia-induced apoptosis and PH resolved by PND14 and PND70, respectively, in ADM+/+ mice but not in ADM+/- mice. Knockdown of ADM, calcitonin receptor-like receptor, and receptor activity-modifying protein 2 in vitro decreased NOS3 expression, nitric oxide generation, and angiogenesis. Furthermore, NOS3 knockdown abrogated the angiogenic effects of AM. Collectively, these results indicate that AM resolves hyperoxic lung injury via NOS3.


Assuntos
Adrenomedulina/farmacologia , Displasia Broncopulmonar/tratamento farmacológico , Hiperóxia/complicações , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/fisiopatologia , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais
16.
PLoS One ; 14(5): e0216996, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150417

RESUMO

CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are important neuropeptides and hormones for the regulation of neurotransmission, vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental development. These peptides signal through CLR/RAMP1, 2 and 3 receptor complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or ADM receptor, antagonists are being developed for the treatment of tumor growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2 analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the binding domain of this analog could have potent inhibitory activity on CLR/RAMP receptors. Consistent with this hypothesis, we showed that acylated truncated ADM/ADM2 analogs of 27-31 residues exhibit potent antagonistic activity toward CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity. Further truncation at the junctional region of these chimeric analogs led to the generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog (Antagonist 2-4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we showed (1) a lysine residue in the Antagonist 2-4 is important for enhancing the antagonistic activity, (2) an analog consisted of an ADM sequence motif and a 12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory activity, and (3) a chimeric analog consisted of a somatostatin analog and an ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors. Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses tumor growth/metastasis, further studies of these analogs, which presumably have better access to the tumor microenvironment and nerve endings at the trigeminal ganglion and synovial joints as compared to antibody-based therapies, may lead to the development of better anti-CGRP therapy and alternative antiangiogenesis therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs could be a promising strategy for the treatment of high-grade neuroendocrine tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor microenvironment.


Assuntos
Transtornos de Enxaqueca/tratamento farmacológico , Neoplasias/tratamento farmacológico , Hormônios Peptídicos/genética , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/antagonistas & inibidores , Aminoácidos/genética , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Proliferação de Células/efeitos dos fármacos , Humanos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/patologia , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/patologia , Domínios Proteicos/genética , Proteína 2 Modificadora da Atividade de Receptores/química , Proteína 2 Modificadora da Atividade de Receptores/genética , Microambiente Tumoral/efeitos dos fármacos
17.
Genet Med ; 21(10): 2345-2354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31000793

RESUMO

PURPOSE: Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness worldwide and mutations in known genes can only explain 5-6% of POAG. This study was conducted to identify novel POAG-causing genes and explore the pathogenesis of this disease. METHODS: Exome sequencing was performed in a Han Chinese cohort comprising 398 sporadic cases with POAG and 2010 controls, followed by replication studies by Sanger sequencing. A heterozygous Ramp2 knockout mouse model was generated for in vivo functional study. RESULTS: Using exome sequencing analysis and replication studies, we identified pathogenic variants in receptor activity-modifying protein 2 (RAMP2) within three genetically diverse populations (Han Chinese, German, and Indian). Six heterozygous RAMP2 pathogenic variants (Glu39Asp, Glu54Lys, Phe103Ser, Asn113Lysfs*10, Glu143Lys, and Ser171Arg) were identified among 16 of 4763 POAG patients, whereas no variants were detected in any exon of RAMP2 in 10,953 control individuals. Mutant RAMP2s aggregated in transfected cells and resulted in damage to the AM-RAMP2/CRLR-cAMP signaling pathway. Ablation of one Ramp2 allele led to cAMP reduction and retinal ganglion cell death in mice. CONCLUSION: This study demonstrated that disruption of RAMP2/CRLR-cAMP axis could cause POAG and identified a potential therapeutic intervention for POAG.


Assuntos
Glaucoma de Ângulo Aberto/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Animais , Povo Asiático , Células COS , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , China , Chlorocebus aethiops , Estudos de Coortes , AMP Cíclico/genética , Predisposição Genética para Doença/genética , Glaucoma de Ângulo Aberto/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Sequenciamento do Exoma/métodos
18.
Ren Fail ; 41(1): 159-166, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30931679

RESUMO

Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP) superfamily and a pro-angiogenic factor. In the present study, we identified activation of the Wnt/ß-catenin signaling pathway by IMD. Adding CoCl2 HUVECs was used to establish an in vitro model. The migration of HUVECs was measured by wound healing assays and transwell migration assays. Capillary formation was measured using tube formation assays. Immunocytochemistry (ICC) analysis was used to evaluate VEGF and RAMP2 expression in HUVECs. The relevant signaling molecules were detected with western blot. Our study shows that IMD could promote H/R impaired HUVECs migration and tube formation in vitro. On the other hand, inhibition of Wnt/ß-catenin signaling led to the suppression of this promotion of migration and tube formation. This result suggests that Wnt/ß-catenin signaling is correlated to IMD induced angiogenesis. Analysis of results from ICC assays indicated that IMD works through increasing levels of VEGF and RAMP2. Meanwhile, the Wnt/ß-catenin signaling specific inhibitor IWR-1-endo was shown to down-regulate VEGF and RAMP2 expression. Western blot results further confirmed the signaling mechanism by which IMD promotes angiogenesis. Thus, Wnt/ß-catenin signaling plays an important role in IMD induced neovascularization. The data further suggest that the PI3K axis contributes positively downstream.


Assuntos
Neovascularização Fisiológica , Hormônios Peptídicos/metabolismo , Traumatismo por Reperfusão/patologia , Via de Sinalização Wnt/fisiologia , Linhagem Celular , Cobalto/toxicidade , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidas/farmacologia , Quinolinas/farmacologia , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Traumatismo por Reperfusão/induzido quimicamente , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
19.
BMC Cancer ; 19(1): 157, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777055

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive type of primary brain cancer. With median survival of less than 15 months, identification and validation of new GBM therapeutic targets is of critical importance. RESULTS: In this study we tested expression and performed pharmacological characterization of the calcitonin receptor (CTR) as well as other members of the calcitonin family of receptors in high-grade glioma (HGG) cell lines derived from individual patient tumours, cultured in defined conditions. Previous immunohistochemical data demonstrated CTR expression in GBM biopsies and we were able to confirm CALCR (gene encoding CTR) expression. However, as assessed by cAMP accumulation assay, only one of the studied cell lines expressed functional CTR, while the other cell lines have functional CGRP (CLR/RAMP1) receptors. The only CTR-expressing cell line (SB2b) showed modest coupling to the cAMP pathway and no activation of other known CTR signaling pathways, including ERK1/2 and p38 MAP kinases, and Ca2+ mobilization, supportive of low cell surface receptor expression. Exome sequencing data failed to account for the discrepancy between functional data and expression on the cell lines that do not respond to calcitonin(s) with no deleterious non-synonymous polymorphisms detected, suggesting that other factors may be at play, such as alternative splicing or rapid constitutive receptor internalisation. CONCLUSIONS: This study shows that GPCR signaling can display significant variation depending on cellular system used, and effects seen in model recombinant cell lines or tumour cell lines are not always reproduced in a more physiologically relevant system and vice versa.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Glioblastoma/mortalidade , Humanos , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Transdução de Sinais , Análise de Sobrevida , Transcriptoma , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Peptides ; 111: 47-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577955

RESUMO

Adrenomedullin (AM), a peptide isolated from an extract of human pheochromocytoma, comprises 52 amino acids with an intramolecular disulfide bond and amidation at the carboxy-terminus. AM is present in various tissues and organs in rodents and humans, including the heart. The peptide concentration increases with cardiac hypertrophy, acute myocardial infarction, and overt heart failure in the plasma and the myocardium. The principal function of AM in the cardiovascular system is the regulation of the vascular tone by vasodilation and natriuresis via cyclic adenosine monophosphate-dependent or -independent mechanism. In addition, AM may possess unique properties that inhibit aldosterone secretion, oxidative stress, apoptosis, and stimulation of angiogenesis, resulting in the protection of the structure and function of the heart. The AM receptor comprises a complex between calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 2 or 3, and the AM-CLR/RAMP2 system is essential for heart development during embryogenesis. Small-scale clinical trials have proven the efficacy and safety of recombinant AM peptide therapy for heart failure. Gene delivery and a modified AM peptide that prolongs the half-life of the native peptide could be an innovative method to improve the efficacy and benefit of AM in clinical settings. In this review, we focus on the pathophysiological roles of AM and its receptor system in the heart and describe the advances in AM and proAM-derived peptides as diagnostic biomarkers as well as the therapeutic application of AM and modified AM for cardioprotection.


Assuntos
Adrenomedulina/metabolismo , Animais , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA