RESUMO
Mast cells (MCs) possess numerous potent inflammatory mediators and undergo differential regulation in response to antigen (Ag) stimulation. Among the regulatory systems governing secretory responses, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in facilitating granule-plasma membrane fusion and subsequent secretion. Our previous investigation documented the involvement of vesicle-associated membrane protein 3 (VAMP3) in regulating cytokine secretions in RBL-2H3 cells, a model for MC IgE-mediated responses. In addition to VAMP3, VAMP7 is expressed in MCs, but its functional role remains elusive. The present study seeks to explore VAMP7-specific regulatory mechanisms in MCs, shedding light on one of the mechanisms governing heterogeneous secretory responses in these cells. Murine bone marrow-derived mast cells (BMMCs) were examined to analyze the subcellular distribution of inflammatory mediators, specifically TNFα, CCL2, and histamine, and VAMPs (i.e., VAMP3, VAMP7, and VAMP8). Immunocytochemistry and the transient expression of fluorescent protein-conjugated target proteins were used to discern the distribution of various inflammatory mediators and VAMP7 through confocal laser scanning microscopy. Each inflammatory mediator (TNFα, CCL2, and histamine) was found in secretory granules of different sizes within BMMCs. VAMP7 exhibited a distinct distribution compared to VAMP3 in these granules. Notably, an overlapping distribution was observed between VAMP7 and CCL2, but not between VAMP7 and TNFα or VAMP7 and histamine. This suggests that CCL2 resides within VAMP7-expressing granules and is subject to VAMP7-dependent secretory regulation. Consistently, BMMCs with VAMP7 knockdown showed markedly reduced CCL2 secretion after Ag stimulation. These observations underscore the heterogeneity of MC secretory responses and unveil a novel VAMP7-dependent CCL2 secretion mechanism within MCs. This discovery might pave the way for the development of more precise therapeutic strategies to modulate MC secretion in allergic conditions.
Assuntos
Histamina , Mastócitos , Camundongos , Animais , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Histamina/metabolismo , Mastócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vesículas Secretórias/metabolismo , Proteínas SNARE/metabolismoRESUMO
Neuroblastoma (NB) is the most common extracranial solid tumor that affects developing nerve cells in the fetus, infants, and children. miR-124 is a microRNA (miRNA) enriched in neuronal tissues, and VAMP3 (vesicle-associated membrane protein 3) has been reported to be an miR-124 target, although the relationship between NB and miR-124 or VAMP3 is unknown. Our current work identified that miR-124 levels are high in NB cases and that elevated miR-124 correlates with worse NB outcomes. Conversely, depressed VAMP3 correlates with worse NB outcomes. To investigate the mechanisms by which miR-124 and VAMP3 regulate NB, we altered miR-124 or VAMP3 expression in human NB cells and observed that increased miR-124 and reduced VAMP3 stimulated cell proliferation and suppressed apoptosis, while increased VAMP3 had the opposite effects. Genome-wide mRNA expression analyses identified gene and pathway changes which might explain the NB cell phenotypes. Together, our studies suggest that miR-124 and VAMP3 could be potential new markers of NB and targets of NB treatments.
Assuntos
MicroRNAs , Células-Tronco Neurais , Neuroblastoma , Criança , Lactente , Humanos , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Neuroblastoma/metabolismo , Células-Tronco Neurais/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular TumoralRESUMO
Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.
Assuntos
Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Ubiquitinação , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
BACKGROUND: Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS: We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS: Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS: These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Assuntos
Plaquetas , Fosfatidilserinas , Recém-Nascido , Gravidez , Feminino , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Trombopoese/genética , Megacariócitos/metabolismo , Peptídeos/metabolismo , Defensinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.
Assuntos
Neoplasias da Mama , Podossomos , Proteínas Qa-SNARE , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Podossomos/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Military operational stress is known to increase adrenal hormones and inflammatory cytokines, while decreasing hormones associated with the anabolic milieu and neuroendocrine system. Less is known about the role of extracellular vesicles (EVs), a form of cell-to-cell communication, in military operational stress and their relationship to circulating hormones. The purpose of this study was to characterize the neuroendocrine, cytokine, and EV response to an intense. 24-h selection course known as the Naval Special Warfare (NSW) Screener and identify associations between EVs and cytokines. Blood samples were collected the morning of and following the NSW Screener in 29 men (18-26 yr). Samples were analyzed for concentrations of cortisol, insulin-like growth factor I (IGF-I), neuropeptide-Y (NPY), brain-derived neurotrophic factor (BDNF), α-klotho, tumor necrosis factor-α (TNFα), and interleukins (IL) -1ß, -6, and -10. EVs stained with markers associated with exosomes (CD63), microvesicles (VAMP3), and apoptotic bodies (THSD1) were characterized using imaging flow cytometry and vesicle flow cytometry. The selection event induced significant changes in circulating BDNF (-43.2%), IGF-I (-24.6%), TNFα (+17.7%), and IL-6 (+13.6%) accompanied by increases in intensities of THSD1+ and VAMP3+ EVs (all P < 0.05). Higher concentrations of IL-1ß and IL-10 were positively associated with THSD1+ EVs (P < 0.05). Military operational stress altered the EV profile. Surface markers associated with apoptotic bodies were positively correlated with an inflammatory response. Future studies should consider a multiomics assessment of EV cargo to discern canonical pathways that may be mediated by EVs during military stress.
Assuntos
Vesículas Extracelulares , Fator de Crescimento Insulin-Like I , Adolescente , Adulto , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Hormônios/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta , Masculino , Sistemas Neurossecretores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Adulto JovemRESUMO
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins to the expansion and functionality of communal vacuoles as well as the replication of the parasite. The differential patterns of recruitment of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor to communal vacuoles harboring Leishmania amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to the optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither protein has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Assuntos
Leishmania mexicana , Leishmania , Animais , Habitação , Leishmania/fisiologia , Macrófagos/metabolismo , Mamíferos , Vacúolos/parasitologia , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Cancer cells secrete matrix metalloproteinases to remodel the extracellular matrix, which enables them to overcome tissue barriers and form metastases. The membrane-bound matrix metalloproteinase MT1-MMP (MMP14) is internalized by endocytosis and recycled in endosomal compartments. It is largely unknown how endosomal sorting and recycling of MT1-MMP are controlled. Here, we show that the endosomal protein WDFY2 controls the recycling of MT1-MMP. WDFY2 localizes to endosomal tubules by binding to membranes enriched in phosphatidylinositol 3-phosphate (PtdIns3P). We identify the v-SNARE VAMP3 as an interaction partner of WDFY2. WDFY2 knockout causes a strong redistribution of VAMP3 into small vesicles near the plasma membrane. This is accompanied by increased, VAMP3-dependent secretion of MT1-MMP, enhanced degradation of extracellular matrix, and increased cell invasion. WDFY2 is frequently lost in metastatic cancers, most predominantly in ovarian and prostate cancer. We propose that WDFY2 acts as a tumor suppressor by serving as a gatekeeper for VAMP3 recycling.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Actinas/fisiologia , Linhagem Celular Tumoral , Membrana Celular , Exocitose/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Microtúbulos , Fosfatos de Fosfatidilinositol/fisiologia , Transporte Proteico , Proteína 3 Associada à Membrana da Vesícula/genética , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/metabolismoRESUMO
The role of soluble N-ethylmaleimide-sensitive factor attachment protein receptors in atopic dermatitis (AD) is unknown. This study identifies the function of soluble N-ethylmaleimide sensitive factor attachment protein receptor in AD-related cytokine secretion and epidermis-nerve communication. Herein, we report that various cytokines were simultaneously upregulated and coreleased in innate immunity-activated primary human keratinocytes. AD-related cytokines thymic stromal lymphopoietin, endothelin-1, and inflammatory tumor necrosis factor-α activated distinct but overlapping sensory neurons. Tumor necrosis factor-α potentiated thymic stromal lymphopoietin-induced Ca2+-influx, whereas endothelin-1 caused itch-selective B-type natriuretic peptide release. In primary human keratinocytes, B-type natriuretic peptide upregulated genes promoting dermatological and neuroinflammatory diseases and conditions. VAMP3, SNAP-29, and syntaxin 4 proved important in driving cytokine release from primary human keratinocytes. Depletion of VAMP3 inhibited nearly all the cytokine release including thymic stromal lymphopoietin and endothelin-1. Accordingly, VAMP3 co-occurred with endothelin-1 in the skins of patients with AD. Our study pinpoints the pivotal role of soluble N-ethylmaleimide sensitive factor attachment protein receptors in mediating cytokine secretion related to AD. VAMP3 is identified as a suitable target for developing broad-spectrum anticytokine therapeutics for controlling itch and atopic skin inflammation.
Assuntos
Dermatite Atópica/metabolismo , Epiderme/metabolismo , Queratinócitos/fisiologia , Células Receptoras Sensoriais/fisiologia , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Endotelina-1/metabolismo , Etilmaleimida/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Proteínas SNARE/metabolismo , Proteína 3 Associada à Membrana da Vesícula/genéticaRESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures. METHODS: PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways. RESULTS: Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance. CONCLUSION: The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.
Assuntos
Genômica/métodos , Gotículas Lipídicas/química , Hepatopatia Gordurosa não Alcoólica/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Oleico/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Ácido Palmítico/farmacologia , Perilipina-2/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína 3 Associada à Membrana da Vesícula/química , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Tunneling nanotubes (TNTs) are actin-enriched membranous channels enabling cells to communicate over long distances. TNT-like structures form between various cell types and mediate the exchange of different cargos, such as ions, vesicles, organelles and pathogens; thus, they may play a role in physiological conditions and diseases (e.g. cancer and infection). TNTs also allow the intercellular passage of protein aggregates related to neurodegenerative diseases, thus propagating protein misfolding. Understanding the mechanism of TNT formation is mandatory in order to reveal the mechanism of disease propagation and to uncover their physiological function. Vesicular transport controlled by the small GTPases Rab11a and Rab8a can promote the formation of different plasma membrane protrusions (filopodia, cilia and neurites). Here, we report that inhibiting membrane recycling reduces the number of TNT-connected cells and that overexpression of Rab11a and Rab8a increases the number of TNT-connected cells and the propagation of vesicles between cells in co-culture. We demonstrate that these two Rab GTPases act in a cascade in which Rab11a activation of Rab8a is independent of Rabin8. We also show that VAMP3 acts downstream of Rab8a to regulate TNT formation.
Assuntos
Endocitose , Nanotubos/química , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina , Guanosina Trifosfato/metabolismo , Camundongos , Modelos Biológicos , Pseudópodes/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1+ late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3+/LAMP2+/LAMP1- endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-ß-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.
Assuntos
Células Dendríticas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endossomos/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Microscopia Confocal , NF-kappa B/metabolismo , Transporte Proteico , Interferência de RNA , Receptor Toll-Like 9/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
In the past 50 years, isolated blood platelets have had restricted use in wound healing, cancer therapy, and organ and tissue transplant, to name a few. The major obstacle for its unrestricted use has been, among others, the presence of ultrahigh concentrations of growth factors and the presence of both pro-angiogenic and anti-angiogenic proteins. To overcome this problem requires the isolation and separation of the membrane bound secretory vesicles containing the different factors. In the current study, high-resolution imaging of isolated secretory vesicles from human platelets using atomic force microscopy (AFM) and mass spectrometry enabled characterization of the remaining vesicles size and composition following their immunoseparation. The remaining vesicles obtained following osmotic lysis, when subjected to immunoseparation employing antibody to different vesicle-associated membrane proteins (VAMPs), demonstrate for the first time that VAMP-3-, VAMP-7-, and VAMP-8-specific vesicles each possesses distinct size range and composition. These results provide a window into our understanding of the heterogeneous population of vesicles in human platelets and their stability following both physical manipulation using AFM and osmotic lysis of the platelet. This study further provides a platform for isolation and the detailed characterization of platelet granules, with promise for their future use in therapy. Additionally, results from the study demonstrate that secretory vesicles of different size found in cells reflect their unique and specialized composition and function.
Assuntos
Plaquetas/química , Proteoma/isolamento & purificação , Proteínas R-SNARE/isolamento & purificação , Vesículas Secretórias/química , Proteína 3 Associada à Membrana da Vesícula/isolamento & purificação , Plaquetas/metabolismo , Células Cultivadas , Fracionamento Químico/métodos , Humanos , Imunoprecipitação/métodos , Microscopia de Força Atômica , Anotação de Sequência Molecular , Pressão Osmótica , Proteoma/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood-derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution.
Assuntos
Células Dendríticas/fisiologia , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Proteínas Qa-SNARE/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Interleucina-6/metabolismo , Transporte ProteicoRESUMO
Renal cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na+/K+/2Cl- co-transporter NKCC2. Trafficking of NKCC2 to the apical surface regulates NKCC2-mediated NaCl absorption and blood pressure. The molecular mechanisms by which NKCC2 reaches the apical surface and their role in renal function and maintenance of blood pressure are poorly characterized. Here we report that NKCC2 interacts with the vesicle fusion protein VAMP3, and they co-localize at the TAL apical surface. We observed that silencing VAMP3 in vivo blocks constitutive NKCC2 exocytic delivery, decreasing the amount of NKCC2 at the TAL apical surface. VAMP3 is not required for cAMP-stimulated NKCC2 exocytic delivery. Additionally, genetic deletion of VAMP3 in mice decreased total expression of NKCC2 in the TAL and lowered blood pressure. Consistent with these results, urinary excretion of water and electrolytes was higher in VAMP3 knock-out mice, which produced more diluted urine. We conclude that VAMP3 interacts with NKCC2 and mediates its constitutive exocytic delivery to the apical surface. Additionally, VAMP3 is required for normal NKCC2 expression, renal function, and blood pressure.
Assuntos
Pressão Sanguínea/fisiologia , Rim/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Animais , AMP Cíclico/metabolismo , Exocitose/fisiologia , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Proteína 3 Associada à Membrana da Vesícula/genéticaRESUMO
Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/ß, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/ß activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/ß necessary for the secretion of TNF by VAMP3(+) carriers.
Assuntos
Regulação da Expressão Gênica , Mastócitos/imunologia , Proteína Quinase C-alfa/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Lipopolissacarídeos/imunologia , Mastócitos/efeitos dos fármacos , Camundongos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
AIM: To determine the impact of a functional human islet clock on insulin secretion and gene transcription. METHODS: Efficient circadian clock disruption was achieved in human pancreatic islet cells by small interfering RNA-mediated knockdown of CLOCK. Human islet secretory function was assessed in the presence or absence of a functional circadian clock by stimulated insulin secretion assays, and by continuous around-the-clock monitoring of basal insulin secretion. Large-scale transcription analysis was accomplished by RNA sequencing, followed by quantitative RT-PCR analysis of selected targets. RESULTS: Circadian clock disruption resulted in a significant decrease in both acute and chronic glucose-stimulated insulin secretion. Moreover, basal insulin secretion by human islet cells synchronized in vitro exhibited a circadian pattern, which was perturbed upon clock disruption. RNA sequencing analysis suggested alterations in 352 transcript levels upon circadian clock disruption. Among them, key regulators of the insulin secretion pathway (GNAQ, ATP1A1, ATP5G2, KCNJ11) and transcripts required for granule maturation and release (VAMP3, STX6, SLC30A8) were affected. CONCLUSIONS: Using our newly developed experimental approach for efficient clock disruption in human pancreatic islet cells, we show for the first time that a functional ß-cell clock is required for proper basal and stimulated insulin secretion. Moreover, clock disruption has a profound impact on the human islet transcriptome, in particular, on the genes involved in insulin secretion.
Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Hiperglicemia/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas CLOCK/antagonistas & inibidores , Proteínas CLOCK/genética , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Colforsina/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , RNA Interferente Pequeno , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína 3 Associada à Membrana da Vesícula/antagonistas & inibidores , Proteína 3 Associada à Membrana da Vesícula/química , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Transportador 8 de ZincoRESUMO
Endocytosis is an essential cellular process that is often hijacked by pathogens and pathogenic products. Endocytic processes can be classified into two broad categories, those that are dependent on clathrin and those that are not. The SNARE proteins VAMP2, VAMP3 and VAMP8 are internalized in a clathrin-dependent manner. However, the full scope of their endocytic behavior has not yet been elucidated. Here, we found that VAMP2, VAMP3 and VAMP8 are localized on plasma membrane invaginations and very early uptake structures that are induced by the bacterial Shiga toxin, which enters cells by clathrin-independent endocytosis. We show that toxin trafficking into cells and cell intoxication rely on these SNARE proteins. Of note, the cellular uptake of VAMP3 is increased in the presence of Shiga toxin, even when clathrin-dependent endocytosis is blocked. We therefore conclude that VAMP2, VAMP3 and VAMP8 are removed from the plasma membrane by non-clathrin-mediated pathways, in addition to by clathrin-dependent uptake. Moreover, our study identifies these SNARE proteins as the first transmembrane trafficking factors that functionally associate at the plasma membrane with the toxin-driven clathrin-independent invaginations during the uptake process.
Assuntos
Endocitose/fisiologia , Transporte Proteico/fisiologia , Proteínas R-SNARE/metabolismo , Toxina Shiga I/farmacologia , Toxinas Shiga/farmacologia , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , Clatrina/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Ligação Proteica/genética , Proteínas R-SNARE/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxinas Shiga/metabolismo , Transferrina/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/genéticaRESUMO
Cells release multiple, distinct forms of extracellular vesicles including structures known as microvesicles, which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumour cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression.
Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Invasividade Neoplásica , Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Melanoma , Transporte Proteico , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Yersinia pseudotuberculosis can replicate inside macrophages by hijacking autophagy and blocking autophagosome acidification. In bone marrow-derived macrophages, the bacteria are mainly observed inside double-membrane vacuoles positive for LC3, a hallmark of autophagy. Here, we address the question of the membrane traffic during internalization of Yersinia investigating the role of vesicle- associated membrane proteins (VAMPs). First, we show that as in epithelial cells, Yersinia pseudotuberculosis replicates mainly in nonacidic LC3-positive vacuoles. Second, in these cells, we unexpectedly found that VAMP3 localizes preferentially to Yersinia-containing vacuoles (YCVs) with single membranes using correlative light-electron microscopy. Third, we reveal the precise kinetics of VAMP3 and VAMP7 association with YCVs positive for LC3. Fourth, we show that VAMP7 knockdown alters LC3's association with single-and multimembrane-YCVs. Finally, in uninfected epithelial cells stimulated for autophagy, VAMP3 overexpression and knockdown led respectively to a lower and higher number of double-membrane, LC3-positive vesicles. Hence, our results highlight the role that VAMPs play in selection of the pathways leading to generation of ultrastructurally different LC3 compartments and pave the way for determining the full set of docking and fusion proteins involved in Yersinia pseudotuberculosis' intravesicular life cycle.