Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 986
Filtrar
1.
Exp Dermatol ; 33(5): e15094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742793

RESUMO

Melasma is a common condition of hyperpigmented facial skin. Picosecond lasers are reported to be effective for the treatment of melasma. We aimed to identify the most effective therapeutic mode and elucidate the potential molecular mechanisms of picosecond lasers for the treatment of melasma. Female Kunming mice with melasma-like conditions were treated using four different picosecond laser modes. Concurrently, in vitro experiments were conducted to assess changes in melanin and autophagy in mouse melanoma B16-F10 cells treated with these laser modes. Changes in melanin in mouse skin were detected via Fontana-Masson staining, and melanin particles were evaluated in B16-F10 cells. Real-time polymerase chain reaction and western blotting were used to analyse the expression levels of melanosome and autophagy-related messenger ribonucleic acid (mRNA) and proteins. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers resulted insignificant decreases in melanin as well as in mRNA and protein expression of melanin-synthesizing enzymes (TYR, TRP-1 and MITF). This combination also led to increased expression of the autophagy-related proteins, Beclin1 and ATG5, with a marked decrease in p62 expression. Intervention with the PI3K activator, 740 Y-P, increased TYR, TRP-1, MITF, p-PI3K, p-AKT, p-mTOR and p62 expression but decreased the expression of LC3, ATG5 and Beclin1. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers proved more effective and safer. It inhibits melanin production, downregulates the PI3K/AKT/mTOR pathway, enhances melanocyte autophagy and accelerates melanin metabolism, thereby reducing melanin content.


Assuntos
Autofagia , Melaninas , Melanose , Melanossomas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Melanose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melaninas/metabolismo , Melanossomas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Terapia com Luz de Baixa Intensidade , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/radioterapia
2.
J Med Virol ; 96(5): e29659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747016

RESUMO

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Assuntos
Antígenos CD , Proteína 5 Relacionada à Autofagia , Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Vírus da Hepatite B , Replicação Viral , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Células Hep G2 , Hepatite B/virologia , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Transdução de Sinais , Antígeno 2 do Estroma da Médula Óssea/metabolismo
3.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796213

RESUMO

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Assuntos
Apoptose , Autofagia , Catepsina D , Lisossomos , Catepsina D/metabolismo , Catepsina D/genética , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Benzilisoquinolinas/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Concentração de Íons de Hidrogênio , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
4.
Biochem Biophys Res Commun ; 710: 149887, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581954

RESUMO

SS-31 is a mitochondria-targeting short peptide. Recent studies have indicated its hepatoprotective effects. In our study, we investigated the impact of SS-31 on LPS-induced autophagy in HepG2 cells. The results obtained from a dual-fluorescence autophagy detection system revealed that SS-31 promotes the formation of autolysosomes and autophagosomes, thereby facilitating autophagic flux to a certain degree. Additionally, both ELISA and qPCR analyses provided further evidence that SS-31 safeguards HepG2 cells against inflammatory responses triggered by LPS through ATG5-dependent autophagy. In summary, our study demonstrates that SS-31 inhibits LPS-stimulated inflammation in HepG2 cells by upregulating ATG5-dependent autophagy.


Assuntos
Autofagia , Lipopolissacarídeos , Humanos , Células Hep G2 , Lipopolissacarídeos/farmacologia , Autofagossomos , Inflamação , Proteína 5 Relacionada à Autofagia/genética
5.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683127

RESUMO

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Assuntos
Envelhecimento , Proteína 5 Relacionada à Autofagia , Autofagia , Núcleo Celular , Miocárdio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Animais , Miocárdio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Células HEK293 , Masculino , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Camundongos Knockout
6.
Cell Commun Signal ; 22(1): 223, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594728

RESUMO

BACKGROUND: Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS: Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS: Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS: Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.


Assuntos
Obstrução Ureteral , Animais , Camundongos , Proteína 5 Relacionada à Autofagia/metabolismo , Fibrose , Isquemia/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptores CCR6/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
7.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554280

RESUMO

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Assuntos
Autofagia , Inibidores de Checkpoint Imunológico , Linfonodos , Esfingosina/análogos & derivados , Linfócitos T , Autofagia/efeitos dos fármacos , Animais , Linfonodos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Células Endoteliais/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Imunoterapia/métodos , Movimento Celular
8.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499149

RESUMO

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Assuntos
Autofagia , Inflamassomos , Queratinócitos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Raios Ultravioleta , Humanos , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Inflamassomos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Raios Ultravioleta/efeitos adversos , Células Cultivadas
9.
Braz J Med Biol Res ; 57: e13152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381883

RESUMO

The cure rates for osteosarcoma have remained unchanged in the past three decades, especially for patients with pulmonary metastasis. Thus, a new and effective treatment for metastatic osteosarcoma is urgently needed. Anlotinib has been reported to have antitumor effects on advanced osteosarcoma. However, both the effect of anlotinib on autophagy in osteosarcoma and the mechanism of anlotinib-mediated autophagy in pulmonary metastasis are unclear. The effect of anlotinib treatment on the metastasis of osteosarcoma was investigated by transwell assays, wound healing assays, and animal experiments. Related proteins were detected by western blotting after anlotinib treatment, ATG5 silencing, or ATG5 overexpression. Immunofluorescence staining and transmission electron microscopy were used to detect alterations in autophagy and the cytoskeleton. Anlotinib inhibited the migration and invasion of osteosarcoma cells but promoted autophagy and increased ATG5 expression. Furthermore, the decreases in invasion and migration induced by anlotinib treatment were enhanced by ATG5 silencing. In addition, Y-27632 inhibited cytoskeletal rearrangement, which was rescued by ATG5 overexpression. ATG5 overexpression enhanced epithelial-mesenchymal transition (EMT). Mechanistically, anlotinib-induced autophagy promoted migration and invasion by activating EMT and cytoskeletal rearrangement through ATG5 both in vitro and in vivo. Our results demonstrated that anlotinib can induce protective autophagy in osteosarcoma cells and that inhibition of anlotinib-induced autophagy enhanced the inhibitory effects of anlotinib on osteosarcoma metastasis. Thus, the therapeutic effect of anlotinib treatment can be improved by combination treatment with autophagy inhibitors, which provides a new direction for the treatment of metastatic osteosarcoma.


Assuntos
Neoplasias Ósseas , Indóis , Neoplasias Pulmonares , Osteossarcoma , Quinolinas , Animais , Humanos , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Autofagia , Transição Epitelial-Mesenquimal , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Citoesqueleto/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteína 5 Relacionada à Autofagia/farmacologia , Proteína 5 Relacionada à Autofagia/uso terapêutico
10.
Crit Rev Eukaryot Gene Expr ; 34(3): 17-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305285

RESUMO

Long non-coding RNAs (lncRNAs) are involved in the pathogenesis of hepatocellular carcinoma (HCC). This study aimed to investigate the potential of MIR222HG in HCC. HCC cells were co-cultured with U937 cells. Gene expression was determined using reverse transcription-quantitative (RT-q) PCR and western blot. Functional analysis was performed using Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays. We found that MIR222HG was overexpressed in HCC patients as well as HepG2 and Huh7 cells. MIR222HG-mediated upregulation of autophagy related 5 (ATG5) promoted tumor cell autophagy and the activation of M2-like tumor-associated macrophages (TAM2). Moreover, MIR222HG-mediated the activation of TAM2 drove the proliferation of HCC cells. Additionally, MIR222HG increased the mRNA expression as well as promoted the mRNA stability of ATG5 via binding to lin-28 homolog B (LIN28B). In conclusion, MIR222HG-mediated autophagy and the activation of TAM2 promote the aggressiveness of HCC cells via regulating LIN28B/ATG5 signaling.


Assuntos
Proteína 5 Relacionada à Autofagia , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Microbiol Immunol ; 68(2): 47-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991129

RESUMO

Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/complicações , Vírus da Hepatite B , Neoplasias Hepáticas/genética , Genótipo , Frequência do Gene , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Hepatite B/complicações , Hepatite B/genética , China , Estudos de Casos e Controles , Proteína 5 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética
12.
J Transl Med ; 21(1): 738, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858134

RESUMO

BACKGROUND: Autophagy is involved in nasopharyngeal carcinoma (NPC) radioresistance. Replication protein A 1 (RPA1) and RPA3, substrates of the RPA complex, are potential therapeutic targets for reversing NPC radioresistance. Nevertheless, the role of RPA in autophagy is not adequately understood. This investigation was performed to reveal the cytotoxic mechanism of a pharmacologic RPA inhibitor (RPAi) in NPC cells and the underlying mechanism by which RPAi-mediated autophagy regulates NPC radiosensitivity. METHODS AND RESULTS: We characterized a potent RPAi (HAMNO) that was substantially correlated with radiosensitivity enhancement and proliferative inhibition of in vivo and in NPC cell lines in vitro. We show that the RPAi induced autophagy at multiple levels by inducing autophagic flux, AMPK/mTOR pathway activation, and autophagy-related gene transcription by decreasing glycolytic function. We hypothesized that RPA inhibition impaired glycolysis and increased NPC dependence on autophagy. We further demonstrated that combining autophagy inhibition with chloroquine (CQ) treatment or genetic inhibition of the autophagy regulator ATG5 and RPAi treatment was more effective than either approach alone in enhancing the antitumor response of NPC to radiation. CONCLUSIONS: Our study suggests that HAMNO is a potent RPAi that enhances radiosensitivity and induces autophagy in NPC cell lines by decreasing glycolytic function and activating autophagy-related genes. We suggest a novel treatment strategy in which pharmacological inhibitors that simultaneously disrupt RPA and autophagic processes improve NPC responsiveness to radiation.


Assuntos
Antineoplásicos , Autofagia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerância a Radiação , Proteína de Replicação A , Humanos , Antineoplásicos/uso terapêutico , Apoptose , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Proteína de Replicação A/antagonistas & inibidores , Proteína de Replicação A/genética , Proteína 5 Relacionada à Autofagia/genética
13.
Cell Signal ; 112: 110927, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844713

RESUMO

During the process of atherosclerosis (AS), hypoxia induces plaque macrophage inflammation, promoting lipid accumulation. Autophagy is a cell homeostasis process that increases tolerance to stressors like oxidative stress and hypoxia. However, the specific mechanism by which hypoxia initiates autophagy and the inflammation of macrophages remains to be elucidated. Here, we found that hypoxia-induced macrophage inflammation was mediated by autophagy. Then, the effect of hypoxia on autophagy was investigated in terms of post-translational modifications of proteins. The results showed that desialylation of the autophagy protein ATG5 under hypoxic conditions enhanced protein stability by affecting its charge effect and promoted the formation of the ATG5-ATG12-ATG16L complex, further increasing autophagosome formation. And NEU1, a key enzyme in sialic acid metabolism, was significantly up-regulated under hypoxic conditions and was identified as an interacting protein of ATG5, affecting the sialylation of ATG5. In addition, the knockdown or inhibition of NEU1 reversed hypoxia-induced autophagy and inflammatory responses. In conclusion, our data reveal a key mechanism of autophagy regulation under hypoxia involving ATG5 sialylation and NEU1, suggesting that NEU1 may be a potential target for the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Neuraminidase , Humanos , Neuraminidase/metabolismo , Macrófagos/metabolismo , Inflamação , Hipóxia , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
14.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894717

RESUMO

The Atg12 protein in yeast is an indispensable polypeptide in the highly conserved ubiquitin-like conjugation system operating in the macroautophagy/autophagy pathway. Atg12 is covalently conjugated to Atg5 through the action of Atg7 and Atg10; the Atg12-Atg5 conjugate binds Atg16 to form an E3 ligase that functions in a separate conjugation pathway involving Atg8. Atg12 is comprised of a ubiquitin-like (UBL) domain preceded at the N terminus by an intrinsically disordered protein region (IDPR), a domain that comprises a major portion of the protein but remains elusive in its conformation and function. Here, we show that the IDPR in unconjugated Atg12 is positioned in proximity to the UBL domain, a configuration that is important for the functional structure of the protein. A major deletion in the IDPR disrupts intactness of the UBL domain at the unconjugated C terminus, and a mutation in the predicted α0 helix in the IDPR prevents Atg12 from binding to Atg7 and Atg10, which ultimately affects the protein function in the ubiquitin-like conjugation cascade. These findings provide evidence that the IDPR is an indispensable part of the Atg12 protein from yeast.


Assuntos
Proteína 12 Relacionada à Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
15.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762652

RESUMO

The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.


Assuntos
Autofagia , Glândulas Mamárias Animais , MicroRNAs , Animais , Feminino , Camundongos , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Células Epiteliais , Lactação/genética , MicroRNAs/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo
16.
Food Chem Toxicol ; 179: 113967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506864

RESUMO

Cadmium (Cd), one of the most common contaminants in diet and drinking water, impairs testicular germ cell development and spermatogenesis. Autophagy is essential for maintaining Sertoli cell function and Sertoli-germ cell communication. However, the role of Sertoli cell autophagy in Cd-caused spermatogenesis disorder remains unclear. Here, the mice of autophagy-related gene 5 (Atg5) knockouts in Sertoli cells were used to investigate the effect of autophagy deficiency on Cd-impaired spermatogenesis and its underlying mechanisms. Results showed that Sertoli cell-specific knockout of Atg5 exacerbated Cd-reduced sperm count and MVH (a specific marker for testicular germ cells) level in mice. Additionally, Sertoli cell Atg5 deficiency reduced the number of spermatocytes and decreased the level of meiosis-related proteins (SYCP3 and STRA8) in Cd-treated mouse testes. Loss of Atg5 in Sertoli cell exacerbated Cd-reduced the level of retinoic acid (RA) and retinal dehydrogenase (ALDH1A1 and ALDH1A) in mouse testes. Meanwhile, we found that the level of transcription factor WT1 was significantly downregulated in Atg5-/- plus Cd-treated testes. Further experiments showed that Wt1 overexpression restored Cd-decreased the levels of ALDH1A1 in Sertoli cells. Collectively, the above data suggest that knockout of Atg5 in Sertoli cell enhances the susceptibility of Cd-impaired testicular spermatogenesis. These findings provide new insights into autophagy of Sertoli cell preventing environmental toxicants-impaired testicular spermatogenesis.


Assuntos
Infertilidade Masculina , Testículo , Humanos , Masculino , Camundongos , Animais , Células de Sertoli , Cádmio/metabolismo , Sêmen , Espermatogênese , Camundongos Knockout , Proteína 5 Relacionada à Autofagia
17.
Cell Death Dis ; 14(7): 451, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474520

RESUMO

Exosomes contribute substantially to the communication between tumor cells and normal cells. Benefiting from the stable structure, circular RNAs (circRNAs) are believed to serve an important function in exosome-mediated intercellular communication. Here, we focused on circRNAs enriched in starvation-stressed hepatocytic exosomes and further investigated their function and mechanism in hepatocellular carcinoma (HCC) progression. Differentially expressed circRNAs in exosomes were identified by RNA sequencing, and circTGFBR2 was identified and chosen for further study. The molecular mechanism of circTGFBR2 in HCC was demonstrated by RNA pulldown, RIP, dual-luciferase reporter assays, rescue experiments and tumor xenograft assay both in vitro and vivo. We confirmed exosomes with enriched circTGFBR2 led to an upregulated resistance of HCC cells to starvation stress. Mechanistically, circTGFBR2 delivered into HCC cells via exosomes serves as a competing endogenous RNA by binding miR-205-5p to facilitate ATG5 expression and enhance autophagy in HCC cells, resulting in resistance to starvation. Thus, we revealed that circTGFBR2 is a novel tumor promoter circRNA in hepatocytic exosomes and promotes HCC progression by enhancing ATG5-mediated protective autophagy via the circTGFBR2/miR-205-5p/ATG5 axis, which may be a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
18.
Mol Carcinog ; 62(10): 1474-1486, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37283234

RESUMO

Since chemotherapy's therapeutic impact is diminished by drug resistance, treating ovarian cancer is notably challenging. Thereafter, it is critical to develop cutting-edge approaches to treating ovarian cancer. Baohuoside I (derived from Herba Epimedii) is reported to have antitumor properties in various malignancies. It is unknown, however, what role Baohuoside I plays in cisplatin (DDP)-resistant ovarian cancer cells. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), colony formation, and flow cytometry assay were used to investigate the impact of Baohuoside I on ovarian cancer A2780 cells and DDP-resistant A2780 (A2780/DDP) cells. The level of microtubule associated protein 1 light chain 3 (LC3) was determined using immunofluorescence staining. Utilizing the mRFP-GFP-LC3B tandem fluorescent probe allowed us to analyse the autophagy flux. Analysis of mRNA and protein level was performed using RT-qPCR and Western blot analysis, respectively. The interaction between hypoxia inducible factor 1 subunit alpha (HIF-1α) and autophagy related 5 (ATG5) promoter was investigated by dual luciferase and ChIP assay. Additionally, evaluation of Baohuoside I's role in ovarian cancer was performed using a nude mouse xenograft model. Baohuoside I decreased the viability and proliferation and triggered the apoptosis of both A2780 and A2780/DDP cells in a concentration-dependent manner. Baohuoside I also increased the sensitivity of A2780/DDP cells to DDP. Concurrently, HIF-1α could promote A2780/DDP cells resistance to DDP. In addition, HIF-1α could induce the autophagy of A2780/DDP cells through transcriptionally activating ATG5, and Baohuoside I imporved the chemosensitivity of A2780/DDP cells to DDP by downregulating HIF-1α. Moreover, Baohuoside I could inhibit the chemoresistance to DDP in ovarian cancer in vivo. Baohuoside I sensitizes ovarian cancer cells to DDP by suppressing autophagy via downregulating the HIF-1α/ATG5 axis. Consequently, Baohuoside I might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of drug treatment for ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Autofagia , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Proteína 5 Relacionada à Autofagia
19.
Int J Biol Sci ; 19(7): 2289-2303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151889

RESUMO

Reprogramming metabolism is a hallmark of cancer cells for rapid progression. However, the detailed functional role of deubiquitinating enzymes (DUBs) in tumor glycolytic reprogramming is still unknown and requires further investigation. USP13 was found to upregulate in osteosarcoma (OS) specimens and promote OS progression through regulating aerobic glycolysis. Interestingly, the m6A writer protein, METTL3, has been identified as a novel target of USP13. USP13 interacts with, deubiquitinates, and therefore stabilizes METTL3 at K488 by removing K48-linked ubiquitin chains. Since METTL3 is a well-known m6A writer and USP13 stabilizes METTL3, we further found that USP13 increased global m6A abundance in OS cells. The results of RNA sequencing and methylated RNA immunoprecipitation sequencing indicated METTL3 could bind to m6A-modified ATG5 mRNA, which is crucial for autophagosome formation, and inhibit ATG5 mRNA decay on an IGF2BP3 dependent manner, thereby promoting autophagy and the autophagy-associated malignancy of OS. Using a small-molecule inhibitor named Spautin-1 to pharmacologically inhibit USP13 induced METTL3 degradation and exhibited significant therapeutic efficacy both in vitro and in vivo. Collectively, our study results indicate that USP13 promotes glycolysis and tumor progression in OS by stabilizing METTL3, thereby stabilizing ATG5 mRNA and facilitating autophagy in OS. Our findings demonstrate the role of the USP13-METTL3-ATG5 cascade in OS progression and show that USP13 is a crucial DUB for the stabilization of METTL3 and a promising therapeutic target for treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , RNA Mensageiro/metabolismo , Metiltransferases/genética , Proteína 5 Relacionada à Autofagia , Proteases Específicas de Ubiquitina/genética
20.
BMC Res Notes ; 16(1): 61, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095543

RESUMO

OBJECTIVES: Malignant pleural mesothelioma (MPM) is an aggressive disease with grim prognosis due to lack of effective treatment options. Disease prediction in association with early diagnosis may both contribute to improved MPM survival. Inflammation and autophagy are two processes associated with asbestos-induced transformation. We evaluated the level of two autophagic factors ATG5 and HMGB1, microRNAs (miRNAs) such as miR-126 and miR-222, and the specific biomarker of MPM, soluble mesothelin related proteins (Mesothelin) in asbestos-exposed individuals, MPM patients, and healthy subjects. The performance of these markers in detecting MPM was investigated in pre-diagnostic samples of asbestos-subjects who developed MPM during the follow-up and compared for the three groups. RESULTS: The ATG5 best distinguished the asbestos-exposed subjects with and without MPM, while miR-126 and Mesothelin were found as a significant prognostic biomarker for MPM. ATG5 has been identified as an asbestos-related biomarker that can help to detect MPM with high sensitivity and specificity in pre-diagnostic samples for up to two years before diagnosis. To utilize this approach practically, higher number of cases has to be tested in order to give the combination of the two markers sufficient statistical power. Performance of the biomarkers should be confirmed by testing their combination in an independent cohort with pre-diagnostic samples.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , MicroRNAs , Neoplasias Pleurais , Humanos , Mesotelina , Mesotelioma/diagnóstico , Proteínas Ligadas por GPI/efeitos adversos , Neoplasias Pleurais/diagnóstico , Biomarcadores Tumorais/metabolismo , Amianto/efeitos adversos , Diagnóstico Precoce , Neoplasias Pulmonares/diagnóstico , Proteína 5 Relacionada à Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA