Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Cell Commun Signal ; 22(1): 412, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180081

RESUMO

BACKGROUND: Dysregulation of iron metabolism is implicated in malignant transformation, cancer progression, and therapeutic resistance. Here, we demonstrate that iron regulatory protein 2 (IRP2) preferentially regulates iron metabolism and promotes tumor growth in colorectal cancer (CRC). METHODS: IRP2 knockdown and knockout cells were generated using RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 methodologies, respectively. Cell viability was evaluated using both CCK-8 assay and cell counting techniques. Furthermore, IRP2 inhibition was determined by surface plasmon resonance (SPR) and RNA immunoprecipitation (IP). The suppressive effects of IRP2 were also corroborated in both organoid and mouse xenograft models, providing a comprehensive validation of IRP2's role. RESULTS: We have elucidated the role of IRP2 as a preferential regulator of iron metabolism, actively promoting tumorigenesis within CRC. Elevated levels of IRP2 expression in patient samples are correlated with diminished overall survival, thereby reinforcing its potential role as a prognostic biomarker. The functional suppression of IRP2 resulted in a pronounced delay in tumor growth. Building on this proof of concept, we have developed IRP2 inhibitors that significantly reduce IRP2 expression and hinder its interaction with iron-responsive elements in key iron-regulating proteins, such as ferritin heavy chain 1 (FTH1) and transferrin receptor (TFRC), culminating in iron depletion and a marked reduction in CRC cell proliferation. Furthermore, these inhibitors are shown to activate the AMPK-ULK1-Beclin1 signaling cascade, leading to cell death in CRC models. CONCLUSIONS: Collectively, these findings highlight the therapeutic potential of targeting IRP2 to exploit the disruption of iron metabolism in CRC, presenting a strategic advancement in addressing a critical area of unmet clinical need.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Proteína 2 Reguladora do Ferro , Ferro , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Animais , Ferro/metabolismo , Camundongos , Linhagem Celular Tumoral , Camundongos Nus
2.
Commun Biol ; 7(1): 1011, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154074

RESUMO

The acquisition of ectopic fibroblast growth factor receptor 1 (FGFR1) expression is well documented in prostate cancer (PCa) progression, notably in conferring tumor growth advantage and facilitating metastasis. However, how FGFR1 contributes to PCa progression is not fully revealed. Here we report that ectopic FGFR1 in PCa cells promotes transferrin receptor 1 (TFR1) expression and expands the labile iron pool (LIP), and vice versa. We further demonstrate that FGFR1 stabilizes iron regulatory proteins 2 (IRP2) and therefore, upregulates TFR1 via promoting IRP2 binding to the IRE of TFR1. Deletion of FGFR1 in DU145 cells decreases the LIP, which potentiates the anticancer efficacy of iron chelator. Intriguingly, forced expression of IRP2 in FGFR1 depleted cells reinstates TFR1 expression and LIP, subsequently restoring the tumorigenicity of the cells. Together, our results here unravel a new mechanism by which FGFR1 drives PCa progression and suggest a potential novel target for PCa therapy.


Assuntos
Homeostase , Proteína 2 Reguladora do Ferro , Ferro , Neoplasias da Próstata , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Humanos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Linhagem Celular Tumoral , Animais , Proteólise , Camundongos , Regulação Neoplásica da Expressão Gênica , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Antígenos CD
3.
Proc Natl Acad Sci U S A ; 121(31): e2321929121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047035

RESUMO

Colorectal cancer and Crohn's disease patients develop pyogenic liver abscesses due to failures of immune cells to fight off bacterial infections. Here, we show that mice lacking iron regulatory protein 2 (Irp2), globally (Irp2-/-) or myeloid cell lineage (Lysozyme 2 promoter-driven, LysM)-specifically (Irp2ΔLysM), are highly susceptible to liver abscesses when the intestinal tissue was injured with dextran sodium sulfate treatment. Further studies demonstrated that Irp2 is required for lysosomal acidification and biogenesis, both of which are crucial for bacterial clearance. In Irp2-deficient liver tissue or macrophages, the nuclear location of transcription factor EB (Tfeb) was remarkably reduced, leading to the downregulation of Tfeb target genes that encode critical components for lysosomal biogenesis. Tfeb mislocalization was reversed by hypoxia-inducible factor 2 inhibitor PT2385 and, independently, through inhibition of lactic acid production. These experimental findings were confirmed clinically in patients with Crohn's disease and through bioinformatic searches in databases from Crohn's disease or ulcerative colitis biopsies showing loss of IRP2 and transcription factor EB (TFEB)-dependent lysosomal gene expression. Overall, our study highlights a mechanism whereby Irp2 supports nuclear translocation of Tfeb and lysosomal function, preserving macrophage antimicrobial activity and protecting the liver against invading bacteria during intestinal inflammation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Doença de Crohn , Proteína 2 Reguladora do Ferro , Lisossomos , Macrófagos , Animais , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos , Humanos , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia
4.
Free Radic Biol Med ; 222: 386-396, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936518

RESUMO

Disturbance in iron homeostasis has been described in Parkinson's disease (PD), in which iron regulatory protein 2 (IRP2) plays a crucial role. IRP2 deletion resulted in the misregulation of iron metabolism and subsequent neurodegeneration. However, growing evidence showed that the levels of IRP2 were increased in the substantia nigra (SN) in MPTP-induced PD mice. To further clarify the role of increased IRP2 in PD, we developed IRP2-overexpressed mice by microinjecting AAV-Ireb2 in the SN. These mice showed decreased motor ability, abnormal gait and anxiety. Iron deposits induced by increased TFR1 and dopaminergic neuronal loss were observed in the SN. When these mice were treated with MPTP, exacerbated dyskinesia and dopaminergic neuronal loss were observed. In addition, TP53 was post-transcriptionally upregulated by IRP2 binding to the iron regulated element (IRE) in its 3' untranslated region. This resulted in increased lipid peroxidation levels and induced ferroptosis through the SLC7A11-ALOX12 pathway, which was independent of GPX4. This study revealed that IRP2 homeostasis in the SN was critical for PD progression and clarified the molecular mechanism of ferroptosis caused by IRP2.


Assuntos
Ferroptose , Proteína 2 Reguladora do Ferro , Doença de Parkinson , Substância Negra , Proteína Supressora de Tumor p53 , Animais , Ferroptose/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ferro/metabolismo , Transdução de Sinais , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Peroxidação de Lipídeos
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732071

RESUMO

Iron regulatory proteins (IRP1 and IRP2) are the master regulators of mammalian iron homeostasis. They bind to the iron-responsive elements (IREs) of the transcripts of iron-related genes to regulate their expression, thereby maintaining cellular iron availability. The primary method to measure the IRE-binding activity of IRPs is the electrophoresis mobility shift assay (EMSA). This method is particularly useful for evaluating IRP1 activity, since IRP1 is a bifunctional enzyme and its protein levels remain similar during conversion between the IRE-binding protein and cytosolic aconitase forms. Here, we exploited a method of using a biotinylated-IRE probe to separate IRE-binding IRPs followed by immunoblotting to analyze the IRE-binding activity. This method allows for the successful measurement of IRP activity in cultured cells and mouse tissues under various iron conditions. By separating IRE-binding IRPs from the rest of the lysates, this method increases the specificity of IRP antibodies and verifies whether a band represents an IRP, thereby revealing some previously unrecognized information about IRPs. With this method, we showed that the S711-phosphorylated IRP1 was found only in the IRE-binding form in PMA-treated Hep3B cells. Second, we found a truncated IRE-binding IRP2 isoform that is generated by proteolytic cleavage on sites in the 73aa insert region of the IRP2 protein. Third, we found that higher levels of SDS, compared to 1-2% SDS in regular loading buffer, could dramatically increase the band intensity of IRPs in immunoblots, especially in HL-60 cells. Fourth, we found that the addition of SDS or LDS to cell lysates activated protein degradation at 37 °C or room temperature, especially in HL-60 cell lysates. As this method is more practical, sensitive, and cost-effective, we believe that its application will enhance future research on iron regulation and metabolism.


Assuntos
Proteína 1 Reguladora do Ferro , Ferro , Humanos , Animais , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Camundongos , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Biotinilação , Elementos de Resposta , Fosforilação , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Ligação Proteica , Linhagem Celular Tumoral
6.
Genome Biol ; 25(1): 128, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773499

RESUMO

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Assuntos
Ritmo Circadiano , Proteína 1 Reguladora do Ferro , Proteína 2 Reguladora do Ferro , Ferro , Fígado , RNA Mensageiro , Animais , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Ritmo Circadiano/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , Fígado/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica , Elementos de Resposta , Camundongos Endogâmicos C57BL , Masculino , Comportamento Alimentar
7.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301068

RESUMO

Acute bacterial orchitis (AO) is a prevalent cause of intrascrotal inflammation, often resulting in sub- or infertility. A frequent cause eliciting AO is uropathogenic Escherichia coli (UPEC), a gram negative pathovar, characterized by the expression of various iron acquisition systems to survive in a low-iron environment. On the host side, iron is tightly regulated by iron regulatory proteins 1 and 2 (IRP1 and -2) and these factors are reported to play a role in testicular and immune cell function; however, their precise role remains unclear. Here, we showed in a mouse model of UPEC-induced orchitis that the absence of IRP1 results in less testicular damage and a reduced immune response. Compared with infected wild-type (WT) mice, testes of UPEC-infected Irp1-/- mice showed impaired ERK signaling. Conversely, IRP2 deletion led to a stronger inflammatory response. Notably, differences in immune cell infiltrations were observed among the different genotypes. In contrast with WT and Irp2-/- mice, no increase in monocytes and neutrophils was detected in testes of Irp1-/- mice upon UPEC infection. Interestingly, in Irp1-/- UPEC-infected testes, we observed an increase in a subpopulation of macrophages (F4/80+CD206+) associated with antiinflammatory and wound-healing activities compared with WT. These findings suggest that IRP1 deletion may protect against UPEC-induced inflammation by modulating ERK signaling and dampening the immune response.


Assuntos
Proteína 1 Reguladora do Ferro , Proteína 2 Reguladora do Ferro , Orquite , Animais , Masculino , Camundongos , Inflamação , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Orquite/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo
8.
Nutrients ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904126

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved mechanisms to evade the host's nutritional immunity and thus promote bacterial growth by using the iron in the host. However, the detailed mechanisms of S. Typhimurium induce dysregulation of iron homeostasis and whether Lactobacillus johnsonii L531 can alleviate the iron metabolism disorder caused by S. Typhimurium has not been fully elucidated. Here, we show that S. Typhimurium activated the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1, and divalent metal transporter protein 1 and suppressed the expression of iron exporter ferroportin, which resulted in iron overload and oxidative stress, inhibiting the key antioxidant proteins NF-E2-related factor 2, Heme Oxygenase-1, and Superoxide Dismutase in vitro and in vivo. L. johnsonii L531 pretreatment effectively reversed these phenomena. IRP2 knockdown inhibited iron overload and oxidative damage induced by S. Typhimurium in IPEC-J2 cells, while IRP2 overexpression promoted iron overload and oxidative damage caused by S. Typhimurium. Interestingly, the protective effect of L. johnsonii L531 on iron homeostasis and antioxidant function was blocked following IRP2 overexpression in Hela cells, demonstrating that L. johnsonii L531 attenuates disruption of iron homeostasis and consequent oxidative damage caused by S. Typhimurium via the IRP2 pathway, which contributes to the prevention of S. Typhimurium diarrhea in mice.


Assuntos
Sobrecarga de Ferro , Lactobacillus johnsonii , Salmonella enterica , Humanos , Animais , Camundongos , Salmonella typhimurium , Proteína 2 Reguladora do Ferro/metabolismo , Lactobacillus johnsonii/metabolismo , Antioxidantes/farmacologia , Células HeLa , Sorogrupo , Estresse Oxidativo , Ferro/metabolismo , Diarreia , Homeostase
9.
J Exp Clin Cancer Res ; 42(1): 5, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600258

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a multifactor-driven malignant tumor with rapid progression, which causes the difficulty to substantially improve the prognosis of HCC. Limited understanding of the mechanisms in HCC impedes the development of efficacious therapies. Despite Krüpple-Like factors (KLFs) were reported to be participated in HCC pathogenesis, the function of KLF14 in HCC remains largely unexplored. METHODS: We generated KLF14 overexpressed and silenced liver cancer cells, and nude mouse xenograft models for the in vitro and in vivo study. Luciferase reporter assay, ChIP-qPCR, Co-IP, immunofluorescence were performed for mechanism research. The expression of KLF14 in HCC samples was analyzed by quantitative RT-PCR, Western blotting, and immunohistochemistry (IHC) analysis. RESULTS: KLF14 was significantly downregulated in human HCC tissues, which was highly correlated with poor prognosis. Inhibition of KLF14 promoted liver cancer cells proliferation and overexpression of KLF14 suppressed cells growth. KLF14 exerts its anti-tumor function by inhibiting Iron-responsive element-binding protein 2 (IRP2), which then causes transferrin receptor-1(TfR1) downregulation and ferritin upregulation on the basis of IRP-IREs system. This then leading to cellular iron deficiency and HCC cells growth suppression in vitro and in vivo. Interestingly, KLF14 suppressed the transcription of IRP2 via recruiting SIRT1 to reduce the histone acetylation of the IRP2 promoter, resulting in iron depletion and cell growth suppression. More important, we found fluphenazine is an activator of KLF14, inhibiting HCC cells growth through inducing iron deficiency. CONCLUSION: KLF14 acts as a tumor suppressor which inhibits the proliferation of HCC cells by modulating cellular iron metabolism via the repression of IRP2. We identified Fluphenazine, as an activator of KLF14, could be a potential compound for HCC therapy. Our findings therefore provide an innovative insight into the pathogenesis of HCC and a promising therapeutic target.


Assuntos
Carcinoma Hepatocelular , Proteína 2 Reguladora do Ferro , Ferro , Fatores de Transcrição Kruppel-Like , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Flufenazina , Regulação Neoplásica da Expressão Gênica , Homeostase , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
10.
J Transl Med ; 21(1): 50, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703130

RESUMO

BACKGROUND: Although ß-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS: High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated ß-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of ß-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify ß-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in ß-catenin-activated cells. Online databases were analyzed for correlation between ß-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS: Iron chelators were identified as selective inhibitors against ß-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed ß-catenin-activated cell proliferation and tumor formation in mice. Mechanically, ß-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired ß-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced ß-catenin-associated cell viability and tumor formation. CONCLUSIONS: ß-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of ß-catenin-potentiated cancer.


Assuntos
Proteína 2 Reguladora do Ferro , Neoplasias , Camundongos , Humanos , Animais , Proteína 2 Reguladora do Ferro/metabolismo , beta Catenina/metabolismo , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Quelantes de Ferro/farmacologia , Mitocôndrias/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293552

RESUMO

We report herein a novel mechanism, unraveled by proteomics and validated by in vitro and in vivo studies, of the aberrant aging-associated upregulation of ovarian transferrin and ferritin in rat ovaries. The ovarian mass and serum estradiol titer plummeted while the ovarian labile ferrous iron and total iron levels escalated with age in rats. Oxidative stress markers, such as nitrite/nitrate, 3-nitrotyrosine, and 4-hydroxy-2-nonenal, accumulated in the aging ovaries due to an aberrant upregulation of the ovarian transferrin, ferritin light/heavy chains, and iron regulatory protein 2(IRP2)-mediated transferrin receptor 1 (TfR1). Ferritin inhibited estradiol biosynthesis in ovarian granulosa cells in vitro via the upregulation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p65/p50-induced oxidative and inflammatory factor inducible nitric oxide synthase (iNOS). An in vivo study demonstrated how the age-associated activation of NF-κB induced the upregulation of iNOS and the tumor necrosis factor α (TNFα). The downregulation of the keap1-mediated nuclear factor erythroid 2-related factor 2 (Nrf2), that induced a decrease in glutathione peroxidase 4 (GPX4), was observed. The aberrant transferrin and ferritin upregulation triggered an iron accumulation via the upregulation of an IRP2-induced TfR1. This culminates in NF-κB-iNOS-mediated ovarian oxi-inflamm-aging and serum estradiol decrement in naturally aging rats. The iron accumulation and the effect on ferroptosis-related proteins including the GPX4, TfR1, Nrf2, Keap1, and ferritin heavy chain, as in testicular ferroptosis, indicated the triggering of ferroptosis. In young rats, an intraovarian injection of an adenovirus, which expressed iron regulatory proteins, upregulated the ovarian NF-κB/iNOS and downregulated the GPX4. These novel findings have contributed to a prompt translational research on the ovarian aging-associated iron metabolism and aging-associated ovarian diseases.


Assuntos
Ferroptose , NF-kappa B , Ratos , Animais , Feminino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ferritinas/metabolismo , Regulação para Cima , Nitritos/metabolismo , Transferrina/metabolismo , Estradiol/metabolismo , Nitratos/metabolismo , Ovário/metabolismo , Apoferritinas/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Envelhecimento , Estresse Oxidativo , Ferro/metabolismo , Receptores da Transferrina/metabolismo
12.
Oxid Med Cell Longev ; 2022: 6520789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720183

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is an inevitable result of liver surgery. Steatotic livers are extremely sensitive to IRI and have worse tolerance. Ferroptosis is considered to be one of the main factors of organ IRI. This study is aimed at exploring the role of ferroptosis in the effect of heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) on steatotic liver IRI and its mechanism. An IRI model of a steatotic liver and a hypoxia reoxygenation (HR) model of steatotic hepatocytes (SHPs) were established. Rat BMMSCs were extracted and transfected with the Ho1 gene to establish HO-1/BMMSCs, and their exosomes were extracted by ultracentrifugation. Ireb2 was knocked down to verify its role in ferroptosis and cell injury in SHP-HR. Public database screening combined with quantitative real-time reverse transcription PCR identified microRNAs (miRNAs) targeting Ireb2 in HO-1/BMMSCs exosomes. miR-29a-3p mimic and inhibitor were used for functional verification experiments. Liver function, histopathology, terminal deoxynulceotidyl transferase nick-end-labeling staining, cell viability, mitochondrial membrane potential, and cell death were measured to evaluate liver tissue and hepatocyte injury. Ferroptosis was assessed by detecting the levels of IREB2, Fe2+, malondialdehyde, glutathione, lipid reactive oxygen species, glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2 mRNA, and mitochondrial morphology. The results revealed that HO-1/BMMSCs improved liver tissue and hepatocyte injury and suppressed ferroptosis in vivo and in vitro. The expression of IREB2 was increased in steatotic liver IRI and SHP-HR. Knocking down Ireb2 reduced the level of Fe2+ and inhibited ferroptosis. HO-1/BMMSC exosomes reduced the expression of IREB2 and inhibited ferroptosis and cell damage. Furthermore, we confirmed high levels of miR-29a-3p in HO-1/BMMSCs exosomes. Overexpression of miR-29a-3p downregulated the expression of Ireb2 and inhibited ferroptosis. Downregulation of miR-29a-3p blocked the protective effect of HO-1/BMMSC exosomes on SHP-HR cell injury. In conclusion, ferroptosis plays an important role in HO-1/BMMSC-mediated alleviation of steatotic liver IRI. HO-1/BMMSCs could suppress ferroptosis by targeting Ireb2 via the exosomal transfer of miR-29a-3p.


Assuntos
Exossomos , Fígado Gorduroso , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose , Exossomos/metabolismo , Fígado Gorduroso/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
13.
Bioengineered ; 13(5): 12021-12029, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35599631

RESUMO

Colorectal cancer (CRC) is the most common malignant tumor occurred in digestive system. However, the prognosis of CRC patients is poor. Therefore, it is urgent to illuminate the mechanism suppressing CRC and explore novel targets or therapies for CRC treatment. MicroRNAs (miRNAs) are a class of non-coding RNAs with a length of 20-23 nucleotides encoded by endogenous genes, which are associated with the development of a variety of cancers, including CRC. Studies have shown that miR-19a is identified as oncogenic miRNA and promotes the proliferation, migration and invasion of CRC cells. However, the relationship between miR-19a and ferroptosis in CRC remains unknown. Here, we reported that iron-responsive element-binding protein 2 (IREB2), as an inducer of ferroptosis, was negatively regulated by miR-19a. IREB2 is a direct target of miR-19a. In addition, ferroptosis was suppressed by miR-19a through inhibiting IREB2. Thus, we proposed a novel mechanism of ferroptosis mediated by miR-19a in CRC cells, which could give rise to a new strategy for the therapy of CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , Proteína 2 Reguladora do Ferro , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Ferroptose/genética , Humanos , Proteína 2 Reguladora do Ferro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562883

RESUMO

Iron homeostasis disruption has increasingly been implicated in various neurological disorders. In this review, we present an overview of our current understanding of iron metabolism in the central nervous system. We examine the consequences of both iron accumulation and deficiency in various disease contexts including neurodegenerative, neurodevelopmental, and neuropsychological disorders. The history of animal models of iron metabolism misregulation is also discussed followed by a comparison of three patients with a newly discovered neurodegenerative disorder caused by mutations in iron regulatory protein 2.


Assuntos
Distúrbios do Metabolismo do Ferro , Doenças Neurodegenerativas , Animais , Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo
15.
Cell Death Dis ; 13(4): 418, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490179

RESUMO

Iron deposits are neuropathological hallmark of Parkinson's disease (PD). Iron regulatory protein 2 (IRP2) is a key factor in regulating brain iron homeostasis. Although two ubiquitin ligases that promote IRP2 degradation have been identified, the deubiquitylase for stabilization of IRP2 in PD remains undefined. Here, we report OTUD3 (OTU domain-containing protein 3) functions as a deubiquitylase for IRP2, interacts with IRP2 in the cytoplasm, de-polyubiquitylates, and stabilizes IRP2 protein in an iron-independent manner. Depletion of OTUD3 results in a disorder of iron metabolism. OTUD3 knockout mice display nigral iron accumulation, motor deficits, and nigrostriatal dopaminergic neurodegeneration, which resembles the pathology of PD. Consistently, decreased levels of OTUD3 are detected in transgenic PD mice expressing A53T mutant of human α-synuclein. Five single nucleotide polymorphism mutations of OTUD3 are present in cases of sporadic PD or controls, although no significant associations of OTUD3 SNPs with sporadic PD are detected. Taken together, these findings demonstrate that OTUD3 is a bona fide deubiquitylase for IRP2 and plays a critical role in the nigral iron deposits in PD.


Assuntos
Proteína 2 Reguladora do Ferro/metabolismo , Doença de Parkinson , Proteases Específicas de Ubiquitina/metabolismo , Animais , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
16.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462321

RESUMO

STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Humanos , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais , Coesinas
17.
Blood ; 138(16): 1490-1503, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34265052

RESUMO

Extracellular vesicles (EVs) transfer functional molecules between cells. CD63 is a widely recognized EV marker that contributes to EV secretion from cells. However, the regulation of its expression remains largely unknown. Ferritin is a cellular iron storage protein that can also be secreted by the exosome pathway, and serum ferritin levels classically reflect body iron stores. Iron metabolism-associated proteins such as ferritin are intricately regulated by cellular iron levels via the iron responsive element-iron regulatory protein (IRE-IRP) system. Herein, we present a novel mechanism demonstrating that the expression of the EV-associated protein CD63 is under the regulation of the IRE-IRP system. We discovered a canonical IRE in the 5' untranslated region of CD63 messenger RNA that is responsible for regulating its expression in response to increased iron. Cellular iron loading caused a marked increase in CD63 expression and the secretion of CD63+ EVs from cells, which were shown to contain ferritin-H and ferritin-L. Our results demonstrate that under iron loading, intracellular ferritin is transferred via nuclear receptor coactivator 4 (NCOA4) to CD63+ EVs that are then secreted. Such iron-regulated secretion of the major iron storage protein ferritin via CD63+ EVs, is significant for understanding the local cell-to-cell exchange of ferritin and iron.


Assuntos
Apoferritinas/metabolismo , Vesículas Extracelulares/metabolismo , Ferritinas/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Oxirredutases/metabolismo , Tetraspanina 30/metabolismo , Apoferritinas/genética , Linhagem Celular , Vesículas Extracelulares/genética , Ferritinas/genética , Inativação Gênica , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Oxirredutases/genética , Transporte Proteico , RNA Mensageiro/genética , Tetraspanina 30/genética , Regulação para Cima
18.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525417

RESUMO

Evidence is reviewed for the role of glutathione in providing a ligand for the cytosolic iron pool. The possibility of histidine and carnosine forming ternary complexes with iron(II)glutathione is discussed and the physiological significance of these interactions considered. The role of carnosine in muscle, brain, and kidney physiology is far from established and evidence is presented that the iron(II)-binding capability of carnosine relates to this role.


Assuntos
Carnosina/metabolismo , Glutationa/metabolismo , Histidina/metabolismo , Quelantes de Ferro/metabolismo , Ferro/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Rim/citologia , Rim/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/citologia , Músculos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
J Biol Chem ; 296: 100452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631196

RESUMO

The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the posttranscriptional levels. However, IRP/IRE-dependent iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon ß3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism are a critical determinant for the thermogenic function of adipocytes.


Assuntos
Aconitato Hidratase/metabolismo , Adipócitos/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Células 3T3-L1 , Aclimatação , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular , Homeostase , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Transdução de Sinais
20.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096618

RESUMO

Iron is essential for energy metabolism, and states of iron deficiency or excess are detrimental for organisms and cells. Therefore, iron and carbohydrate metabolism are tightly regulated. Serum iron and glucose levels are subjected to hormonal regulation by hepcidin and insulin, respectively. Hepcidin is a liver-derived peptide hormone that inactivates the iron exporter ferroportin in target cells, thereby limiting iron efflux to the bloodstream. Insulin is a protein hormone secreted from pancreatic ß-cells that stimulates glucose uptake and metabolism via insulin receptor signaling. There is increasing evidence that systemic, but also cellular iron and glucose metabolic pathways are interconnected. This review article presents relevant data derived primarily from mouse models and biochemical studies. In addition, it discusses iron and glucose metabolism in the context of human disease.


Assuntos
Glucose/metabolismo , Ferro/metabolismo , Síndrome Metabólica/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Metabolômica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA