Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cancer Res Ther ; 18(2): 352-361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35645100

RESUMO

Context: The growth factor receptor-bound protein 2 (Grb2)-Sos1 interaction, mediated by modular domains, plays an essential role in the oncogenic MAPK signaling pathway in osteosarcoma (OS). Recently, a dual-targeting peptide that targets the epidermal growth factor receptor and Grb2-Src homology 3 domain in OS cells was designed and synthesized. Aims: We investigated the synergistic effects of the peptide and salinomycin (Sal), a chemotherapeutic drug with effective anti-OS properties in clinical therapy. Subjects and Methods: Flow cytometry was used to measure the targeting efficacy of the peptide. Migration and CCK-8 assays were used to explore whether Sal and the peptide could synergistically inhibit OS cell behavior. Western blotting was used to detect apoptosis. Statistical Analysis Used: Data were analyzed using the GraphPad Prism 5.01. Statistical analysis was performed using the Student's t-test for the direct comparisons and one-way analysis of variance for the comparisons among the multiple groups. Statistical significance was set at P < 0.05. Results: The peptide was shown to target OS cells. When applied together, Sal and the peptide synergistically inhibited OS cell migration, invasion, and proliferation through the inhibition of Grb2-Sos1. This synergistic treatment also promoted the apoptosis of OS cells and inhibited tumor volume in vivo. Conclusions: These data provide valuable insights into the molecular mechanisms of OS and may be beneficial in clinical therapy.


Assuntos
Neoplasias Ósseas , Receptores ErbB , Proteína Adaptadora GRB2 , Osteossarcoma , Piranos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Proteína Adaptadora GRB2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Humanos , Osteossarcoma/genética , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piranos/farmacologia
2.
Bioorg Med Chem ; 28(20): 115711, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069067

RESUMO

Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant ß-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).


Assuntos
Peptídeos Penetradores de Células/farmacologia , Dipeptídeos/farmacologia , Desenho de Fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Proteína Adaptadora GRB2/isolamento & purificação , Proteína Adaptadora GRB2/metabolismo , Humanos , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Domínios de Homologia de src/efeitos dos fármacos
3.
PLoS One ; 15(8): e0236839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780746

RESUMO

The majority of chronic myeloid leukemia (CML) cases are caused by a chromosomal translocation linking the breakpoint cluster region (BCR) gene to the Abelson murine leukemia viral oncogene-1 (ABL1), creating the mutant fusion protein BCR-ABL1. Downstream of BCR-ABL1 is growth factor receptor-bound protein-2 (GRB2), an intracellular adapter protein that binds to BCR-ABL1 via its src-homology-2 (SH2) domain. This binding constitutively activates growth pathways, downregulates apoptosis, and leads to an over proliferation of immature and dysfunctional myeloid cells. Utilizing novel synthetic methods, we developed four furo-quinoxaline compounds as GRB2 SH2 domain antagonists with the goal of disrupting this leukemogenic signaling. One of the four antagonists, NHD2-15, showed a significant reduction in proliferation of K562 cells, a human BCR-ABL1+ leukemic cell line. To elucidate the mode of action of these compounds, various biophysical, in vitro, and in vivo assays were performed. Surface plasmon resonance (SPR) assays indicated that NHD2-15 antagonized GRB2, binding with a KD value of 119 ± 2 µM. Cellulose nitrate (CN) assays indicated that the compound selectively bound the SH2 domain of GRB2. Western blot assays suggested the antagonist downregulated proteins involved in leukemic transformation. Finally, NHD2-15 was nontoxic to primary cells and adult zebrafish, indicating that it may be an effective clinical treatment for CML.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Quinoxalinas/farmacologia , Animais , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Humanos , Células K562 , Rim/citologia , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Ligação Proteica , Quinoxalinas/química , Quinoxalinas/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Ressonância de Plasmônio de Superfície , Peixe-Zebra , Domínios de Homologia de src
4.
Pharmacol Res ; 159: 105007, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561477

RESUMO

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) were first-line treatments for NSCLC patients with EGFR-mutations. However, about 30 % of responders relapsed within six months because of acquired resistance. In this study, we used Connectivity Map (CMap) to discover a drug capable of reversing acquired EGFR-TKIs resistance. To investigate Lymecycline's ability to reverse acquired EGFR-TKIs resistance, two Icotinib resistant cell lines were constructed. Lymecycline's ability to suppress the proliferation of Icotinib resistant cells in vitro and in vivo was then evaluated. Molecular targets were predicted using network pharmacology and used to identify the molecular mechanism. Growth factor receptor-bound protein 2 (GRB2) is an EGFR-binding adaptor protein essential for EGFR phosphorylation and regulation of AKT/ERK/STAT3 signaling pathways. Lymecycline targeted GRB2 and inhibited the resistance of the cell cycle to EGFR-TKI, arresting disease progression and inducing apoptosis in cancer cells. Combined Lymecycline and Icotinib treatment produced a synergistic effect and induced apoptosis in HCC827R5 and PC9R10 cells. Cell proliferation in resistant cancer cells was significantly inhibited by the combined Lymecycline and Icotinib treatment in mouse models. Lymecycline inhibited the resistance of the cell cycle to EGFR-TKI and induced apoptosis in NSCLC by inhibiting EGFR phosphorylation and GRB2-mediated AKT/ERK/STAT3 signaling pathways. This provided strong support that Lymecycline when combined with EGFR targeting drugs, enhanced the efficacy of treatments for drug-resistant NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Éteres de Coroa/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Limeciclina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Acta Biochim Pol ; 67(1): 31-39, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160453

RESUMO

Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play important regulatory roles in mediating initiation and progression of lung adenocarcinoma (LA), which is one of the most lethal in humans. A previous study reported that lncRNAZXF1 was dysregulated in LA and enhanced expression of ZXF1 promoted the invasion and metastasis in LA. However, the effect of ZXF1 on LA progression and its underlying mechanisms were not thoroughly investigated. In our in vitro experiments, qRT-PCR revealed that the expression level of ZXF1 in LA tissues and tumor cells were significantly higher than that in adjacent normal tissues and normal cells. Furthermore, bioinformatics analysis, luciferase reporter assay, western blot and RNA immunoprecipitation (RIP) assay showed that ZXF1 could directly interact with miR-634, which targets GRB2. Therefore, we propose that ZXF1 could function as an oncogene partly by sponging miR-634 and therefore regulating GRB2 expression in LA. Overall, this study demonstrated, for the first time, that the lncRNA ZXF1/miR-634/GRB2 axis plays crucial roles in modulating LA progression. Moreover, lncRNA ZXF1 might potentially improve LA prognosis and serve as a therapeutic target for the treatment of LA.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Sobrevivência Celular/genética , Proteína Adaptadora GRB2/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Adenocarcinoma de Pulmão/patologia , Progressão da Doença , Regulação para Baixo , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/farmacologia , RNA Longo não Codificante/fisiologia , Células Tumorais Cultivadas
6.
Sci Rep ; 9(1): 16647, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719636

RESUMO

The present state of cancer chemotherapy is unsatisfactory. New anticancer drugs that marginally improve the survival of patients continue to be developed at an unsustainably high cost. The study aimed to elucidate the effects of insulin (INS), an inexpensive drug with a convincing safety profile, on the susceptibility of colon cancer to chemotherapeutic agents: 5-fluorouracil (FU), oxaliplatin (OXA), irinotecan (IRI), cyclophosphamide (CPA) and docetaxel (DOC). To examine the effects of insulin on cell viability and apoptosis, we performed an in vitro analysis on colon cancer cell lines Caco-2 and SW480. To verify the results, we performed in vivo analysis on mice bearing MC38 colon tumors. To assess the underlying mechanism of the therapy, we examined the mRNA expression of pathways related to the signaling downstream of insulin receptors (INSR). Moreover, we performed Western blotting to confirm expression patterns derived from the genetic analysis. For the quantification of circulating tumor cells in the peripheral blood, we used the maintrac method. The results of our study show that insulin-pretreated colon cancer cells are significantly more susceptible to commonly used chemotherapeutics. The apoptosis ratio was also enhanced when INS was administered complementary to the examined drugs. The in vivo study showed that the combination of INS and FU resulted in significant inhibition of tumor growth and reduction of the number of circulating tumor cells. This combination caused a significant downregulation of the key signaling substrates downstream of INSR. The results indicate that the downregulation of PIK3CA (phosphatidylinositol 3-kinase catalytic subunit alpha), which plays a critical role in cell signaling and GRB2 (growth factor receptor-bound protein 2), a regulator of cell proliferation and differentiation may be responsible for the sensitizing effect of INS. These findings were confirmed at protein levels by Western blotting. In conclusion, these results suggest that INS might be potentially applied to clinical use to enhance the therapeutic effectiveness of chemotherapeutic drugs. The findings may become a platform for the future development of new and inexpensive strategies for the clinical chemotherapy of tumors.


Assuntos
Antineoplásicos/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Proteína Adaptadora GRB2/antagonistas & inibidores , Insulina/farmacologia , Animais , Western Blotting , Células CACO-2/efeitos dos fármacos , Células CACO-2/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Colorretais/metabolismo , Ciclofosfamida/uso terapêutico , Docetaxel/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Fluoruracila/uso terapêutico , Proteína Adaptadora GRB2/metabolismo , Humanos , Irinotecano/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Oxaliplatina/uso terapêutico
7.
Cell Physiol Biochem ; 44(5): 2057-2072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29241165

RESUMO

BACKGROUND/AIMS: Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. METHODS: In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. RESULTS: SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. CONCLUSION: SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1.


Assuntos
Autorrenovação Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , Fator Inibidor de Leucemia/química , MAP Quinase Quinase Quinases/metabolismo , Camundongos , MicroRNAs/química , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência de RNA , Proteínas Son Of Sevenless/antagonistas & inibidores , Proteínas Son Of Sevenless/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 494(1-2): 325-331, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993193

RESUMO

BACKGROUND: Alpha lipoic acid (α -LA) is a naturally occurring antioxidant and metabolic enzyme co-factor. Recently, α -LA has been reported to inhibit the growth of various cancer cells, but the precise signaling pathways that mediate the effects of α -LA on non-small cell lung cancer (NSCLC) development remain unclear. METHODS: The CCK-8 assay was used to assess cell proliferation in NSCLC cell lines after α -LA treatment. The expression of growth factor receptor-bound protein 2 (Grb2), cyclin-dependent kinase (CDK)-2, CDK4, CDK6, Cyclin D3, Cyclin E1, Ras, c-Raf, epidermal growth factor receptor (EGFR), ERK1/2 and activated EGFR and ERK1/2 was evaluated by western blotting. Grb2 levels were restored in α-LA-treated cells by transfection of a plasmid carrying Grb2 and were reduced in NSCLC cells via specific siRNA-mediated knockdown. RESULTS: α -LA dramatically decreased NSCLC cell proliferation by downregulating Grb2; in contrast, Grb2 overexpression significantly prevented α-LA-induced decrease in cell growth in vitro. Western blot analysis indicated that α-LA decreased the levels of phospho-EGFR, CDK2/4/6, Cyclins D3 and E1, which are associated with the inhibition of G1/S-phase transition. Additional experiments indicated that Grb2 inhibition partially abolished EGF-induced phospho-EGFR and phospho-ERK1/2 activity. In addition, α-LA exerted greater inhibitory effects than gefitinib on NSCLC cells by preventing EGF-induced EGFR activation. CONCLUSION: For the first time, these findings provide the first evidence that α-LA inhibits cell proliferation through Grb2 by suppressing EGFR phosphorylation and that MAPK/ERK is involved in this pathway.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Ácido Tióctico/farmacologia , Células A549 , Proliferação de Células/efeitos dos fármacos , Ciclina D3/genética , Ciclina D3/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Biomed Pharmacother ; 95: 215-222, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28846982

RESUMO

Endothelial-mesenchymal transition (EndMT) is closely associated with embryogenesis, injury restitution, tissue neogenesis, tumor progressions and viscera fibrosis. EndMT may occur in the proximal tubular endothelial cells, inducing fibroblasts to produce matrix and then accelerating the process of cardiac fibrosis. Transforming growth factor-ß1 (TGF-ß1), a profibrotic cytokine, was recently shown to be a crucial trigger of EndMT in tubular endothelial cells. Increasing evidence suggests that growth factor receptor-bound 2 (GRB2) dysfunction affects fibrocytes; thus, GRB2 may be a novel target for treating fibrosis. The miR-200 miRNA cluster (miR-429, miR-141, miR-200c, miR-200b and miR-200a) was reported to inhibit EndMT. However, the underlying mechanisms, specifically that of miR-200a, are unclear. To elucidate the vital role of miR-200a in EndMT, we established a cardiac interstitial fibrosis model with a widely used EndMT assay, TGF-ß1-induced EndMT in human aortic endothelial cells (HAECs). We found that overexpression of miR-200a blocked EndMT in HAECs by inhibiting fibroblast-specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) expression and increasing platelet endothelial cell adhesion molecule-1 (CD31) and vascular endothelial cadherin (VE-cadherin) expression, regardless of the presence of TGF-ß1. MiR-200a expression was suppressed during the EndMT process, in both time- and dose-dependent manners, following GRB2 upregulation. EndMT was promoted by ectopic expression of GRB2 via decreased CD31 and VE-cadherin. Furthermore, EndMT was partially inhibited by co-transfection of miR-200a with GRB2 ORF, likely by restoring CD31 and VE-cadherin expression. MiR-200a negatively regulated GRB2 protein levels via direct binding to the GRB2 3'UTR. Finally, these discoveries may provide novel insights into the functional mechanism of miR-200a in regulating fibrosis via the TGFß1/miR-200a/GRB2/EndMT pathway, and miR-200a may serve as a new target for treating fibrosis in the future.


Assuntos
Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , MicroRNAs/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
10.
Bioconjug Chem ; 28(2): 609-619, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28032751

RESUMO

Grb2 is an adaptor protein that mediates cellular signal transduction. Grb2 contains an SH2 domain that interacts with phosphotyrosine-containing sequences in EGFR and other signaling molecules, and it is a promising molecular target for anticancer agents. To identify novel inhibitors of the Grb2 SH2 domain from natural products and their mirror-image isomers, screening systems using both enantiomers of a synthetic Grb2 SH2 domain protein were established. A pair of synthetic procedures for the proteins were investigated: one employed a single native chemical ligation (NCL) of two segment peptides, and the other used the N-to-C-directed NCL of three segment peptides for easier preparation. Labeling at the N-terminus or the Ala115 residue of the Grb2 SH2 domain provided functional probes to detect binding to a phosphotyrosine-containing peptide. The resulting synthetic-protein-based probes were applied to bioassays, including chemical array analysis and enzyme-linked immunosorbent assays.


Assuntos
Descoberta de Drogas/métodos , Proteína Adaptadora GRB2/síntese química , Domínios de Homologia de src/efeitos dos fármacos , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacologia
11.
Oncogene ; 35(17): 2186-96, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26212011

RESUMO

In the absence of extracellular stimulation the adaptor protein growth factor receptor-bound protein (Grb2) and the phospholipase Plcγ1 compete for the same binding site on fibroblast growth factor receptor 2 (FGFR2). Reducing cellular Grb2 results in upregulation of Plcγ1 and depletion of the phospholipid PI(4,5)P2. The functional consequences of this event on signaling pathways are unknown. We show that the decrease in PI(4,5)P2 level under non-stimulated conditions inhibits PTEN activity leading to the aberrant activation of the oncoprotein Akt. This results in excessive cell proliferation and tumor progression in a xenograft mouse model. As well as defining a novel mechanism of Akt phosphorylation with important therapeutic consequences, we also demonstrate that differential expression levels of FGFR2, Plcγ1 and Grb2 correlate with patient survival. Oncogenesis through fluctuation in the expression levels of these proteins negates extracellular stimulation or mutation and defines them as novel prognostic markers in ovarian cancer.


Assuntos
Proteína Adaptadora GRB2/genética , Proteína Oncogênica v-akt/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Fosfolipase C gama/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Feminino , Proteína Adaptadora GRB2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis/metabolismo , Fosfolipase C gama/biossíntese , Prognóstico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Transdução de Sinais
12.
Cell Signal ; 28(2): 94-107, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26655377

RESUMO

Cellular signaling mediated by the EGF receptor (EGFR) plays a key role in controlling proliferation and differentiation of cortical progenitor cells (CPCs). However, regulatory mechanisms of EGFR signaling in CPCs remain largely unknown. Here we demonstrate that necdin, a MAGE (melanoma antigen) family protein, interacts with EGFR in primary CPCs and represses its downstream signaling linked to astrocyte differentiation. EGFR was autophosphorylated and interacted with necdin in EGF-stimulated CPCs. Necdin bound to autophosphorylated EGFR via its tyrosine kinase domain. EGF-induced phosphorylation of ERK was enhanced in necdin-null CPCs, where the interaction between EGFR and the adaptor protein Grb2 was strengthened, suggesting that endogenous necdin suppresses the EGFR/ERK signaling pathway in CPCs. In necdin-null CPCs, astrocyte differentiation induced by the gliogenic cytokine cardiotrophin-1 was significantly accelerated in the presence of EGF, and inhibition of EGFR/ERK signaling abolished the acceleration. Furthermore, necdin strongly suppressed astrocyte differentiation induced by overexpression of EGFR or its ligand binding-defective mutant equivalent to a glioblastoma-associated EGFR variant. These results suggest that necdin acts as an intrinsic suppressor of the EGFR/ERK signaling pathway in EGF-responsive CPCs to restrain astroglial development in a cell-autonomous manner.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/embriologia , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/metabolismo , Animais , Astrócitos/citologia , Astrócitos/enzimologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Receptores ErbB/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/enzimologia , Domínios Proteicos
13.
PLoS One ; 10(12): e0144126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637171

RESUMO

Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC). The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK) and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1) was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other targeted agents that have similarly shown poor clinical activity.


Assuntos
Antineoplásicos/farmacologia , Dasatinibe/farmacologia , Naftiridinas/farmacologia , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Carcinoma Epitelial do Ovário , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Distroglicanas/antagonistas & inibidores , Feminino , Proteína Adaptadora GRB2/antagonistas & inibidores , Biblioteca Gênica , Humanos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Fenazinas , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-vav/antagonistas & inibidores
14.
Future Med Chem ; 6(17): 1909-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25495984

RESUMO

Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer.


Assuntos
Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB7/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Domínios de Homologia de src , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB7/metabolismo , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfopeptídeos/uso terapêutico , Ligação Proteica , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico
15.
Mol Cancer ; 13: 95, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24775912

RESUMO

BACKGROUND: Grb2 (Growth factor receptor-bound protein 2) is a key adaptor protein in maintaining the ERK activity via linking Sos1 (Son of sevenless homolog 1) or other proteins to activated RTKs, such as EGFR. Currently, little knowledge is available concerning the post-translational modification (PTM) of Grb2 except for its phosphorylation. Since emerging evidences have highlighted the importance of SUMOylation (Small ubiquitin-related modifier), a reversible PTM, in modulating protein functions, we wondered if Grb2 could be SUMOylated and thereby influences its functions especially involved in the Ras/MEK/ERK pathway. METHODS: SUMOylation of Grb2 was analyzed with the in vivo SUMOylation assay using the Ni2+-NTA affinity pulldown and the in vitro E.coli-based SUMOylation assay. To test the ERK activity and cell transformation, the murine fibroblast cell line NIH/3T3 and the murine colon cancer cell line CMT-93 were used for the experiments including Grb2 knockdown, ectopic re-expression, cell transformation and migration. Immunoprecipitation (IP) was employed for seeking proteins that interact with SUMO modified Grb2. Xenograft tumor model in mice was conducted to verify that Grb2 SUMOylation regulated tumorigenesis in vivo. RESULTS: Grb2 can be SUMOylated by SUMO1 at lysine 56 (K56), which is located in the linker region between the N-terminal SH3 domain and the SH2 domain. Knockdown of Grb2 reduced the ERK activity and suppressed cell motility and tumorigenesis in vitro and in vivo, which were all rescued by stable ectopic re-expression of wild-type Grb2 but not the mutant Grb2K56R. Furthermore, Grb2 SUMOylation at K56 increased the formation of Grb2-Sos1 complex, which sequentially leads to the activation of Ras/MEK/MAPK pathway. CONCLUSIONS: Our results provide evidences that Grb2 is SUMOylated in vivo and this modification enhances ERK activities via increasing the formation of Grb2-Sos1 complex, and may consequently promote cell motility, transformation and tumorigenesis.


Assuntos
Neoplasias do Colo/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteína Adaptadora GRB2/genética , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteína SOS1/genética , Sequência de Aminoácidos , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína SOS1/metabolismo , Sumoilação , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Proteínas ras/metabolismo
17.
PLoS One ; 8(5): e64672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700486

RESUMO

Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs). The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET). Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT) that has recently been published as the G protein-coupled receptor (GPCR) Heteromer Identification Technology (GPCR-HIT). We now demonstrate the utility of this approach for investigating RTK heteromerization by examining the functional interaction between the epidermal growth factor (EGF) receptor (EGFR; also known as erbB1/HER1) and heregulin (HRG) receptor 3 (HER3; also known as erbB3) in live HEK293FT cells using recruitment of growth factor receptor-bound protein 2 (Grb2) to the activated receptors. We found that EGFR and HER3 heteromerize specifically as demonstrated by HRG inducing a BRET signal between EGFR/Rluc8 and Grb2/Venus only when HER3 was co-expressed. Similarly, EGF stimulation promoted a specific BRET signal between HER3/Rluc8 and Grb2/Venus only when EGFR was co-expressed. Both EGF and HRG effects on Grb2 interaction are dose-dependent, and specifically blocked by EGFR inhibitor AG-1478. Furthermore, truncation of HER3 to remove the putative Grb2 binding sites appears to abolish EGF-induced Grb2 recruitment to the EGFR-HER3 heteromer. Our results support the concept that EGFR interacts with Grb2 in both constitutive and EGF-dependent manners and this interaction is independent of HER3 co-expression. In contrast, HER3-Grb2 interaction requires the heteromerization between EGFR and HER3. These findings clearly indicate the importance of EGFR-HER3 heteromerization in HER3-mediated Grb2-dependent signaling pathways and supports the central role of HER3 in the diversity and regulation of HER family functioning.


Assuntos
Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Multimerização Proteica , Receptor ErbB-3/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Proteína Adaptadora GRB2/antagonistas & inibidores , Células HEK293 , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Quinazolinas/farmacologia , Transdução de Sinais , Tirfostinas/farmacologia
18.
Circulation ; 127(21): 2097-106, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23625957

RESUMO

BACKGROUND: Several microRNAs (miRs) have been shown to regulate gene expression in the heart, and dysregulation of their expression has been linked to cardiac disease. miR-378 is strongly expressed in the mammalian heart but so far has been studied predominantly in cancer, in which it regulates cell survival and tumor growth. METHODS AND RESULTS: Here, we report tight control of cardiomyocyte hypertrophy through miR-378. In isolated primary cardiomyocytes, miR-378 was found to be both necessary and sufficient to repress cardiomyocyte hypertrophy. Bioinformatic prediction suggested that factors of the mitogen-activated protein kinase (MAPK) pathway are enriched among miR-378 targets. Using mRNA and protein expression analysis along with luciferase assays, we validated 4 key components of the MAPK pathway as targets of miR-378: MAPK1 itself, insulin-like growth factor receptor 1, growth factor receptor-bound protein 2, and kinase suppressor of ras 1. RNA interference with these targets prevented the prohypertrophic effect of antimiR-378, suggesting their functional relation with miR-378. Because miR-378 significantly decreases in cardiac disease, we sought to compensate for its loss through adeno-associated virus-mediated, cardiomyocyte-targeted expression of miR-378 in an in vivo model of cardiac hypertrophy (pressure overload by thoracic aortic constriction). Restoration of miR-378 levels significantly attenuated thoracic aortic constriction-induced cardiac hypertrophy and improved cardiac function. CONCLUSIONS: Our data identify miR-378 as a regulator of cardiomyocyte hypertrophy, which exerts its activity by suppressing the MAPK signaling pathway on several distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted adeno-associated virus-miR-378 may prove to be an effective therapeutic strategy in myocardial disease.


Assuntos
Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , MicroRNAs/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Transdução de Sinais/fisiologia , Adenoviridae/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/fisiologia , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases/fisiologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/fisiologia
19.
Chem Soc Rev ; 42(8): 3337-70, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23396540

RESUMO

Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Tirosina Quinases/química , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB7/antagonistas & inibidores , Proteína Adaptadora GRB7/metabolismo , Humanos , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Domínios de Homologia de src
20.
Cell Death Differ ; 20(3): 456-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23154388

RESUMO

Activating and inhibitory receptors control natural killer (NK) cell activity. T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) was recently identified as a new inhibitory receptor on T and NK cells that suppressed their effector functions. TIGIT harbors the immunoreceptor tail tyrosine (ITT)-like and ITIM motifs in its cytoplasmic tail. However, how its ITT-like motif functions in TIGIT-mediated negative signaling is still unclear. Here, we show that TIGIT/PVR (poliovirus receptor) engagement disrupts granule polarization leading to loss of killing activity of NK cells. The ITT-like motif of TIGIT has a major role in its negative signaling. After TIGIT/PVR ligation, the ITT-like motif is phosphorylated at Tyr225 and binds to cytosolic adapter Grb2, which can recruit SHIP1 to prematurely terminate phosphatidylinositol 3-kinase (PI3K) and MAPK signaling, leading to downregulation of NK cell function. In support of this, Tyr225 or Asn227 mutation leads to restoration of TIGIT/PVR-mediated cytotoxicity, and SHIP1 silencing can dramatically abolish TIGIT/PVR-mediated killing inhibition.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Células Matadoras Naturais/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Receptores Imunológicos/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/genética , Humanos , Inositol Polifosfato 5-Fosfatases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Virais/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA