Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062960

RESUMO

Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule capable of recognising HPV16 pseudovirions (HPV16-PsVs) and reducing infection in a murine cervicovaginal HPV challenge model. Building on these findings, our current study aimed to assess SP-A's suitability as a broad-spectrum HPV-targeting molecule and its impact on innate immune responses. We demonstrate SP-A's ability to agglutinate and opsonise multiple oncogenic HPV-PsVs types, enhancing their uptake and clearance by RAW264.7 murine macrophages and THP-1 human-derived immune cells. The SP-A opsonisation of HPV not only led to increased lysosomal accumulation in macrophages and HaCaT keratinocytes but also resulted in a decreased infection of HaCaT cells, which was further decreased when co-cultured with innate immune cells. An analysis of human innate immune cell cytokine profiles revealed a significant inflammatory response upon SP-A exposure, potentially contributing to the overall inhibition of HPV infection. These results highlight the multi-layered impact of SP-A on HPV, innate immune cells and keratinocytes and lay the basis for the development of alternative prophylactic interventions against diverse HPV types.


Assuntos
Macrófagos , Infecções por Papillomavirus , Proteína A Associada a Surfactante Pulmonar , Humanos , Animais , Camundongos , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/imunologia , Células RAW 264.7 , Macrófagos/imunologia , Macrófagos/metabolismo , Imunidade Inata , Queratinócitos/metabolismo , Queratinócitos/virologia , Queratinócitos/imunologia , Citocinas/metabolismo , Células HaCaT , Células THP-1 , Feminino
2.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575158

RESUMO

BACKGROUND: Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS: We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS: We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS: The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.


Assuntos
Neoplasias Pulmonares , Proteína A Associada a Surfactante Pulmonar , Proteína C Associada a Surfactante Pulmonar , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Proteína C Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/genética , Adulto , Fator Nuclear 1 de Tireoide/genética , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Risco , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Heterozigoto , Proteínas Associadas a Surfactantes Pulmonares/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L458-L467, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349117

RESUMO

This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1ß), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Feminino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Peptídeos/farmacologia , Sepse/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia
4.
Front Immunol ; 14: 919800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960051

RESUMO

Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNß expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.


Assuntos
Vírus da Influenza A , Macrófagos , Infecções por Orthomyxoviridae , Proteína A Associada a Surfactante Pulmonar , Animais , Camundongos , Hemaglutininas , Macrófagos/imunologia , Macrófagos/virologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Infecções por Orthomyxoviridae/imunologia
5.
J Assoc Res Otolaryngol ; 24(2): 171-180, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36820988

RESUMO

Otitis media with effusion (OME), also known as secretory otitis media, is a common condition in otorhinolaryngology. The main manifestations include middle ear effusion and conductive hearing loss. Recently, increasing attention has been paid to the etiology of OME, wherein immune dysfunction is one important pathogenic mechanism. However, it is unknown whether changes in surfactant protein A (SPA) secretion affect the phagocytic activity of macrophages in the Eustachian tube, thereby altering pathogen clearance, during the pathogenesis of OME. In our study, an OME animal model was established and evaluated. Differences in SPA levels in Eustachian tube lavage fluid between the experimental and control groups were analyzed. Cell-based experiments revealed that SPA decreased the expression of CD64 and SYK and inhibited phagocytosis by RAW264.7 cells. By using flow cytometry and immunofluorescence, we confirmed that macrophage phagocytosis decreased with increasing SPA levels. Finally, we concluded that SPA affects macrophage function and plays a role in the occurrence and development of OME.


Assuntos
Otite Média com Derrame , Animais , Proteína A Associada a Surfactante Pulmonar , Macrófagos , Modelos Animais de Doenças , Fagocitose
6.
Allergol Immunopathol (Madr) ; 50(6): 176-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335462

RESUMO

BACKGROUND: Injury to the lung is a common, clinically serious inflammatory disease. However, its pathogenesis remains unclear, and the existing treatments, including cytokine therapy, stem cell therapy, and hormone therapy, are not completely effective in treating this disease. Dimethyl itaconate (DMI) is a surfactant with important anti-inflammatory effects. OBJECTIVE: The present study used alveolar type II (AT II) and bronchial epithelial cells as models to determine the role of DMI in lung injury. MATERIAL AND METHODS: First, the effects of DMI were established on the survival, inflammatory release, and apoptosis in lipopolysaccharide (LPS)-induced AT II and bronchial epithelial cells. The association between DMI and Sirtuin1 (SIRT1) was assessed using molecular docking. Next, by constructing interference plasmids to inhibit surfactant protein (SP)-A and SP-D expressions, the effect of DMI was observed on inflammatory release and apoptosis. RESULTS: The results revealed that DMI increased the survival rate and expression levels of SP-A, SP-D, and SIRT1, and inhibited inflammatory factors as well as apoptosis in LPS-induced cells. Furthermore, DMI could bind to SIRT1 to regulate SP-A and SP-D expressions. After SP-A and SP-D expressions were inhibited, the inhibitory effect of DMI was reversed on inflammatory release and apoptosis. CONCLUSION: The findings of the present study revealed that DMI inhibited LPS-induced inflammatory release and apoptosis in cells by targeting SIRT1 and then activating SP-A and SP-D. This novel insight into the pharmacological mechanism of DMI lays the foundation for its later use for alleviating lung injury.


Assuntos
Lesão Pulmonar , Surfactantes Pulmonares , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Lesão Pulmonar/metabolismo , Simulação de Acoplamento Molecular , Células Epiteliais/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/farmacologia , Apoptose , Tensoativos/metabolismo , Tensoativos/farmacologia
7.
Front Immunol ; 13: 927017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159837

RESUMO

The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 µM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.


Assuntos
Polimixina B , Polimixinas , Antibacterianos/química , Antibacterianos/farmacologia , Antibióticos Antineoplásicos , Bactérias , Bactérias Gram-Negativas/metabolismo , Humanos , Klebsiella pneumoniae , Polimixina B/metabolismo , Polimixina B/farmacologia , Polimixinas/química , Polimixinas/metabolismo , Polimixinas/farmacologia , Pseudomonas aeruginosa , Proteína A Associada a Surfactante Pulmonar
8.
Thorac Cancer ; 13(22): 3200-3207, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178187

RESUMO

BACKGROUND: The correlation between COVID-19 and RT has not been determined to date and remains a clinical question. The aim of this study was to evaluate coronavirus disease 2019 (COVID-19) pneumonia before, during, and after radiation therapy (RT) regarding the radiation doses, radiation pneumonitis, and surfactant protein levels. METHODS: We evaluated patients diagnosed with COVID-19 before, during, or after RT for the lung between August 2020 and April 2022. In patients with breast cancer, the RT dose to the ipsilateral lung was determined. In all other patients, bilateral lung RT doses were determined. Patients diagnosed with COVID-19 after RT were evaluated to determine whether radiation pneumonitis had worsened compared with before RT. The serum levels of the surfactant proteins SP-A and SP-D were measured before, during, and after RT. RESULTS: The patients included in the study comprised three men (27.3%) and eight women (72.7%). The primary cancer sites were the breast (n = 7; 63.7%), lung (n = 2; 18.1%), esophagus (n = 1; 9.1%), and tongue (9.1%). COVID-19 was diagnosed before RT in four patients, during RT in two patients, and after RT in five patients. Six (54.5%) patients developed COVID-19 pneumonia. Radiation pneumonitis grade ≥2 was not identified in any patient, and radiation pneumonitis did not worsen after RT in any patient. No rapid increases or decreases in SP-A and SP-D levels occurred after the diagnosis of COVID-19 in all patients regardless of RT timing. CONCLUSIONS: COVID-19 did not appear to result in lung toxicity and surfactant protein levels did not change dramatically.


Assuntos
COVID-19 , Pulmão , Proteína A Associada a Surfactante Pulmonar , Proteína D Associada a Surfactante Pulmonar , Pneumonite por Radiação , Feminino , Humanos , Masculino , COVID-19/sangue , COVID-19/epidemiologia , Pulmão/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Proteína D Associada a Surfactante Pulmonar/sangue , Pneumonite por Radiação/epidemiologia , Proteína A Associada a Surfactante Pulmonar/sangue , Neoplasias da Mama/radioterapia
9.
Res Vet Sci ; 152: 99-106, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35939885

RESUMO

The host innate defense-pathogen interaction in the lung has always been a topic of concern. The respiratory tract is a common entry route for Avian pathogenic Escherichia coli (APEC). Chicken surfactant protein A (cSP-A) and chicken lung lectin (cLL) can bind to the carbohydrate moieties of various microorganisms. Despite their detection in chickens, their role in the innate immune response is largely unknown. This study aimed to examine whether the expression levels of cSP-A and cLL in the chicken respiratory system were affected by APEC infection. A lung colonization model was established in vivo using 5-day-old specific-pathogen-free chickens infected intratracheally with APEC. The chickens were euthanized 12 h post-infection (hpi) and 1-3 days post-infection (dpi) to detect various indicators. The results of quantitative reverse transcription-polymerase chain reaction and fluorescence multiplex immunohistochemical staining showed that the mRNA and protein expression levels of cSP-A and cLL in the lung and trachea were significantly co-upregulated at 2dpi.Transcriptome RNA-sequencing analysis indicated that the inoculation with APEC AE17 at 2 dpi resulted in differential gene expression of approximately 810 genes compared with control birds, but only a few genes were expressed with astatistically significant ≧2-fold difference. cLL and cSP-A were among the significantly upregulated genes involved in innate immunity. These findings indicated that cSP-A and cLL might play an important role in lung innate host defense against APEC infection at the early stage.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas , Escherichia coli/genética , Proteína A Associada a Surfactante Pulmonar , Doenças das Aves Domésticas/patologia , Lectinas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Pulmão/patologia
10.
Front Immunol ; 13: 922956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903101

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs). We prospectively enrolled 405 RSV-positive children and divided them into moderate and severe RSV disease. DNA was extracted and genotyped for sixteen specific SP gene SNPs. SP-A1 and A2 haplotypes were assigned. The association of RSV severity with SP gene SNPs was investigated by multivariate logistic regression. A likelihood ratio test was used to test the goodness of fit between two models (one with clinical and demographic data alone and another that included genetic variants). p ≤ 0.05 denotes statistical significance. A molecular dynamics simulation was done to determine the impact of the SFTPA2 rs1965708 on the SP-A behavior under various conditions. Infants with severe disease were more likely to be younger, of lower weight, and exposed to household pets and smoking, as well as having co-infection on admission. A decreased risk of severe RSV was associated with the rs17886395_C of the SFTPA2 and rs2243639_A of the SFTPD, whereas an increased risk was associated with the rs1059047_C of the SFTPA1. RSV severity was not associated with SNPs of SFTPB and SFTPC. An increased risk of severe RSV was associated with the 1A0 genotype of SFTPA2 in its homozygous or heterozygous form with 1A3. A molecular dynamic simulation study of SP-A variants that differ in amino acid 223, an important amino acid change (Q223K) between 1A0 and 1A3, showed no major impact on the behavior of these two variants except for higher thermodynamic stability of the K223 variant. The likelihood ratio test showed that the model with multi-allelic variants along with clinical and demographic data was a better fit to predict RSV severity. In summary, RSV severity was associated with hydrophilic (but not with hydrophobic) SPs gene variants. Collectively, our findings show that SP gene variants may play a key role in RSV infection and have a potential role in prognostication.


Assuntos
Surfactantes Pulmonares , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Aminoácidos , Humanos , Lactente , Proteína A Associada a Surfactante Pulmonar/genética , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/genética , Tensoativos
11.
Int J Chron Obstruct Pulmon Dis ; 17: 1537-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811742

RESUMO

Purpose: Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods: Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results: COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-ß, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1-2 group vs Gold 3-4 group). The worse the patient's condition, the more pronounced the change. Conclusion: This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Surfactantes Pulmonares , Remodelação das Vias Aéreas , Animais , Biomarcadores , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Proteína D Associada a Surfactante Pulmonar/análise , Proteína D Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
12.
Front Immunol ; 13: 854434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844510

RESUMO

Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as "integrated pathways" were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.


Assuntos
Células Epiteliais Alveolares , Infecções por Klebsiella , MicroRNAs , Proteína A Associada a Surfactante Pulmonar , Células Epiteliais Alveolares/metabolismo , Animais , Feminino , Humanos , Infecções por Klebsiella/genética , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína A Associada a Surfactante Pulmonar/biossíntese , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
13.
Med Mol Morphol ; 55(4): 316-322, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35716257

RESUMO

Patients with SARS-CoV-2 infection and with severe COVID-19 often have multiple coinfections, and their treatment is challenging. Here, we performed cytology analysis on sputum samples from two patients with severe COVID-19. The specimens were prepared using the rubbing method and stained with Papanicolaou stain. In both cases, several cells with frosted nuclei were observed, and the cytological findings per 100 cells were evaluated. The infected cells were mononuclear to multinuclear, showing chromatin aggregation at the nuclear margins, intranuclear inclusion bodies, eosinophilic cytoplasmic inclusion bodies, and mutual pressure exclusion of the nuclei. Immunocytochemical staining revealed that the cells were positive for AE1/AE3 and negative for CD68 expression, indicating their epithelial origin. Furthermore, infected cells with frosted nuclei were positive for surfactant protein A (SP-A) in Case 2, suggesting infection of type II alveolar pneumocytes or Clara cells. Moreover, in Case 2, the infected cells were positive for herpes simplex virus (HSV) I + II and SARS-CoV-2 spike protein, confirming double infection in these cells. In conclusion, sputum cytology is an important tool for determining the diversity of viral infection, and additional immunocytochemistry can be used for definitive diagnosis.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Escarro , Proteína A Associada a Surfactante Pulmonar , Cromatina
14.
Environ Toxicol ; 37(9): 2291-2301, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689653

RESUMO

Exposure to silica nanoparticles (SiNPs) is related to the dysregulation of pulmonary surfactant that maintains lung stability and function. Nevertheless, there are limited studies concerning the interaction and influence between SiNPs and pulmonary surfactant, and the damage and mechanism are still unclear. Herein, we used A549 cells to develop an in vitro model, with which we investigated the effect of SiNPs exposure on the expression of pulmonary surfactant and the potential regulatory mechanism. The results showed that SiNPs were of cytotoxicity in regarding of reduced cell viability and promoted the production of excessive reactive oxygen species (ROS). Additionally, the JNK/c-Jun signaling pathway was activated, and the expression of surfactant protein A (SP-A) and surfactant protein B (SP-B) was decreased. After the cells being treated with N-acetyl-L-cysteine (NAC), we found that the ROS content was effectively downregulated, and the expression of proteins related to JNK and c-Jun signaling pathways was suppressed. In contrast, the expression of SP-A and SP-B was enhanced. Furthermore, we treated the cells with JNK inhibitor and c-Jun-siRNA and found that the expression of protein related to JNK and c-Jun signaling pathways, as well as SP-A and SP-B, changed in line with that of NAC treatment. These findings suggest that SiNPs exposure can upregulate ROS and activate the JNK/c-Jun signaling pathway in A549 cells, thereby inhibiting the expression of SP-A and SP-B proteins.


Assuntos
Pulmão , Nanopartículas , Proteína A Associada a Surfactante Pulmonar , Proteína B Associada a Surfactante Pulmonar , Dióxido de Silício , Células A549 , Acetilcisteína/farmacologia , Apoptose , Genes jun/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/metabolismo , Nanopartículas/toxicidade , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Dióxido de Silício/toxicidade
15.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628104

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease that is pathologically characterized by the destruction of lung architecture and the accumulation of extracellular matrix in the lung. Previous studies have shown an association between lung surfactant protein (SP) and the pathogenesis of IPF, as demonstrated by mutations and the altered expression of SP in patients with IPF. However, the role of SP in the development of lung fibrosis is poorly understood. In this study, the role of surfactant protein A (SP-A) was explored in experimental lung fibrosis induced with a low or high dose of bleomycin (BLM) and CRISPR/Cas9-mediated genetic deletion of SP-A. Our results showed that lung SP-A deficiency in mice promoted the development of fibrotic damage and exacerbated inflammatory responses to the BLM challenge. In vitro experiments with murine lung epithelial LA-4 cells demonstrated that in response to transforming growth factor-ß1 (TGF-ß1), LA-4 cells had a decreased protein expression of SP-A. Furthermore, exogenous SP administration to LA-4 cells inhibited the TGF-ß1-induced upregulation of fibrotic markers. Overall, these findings suggest a novel antifibrotic mechanism of SP-A in the development of lung fibrosis, which indicates the therapeutic potential of the lung SP-A in preventing the development of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Proteína A Associada a Surfactante Pulmonar , Animais , Bleomicina/toxicidade , Pulmão/patologia , Camundongos , Proteína A Associada a Surfactante Pulmonar/deficiência , Proteína A Associada a Surfactante Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Front Immunol ; 13: 860262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444643

RESUMO

Activation of tissue repair program in macrophages requires the integration of IL-4/IL-13 cytokines and tissue-specific signals. In the lung, surfactant protein A (SP-A) is a tissue factor that amplifies IL-4Rα-dependent alternative activation and proliferation of alveolar macrophages (AMs) through the myosin18A receptor. However, the mechanism by which SP-A and IL-4 synergistically increase activation and proliferation of AMs is unknown. Here we show that SP-A amplifies IL-4-mediated phosphorylation of STAT6 and Akt by binding to myosin18A. Blocking PI3K activity or the myosin18A receptor abrogates SP-A´s amplifying effects on IL-4 signaling. SP-A alone activates Akt, mTORC1, and PKCζ and inactivates GSK3α/ß by phosphorylation, but it cannot activate arginase-1 activity or AM proliferation on its own. The combined effects of IL-4 and SP-A on the mTORC1 and GSK3 branches of PI3K-Akt signaling contribute to increased AM proliferation and alternative activation, as revealed by pharmacological inhibition of Akt (inhibitor VIII) and mTORC1 (rapamycin and torin). On the other hand, the IL-4+SP-A-driven PKCζ signaling axis appears to intersect PI3K activation with STAT6 phosphorylation to achieve more efficient alternative activation of AMs. Consistent with IL-4+SP-A-driven activation of mTORC1 and mTORC2, both agonists synergistically increased mitochondrial respiration and glycolysis in AMs, which are necessary for production of energy and metabolic intermediates for proliferation and alternative activation. We conclude that SP-A signaling in AMs activates PI3K-dependent branched pathways that amplify IL-4 actions on cell proliferation and the acquisition of AM effector functions.


Assuntos
Ativação de Macrófagos , Proteína A Associada a Surfactante Pulmonar , Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-4/metabolismo , Macrófagos Alveolares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Transdução de Sinais
17.
J Pediatr Gastroenterol Nutr ; 75(1): 97-103, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442233

RESUMO

OBJECTIVES: Human milk reduces the incidence of necrotizing enterocolitis (NEC). Prior studies have demonstrated that exogenous surfactant protein-A (SP-A) modulates intestinal inflammation, reduces NEC-like pathology in SP-A-deficient (SPAKO) pups, and may contribute to breast milk's immunomodulatory potential. We hypothesize that SP-A is present in milk and impacts inflammatory responses in the terminal ileum of neonatal mice. METHODS: Human milk was collected at postpartum days 1-3 and 28. Mouse milk was collected at postpartum days 1-10. SP-A was detected in milk through immunoprecipitation and western blot analysis. The impact of murine wild-type (WT) milk on SPAKO pup ileum was evaluated in a model of intestinal inflammation via cross-rearing experiments. Terminal ileum was evaluated for inflammatory cytokine and toll-like receptor 4 (TLR4) mRNA expression via quantitative real-time RT-PCR. RESULTS: SP-A was detected in human milk and wild type (WT) mouse milk, but not in SPAKO mouse milk. Expression of TLR4, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α was decreased in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams, with a peak effect at day of life 14. When inflammation was induced using a lipopolysaccharide-induced model of inflammation, expression of TLR4, IL-1ß, IL-6, CXCL-1, and TNF-α was significantly lower in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams. CONCLUSIONS: SP-A is present in human and murine milk and plays a role in lowering inflammation in murine pup terminal ileum. Both baseline inflammation and induced inflammatory responses are reduced via exposure to SP-A in milk with the effect amplified in inflammatory conditions.


Assuntos
Enterocolite Necrosante , Leite Humano , Proteína A Associada a Surfactante Pulmonar , Receptor 4 Toll-Like , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/imunologia , Feminino , Humanos , Agentes de Imunomodulação/farmacologia , Recém-Nascido , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-6 , Camundongos , Leite Humano/efeitos dos fármacos , Leite Humano/imunologia , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/imunologia , Tensoativos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Comput Intell Neurosci ; 2022: 7205016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463266

RESUMO

Objective: To study the mechanism of chronic obstructive pulmonary disease (COPD) in diagnosing alveolar factors and analyze the effect of miR-149-3p on alveolar inflammatory factors and the expression of surfactant protein D (SP-D) and SP-A on the lung surface mediated by Wnt pathway. Methods: Patients with stable COPD were taken as the research subjects, and healthy volunteers as the control group. Cardiac color Doppler ultrasound was adopted to measure the ventricular structure of patients. The ultrasound simulation method was introduced in the ultrasound imaging. The ultrasound image was processed based on the intelligent ultrasound simulation algorithm. The changes in the structure of the left and right ventricles were analyzed and compared in the two groups. The expression changes of miR-149-3p, Wnt1, ß-catenin, RhoA, and Wnt5a in lung tissues of mice in three groups were detected, as well as the content of tumor necrosis factor- (TNF-) α, IL-1ß, interleukin (IL-6), nuclear factor kB (NF-kB), and other inflammatory factors in bronchoalveolar tissues of mice in three groups. Results: The position where the attenuation ratio was less than 0.92 in the experiment under the ultrasonic simulation algorithm had a gray value of 50. Compared with the control group, the right ventricular mass index of patients with stable COPD was statistically considerable (P < 0.05). In patients with stable COPD, the overall right ventricular longitudinal strain, right ventricular diastolic longitudinal strain rate (RV DLSR), right ventricular diastolic circumferential strain rate, and right ventricular longitudinal displacement were significantly impaired (P < 0.05). The content of miR-149-3p in the lung tissue of the model group was dramatically inferior to that of the control group and the interference group (P < 0.05). The contents of Wnt1, ß-catenin, RhoA, and Wnt5a in the lung tissue of the model group were dramatically superior to those of the control group (P < 0.05). In addition, the expressions of TNF-α, IL-1ß, IL-6, and NF-kB in the alveolar lavage fluid of the model group were statistically different from those of control group (P < 0.05). The expression levels of SP-D and surfactant protein A (SP-A) in the COPD group were also statistically different from those of control group (P < 0.05). Conclusion: miR-149-3p regulated the expression of Wnt1, ß-catenin, RhoA, and Wnt5a, which also affected the signal transmission of the Wnt pathway, causing changes in the expression of alveolar inflammatory factors. Eventually, it affected the development of COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Pulmão , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/farmacologia , Tensoativos/metabolismo , Tensoativos/farmacologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia
19.
Respir Physiol Neurobiol ; 301: 103899, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364290

RESUMO

Respiratory tract lining fluid (RTLF) is an important component of the lung epithelial barrier. Pathological changes in RTLF may cause increased permeability of the epithelial barrier, but changes within RTLF are difficult to assess non-invasively. The aim of this study was to explore if the use of the non-invasive measurement technique, Particles in Exhaled Air (PEx) and blood test were useful in assessing epithelial barrier, and if cigarette smoking affects the relationship. In a general population subcohort from the European Community Respiratory Health Survey III in Iceland (n = 112), we collected RTLF droplets using the PEx technique, in conjunction with blood samples and questionnaire data. We measured surfactant protein A (SP-A) in the collected plasma and PEx samples. Participants were defined as healthy if they did not currently have asthma, were non-smokers and had forced expiratory volume in one second ≥ 80% of predicted value. Of the 112 participants, 97 were healthy and 15 were current smokers. There was no correlation between plasma and PEx SP-A levels. However, the ratio of plasma to PEx SP-A was significantly higher in smokers compared to healthy subjects. The lack of correlation between PEx and plasma SP-A in healthy participants, indicates that SP-A in plasma does not diffuse freely over the lung epithelial barrier. However, the lung epithelial barrier may be injured by smoking, leading to diffusion of SP-A across the barrier into the bloodstream, causing an increased ratio of plasma to PEx SP-A.


Assuntos
Asma , Proteína A Associada a Surfactante Pulmonar , Expiração , Volume Expiratório Forçado , Humanos , Pulmão/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo
20.
Cancer Immunol Immunother ; 71(2): 399-415, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34181042

RESUMO

Pulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/imunologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteína A Associada a Surfactante Pulmonar/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA