Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Reprod Biol Endocrinol ; 20(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980155

RESUMO

BACKGROUND: Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. METHODS: Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. RESULTS: Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). CONCLUSIONS: Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.


Assuntos
Células da Granulosa/metabolismo , Resistência à Insulina/genética , Síndrome do Ovário Policístico/genética , Proteína Amiloide A Sérica/fisiologia , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Líquido Folicular/química , Líquido Folicular/metabolismo , Células da Granulosa/efeitos dos fármacos , Humanos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacologia
2.
Mol Med ; 24(1): 46, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165816

RESUMO

Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in "secondary" amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA's lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA's function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.


Assuntos
Proteína Amiloide A Sérica/fisiologia , Reação de Fase Aguda , Animais , Aterosclerose/metabolismo , Colagenases/metabolismo , Humanos , Metabolismo dos Lipídeos , Glândulas Mamárias Humanas/metabolismo , Saúde Materna , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Sarcoidose Pulmonar/metabolismo
3.
J Biol Chem ; 293(34): 13257-13269, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29976759

RESUMO

Serum amyloid A (SAA) is a high-density apolipoprotein whose plasma levels can increase more than 1000-fold during a severe acute-phase inflammatory response and are more modestly elevated in chronic inflammation. SAA is thought to play important roles in innate immunity, but its biological activities have not been completely delineated. We previously reported that SAA deficiency protects mice from developing abdominal aortic aneurysms (AAAs) induced by chronic angiotensin II (AngII) infusion. Here, we report that SAA is required for AngII-induced increases in interleukin-1ß (IL-1ß), a potent proinflammatory cytokine that is tightly controlled by the Nod-like receptor protein 3 (NLRP3) inflammasome and caspase-1 and has been implicated in both human and mouse AAAs. We determined that purified SAA stimulates IL-1ß secretion in murine J774 and bone marrow-derived macrophages through a mechanism that depends on NLRP3 expression and caspase-1 activity, but is independent of P2X7 nucleotide receptor (P2X7R) activation. Inhibiting reactive oxygen species (ROS) by N-acetyl-l-cysteine or mito-TEMPO and inhibiting activation of cathepsin B by CA-074 blocked SAA-mediated inflammasome activation and IL-1ß secretion. Moreover, inhibiting cellular potassium efflux with glyburide or increasing extracellular potassium also significantly reduced SAA-mediated IL-1ß secretion. Of note, incorporating SAA into high-density lipoprotein (HDL) prior to its use in cell treatments completely abolished its ability to stimulate ROS generation and inflammasome activation. These results provide detailed insights into SAA-mediated IL-1ß production and highlight HDL's role in regulating SAA's proinflammatory effects.


Assuntos
Inflamassomos/metabolismo , Inflamação/imunologia , Lipoproteínas HDL/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/fisiologia , Animais , Caspase 1/metabolismo , Catepsina B/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Amiloide A Sérica/genética , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 115(6): E1147-E1156, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29351990

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of abundant desmoplastic stroma primarily composed of cancer-associated fibroblasts (CAFs). It is generally accepted that CAFs stimulate tumor progression and might be implicated in drug resistance and immunosuppression. Here, we have compared the transcriptional profile of PDGFRα+ CAFs isolated from genetically engineered mouse PDAC tumors with that of normal pancreatic fibroblasts to identify genes potentially implicated in their protumorigenic properties. We report that the most differentially expressed gene, Saa3, a member of the serum amyloid A (SAA) apolipoprotein family, is a key mediator of the protumorigenic activity of PDGFRα+ CAFs. Whereas Saa3-competent CAFs stimulate the growth of tumor cells in an orthotopic model, Saa3-null CAFs inhibit tumor growth. Saa3 also plays a role in the cross talk between CAFs and tumor cells. Ablation of Saa3 in pancreatic tumor cells makes them insensitive to the inhibitory effect of Saa3-null CAFs. As a consequence, germline ablation of Saa3 does not prevent PDAC development in mice. The protumorigenic activity of Saa3 in CAFs is mediated by Mpp6, a member of the palmitoylated membrane protein subfamily of the peripheral membrane-associated guanylate kinases (MAGUK). Finally, we interrogated whether these observations could be translated to a human scenario. Indeed, SAA1, the ortholog of murine Saa3, is overexpressed in human CAFs. Moreover, high levels of SAA1 in the stromal component correlate with worse survival. These findings support the concept that selective inhibition of SAA1 in CAFs may provide potential therapeutic benefit to PDAC patients.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/fisiologia , Células Estromais/patologia , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Amiloide A Sérica/genética , Células Estromais/metabolismo , Microambiente Tumoral
5.
Inflamm Bowel Dis ; 23(9): 1544-1554, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28806280

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are believed to be driven by dysregulated interactions between the host and the gut microbiota. Our goal is to characterize and infer relationships between mucosal T cells, the host tissue environment, and microbial communities in patients with IBD who will serve as basis for mechanistic studies on human IBD. METHODS: We characterized mucosal CD4 T cells using flow cytometry, along with matching mucosal global gene expression and microbial communities data from 35 pinch biopsy samples from patients with IBD. We analyzed these data sets using an integrated framework to identify predictors of inflammatory states and then reproduced some of the putative relationships formed among these predictors by analyzing data from the pediatric RISK cohort. RESULTS: We identified 26 predictors from our combined data set that were effective in distinguishing between regions of the intestine undergoing active inflammation and regions that were normal. Network analysis on these 26 predictors revealed SAA1 as the most connected node linking the abundance of the genus Bacteroides with the production of IL17 and IL22 by CD4 T cells. These SAA1-linked microbial and transcriptome interactions were further reproduced with data from the pediatric IBD RISK cohort. CONCLUSIONS: This study identifies expression of SAA1 as an important link between mucosal T cells, microbial communities, and their tissue environment in patients with IBD. A combination of T cell effector function data, gene expression and microbial profiling can distinguish between intestinal inflammatory states in IBD regardless of disease types.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Proteína Amiloide A Sérica/fisiologia , Adulto , Biópsia , Estudos de Casos e Controles , Criança , Colo/imunologia , Colo/microbiologia , Colo/patologia , Expressão Gênica , Humanos , Imunidade Celular , Doenças Inflamatórias Intestinais/patologia , Interleucina-17/biossíntese , Interleucinas/biossíntese , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Células Th17/imunologia , Interleucina 22
6.
Vet Immunol Immunopathol ; 187: 10-13, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28494923

RESUMO

Serum amyloid A (SAA) concentration and plasma matrix metalloproteinase-9 (MMP-9) levels are increased in cats with lymphoma. In the present study, the association between SAA and MMP-9 production was evaluated using recombinant feline SAA (rfSAA) and three feline lymphoma-derived cell lines: 3201, MS4, and MCC. MMP-9 mRNA expression was significantly increased by rfSAA stimulation only in MCC cells. Secreted MMP-9 protein in culture media was confirmed by gelatin zymography, with clear bands of MMP-9 detected in MCC cells following rfSAA stimulation. A significant increase in semi-quantified MMP-9 levels was observed with 5 and 25µg/ml of rfSAA stimulation. The infiltrative activities of feline lymphoma cells, assessed by the matrigel transwell assay, showed that rfSAA stimulated cell infiltration in MCC cells, in addition to MMP-9 expression. Although the response to rfSAA stimulation varied between cell lines, the results showed that rfSAA can stimulate MMP-9 production and infiltration of feline lymphoma-derived cells. The findings of this study have identified a novel role for SAA in the progression of some forms of feline lymphoma.


Assuntos
Doenças do Gato/metabolismo , Linfoma/veterinária , Metaloproteinase 9 da Matriz/metabolismo , Proteína Amiloide A Sérica/fisiologia , Animais , Gatos , Linhagem Celular Tumoral , Linfoma/metabolismo
7.
Cancer Res ; 77(7): 1586-1598, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202524

RESUMO

Mechanisms of cross-talk between tumor cells and tumor-associated macrophages (TAM), which drive metastasis, are not fully understood. Scavenger receptor A1 (SR-A1) expressed primarily in macrophages has been associated with lung tumorigenesis. In this study, we used population genetics, transcriptomics, and functional analyses to uncover how SR-A1 is involved in lung cancer and its prognosis. SR-A1 genetic variants were investigated for possible association with survival of advanced stage NSCLC patients in the Harvard Lung Cancer Study cohort. Two SNPs (rs17484273, rs1484751) in SR-A1 were associated significantly with poor overall survival in this cohort. Data from The Cancer Genome Atlas showed considerable downregulation of SR-A1 in lung tumor tissues. The association of SR-A1 with prognosis was validated in animal models in the context of lung cancer metastasis. Macrophages derived from mice genetically deficient for SR-A1 exhibited accelerated metastasis in a model of lung cancer. On the other hand, tumor cell seeding, migration, and invasion, as well as macrophage accumulation in lung cancer tissue, were enhanced in SR-A1-deficient mice. SR-A1 deletion upregulated serum amyloid A1 (SAA1) in macrophages via MAPK/IκB/NFκB signaling. SAA1 promoted tumor cell invasion and macrophage migration in vitro and in vivo, but these effects were blocked by administration of an anti-SAA1 antibody. Overall, our findings show how SR-A1 suppresses lung cancer metastasis by downregulating SAA1 production in TAMs. Cancer Res; 77(7); 1586-98. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/fisiologia , Metástase Neoplásica/prevenção & controle , Receptores Depuradores Classe A/fisiologia , Proteína Amiloide A Sérica/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Movimento Celular , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Camundongos , Invasividade Neoplásica , Polimorfismo de Nucleotídeo Único , Prognóstico , Receptores Depuradores Classe A/genética , Microambiente Tumoral
8.
J Lipid Res ; 57(12): 2138-2149, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27744369

RESUMO

Oxidative stress and inflammation, which involve a dramatic increase in serum amyloid A (SAA) levels, are critical in the development of atherosclerosis. Most SAA circulates on plasma HDL particles, altering their cardioprotective properties. SAA-enriched HDL has diminished anti-oxidant effects on LDL, which may contribute to atherogenesis. We determined combined effects of SAA enrichment and oxidation on biochemical changes in HDL. Normal human HDLs were incubated with SAA, oxidized by various factors (Cu2+, myeloperoxidase, H2O2, OCl-), and analyzed for lipid and protein modifications and biophysical remodeling. Three novel findings are reported: addition of SAA reduces oxidation of HDL and LDL lipids; oxidation of SAA-containing HDL in the presence of OCl- generates a covalent heterodimer of SAA and apoA-I that resists the release from HDL; and mild oxidation promotes spontaneous release of proteins (SAA and apoA-I) from SAA-enriched HDL. We show that the anti-oxidant effects of SAA extend to various oxidants and are mediated mainly by the unbound protein. We propose that free SAA sequesters lipid hydroperoxides and delays lipoprotein oxidation, though much less efficiently than other anti-oxidant proteins, such as apoA-I, that SAA displaces from HDL. These findings prompt us to reconsider the role of SAA in lipid oxidation in vivo.


Assuntos
Antioxidantes/química , Lipoproteínas HDL/química , Lipoproteínas LDL/química , Proteína Amiloide A Sérica/química , Animais , Antioxidantes/fisiologia , Apolipoproteína A-I/química , Cobre/química , Humanos , Peroxidação de Lipídeos , Camundongos , Peroxidase/química , Proteína Amiloide A Sérica/fisiologia
9.
Infect Immun ; 84(10): 2824-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456830

RESUMO

Intestinal segmented filamentous bacteria (SFB) protect from ameba infection, and protection is transferable with bone marrow dendritic cells (BMDCs). SFB cause an increase in serum amyloid A (SAA), suggesting that SAA might mediate SFB's effects on BMDCs. Here we further explored the role of bone marrow in SFB-mediated protection. Transient gut colonization with SFB or SAA administration alone transiently increased the H3K27 histone demethylase Jmjd3, persistently increased bone marrow Csf2ra expression and granulocyte monocyte precursors (GMPs), and protected from ameba infection. Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked protection from ameba infection. These results indicate that alteration of the microbiota and systemic exposure to SAA can influence myelopoiesis and susceptibility to amebiasis via epigenetic mechanisms. Gut microbiota-marrow communication is a previously unrecognized mechanism of innate protection from infection.


Assuntos
Células da Medula Óssea/citologia , Entamoeba histolytica/fisiologia , Entamebíase/fisiopatologia , Trato Gastrointestinal/microbiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Proteína Amiloide A Sérica/fisiologia , Animais , Bactérias , Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Células Progenitoras de Granulócitos e Macrófagos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
10.
Oncogene ; 34(4): 424-35, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24469032

RESUMO

S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional targets of S100A4 via Toll-like receptor 4 (TLR4)/nuclear factor-κB signaling. SAA proteins stimulated the transcription of RANTES (regulated upon activation normal T-cell expressed and presumably secreted), G-CSF (granulocyte-colony-stimulating factor) and MMP2 (matrix metalloproteinase 2), MMP3, MMP9 and MMP13. We have also shown for the first time that SAA stimulate their own transcription as well as that of proinflammatory S100A8 and S100A9 proteins. Moreover, they strongly enhanced tumor cell adhesion to fibronectin, and stimulated migration and invasion of human and mouse tumor cells. Intravenously injected S100A4 protein induced expression of SAA proteins and cytokines in an organ-specific manner. In a breast cancer animal model, ectopic expression of SAA1 or SAA3 in tumor cells potently promoted widespread metastasis formation accompanied by a massive infiltration of immune cells. Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor progression.


Assuntos
Inflamação/complicações , Metástase Neoplásica , Proteínas S100/fisiologia , Proteína Amiloide A Sérica/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/mortalidade , Receptores ErbB/fisiologia , Humanos , Camundongos , Especificidade de Órgãos , Proteína A4 de Ligação a Cálcio da Família S100 , Proteína Amiloide A Sérica/fisiologia
11.
Proc Natl Acad Sci U S A ; 111(14): 5189-94, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706838

RESUMO

Serum amyloid A (SAA) represents an evolutionarily conserved family of inflammatory acute-phase proteins. It is also a major constituent of secondary amyloidosis. To understand its function and structural transition to amyloid, we determined a structure of human SAA1.1 in two crystal forms, representing a prototypic member of the family. Native SAA1.1 exists as a hexamer, with subunits displaying a unique four-helix bundle fold stabilized by its long C-terminal tail. Structure-based mutational studies revealed two positive-charge clusters, near the center and apex of the hexamer, that are involved in SAA association with heparin. The binding of high-density lipoprotein involves only the apex region of SAA and can be inhibited by heparin. Peptide amyloid formation assays identified the N-terminal helices 1 and 3 as amyloidogenic peptides of SAA1.1. Both peptides are secluded in the hexameric structure of SAA1.1, suggesting that the native SAA is nonpathogenic. Furthermore, dissociation of the SAA hexamer appears insufficient to initiate amyloidogenic transition, and proteolytic cleavage or removal of the C-terminal tail of SAA resulted in formation of various-sized structural aggregates containing ∼5-nm regular repeating protofibril-like units. The combined structural and functional studies provide mechanistic insights into the pathogenic contribution of glycosaminoglycan in SAA1.1-mediated AA amyloid formation.


Assuntos
Amiloidose/fisiopatologia , Inflamação/fisiopatologia , Proteína Amiloide A Sérica/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Glicosaminoglicanos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/genética
12.
Exp Dermatol ; 23(2): 113-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330353

RESUMO

Notch receptor-ligand interactions are critical for cell proliferation, differentiation and survival; however, the role of Notch signalling in psoriasis remains to be elucidated. Serum amyloid A (A-SAA) is an acute-phase protein with cytokine-like properties, regulates cell survival pathways and is implicated in many inflammatory conditions. To examine the role of Notch-1 signalling in the pathogenesis of psoriasis, Notch-1, DLL-4, Jagged-1, Hrt-1/Hrt-2, A-SAA, Factor VIII and vascular endothelial growth factor (VEGF) mRNA and/or protein expression in psoriasis skin biopsies, serum and dHMVEC were assessed by immunohistology, dual-immunofluorescence, real-time PCR, ELISA and Western blotting. A-SAA-induced angiogenesis and invasion in the presence of Notch-1 siRNA was assessed by matrigel tube formation assays and Transwell invasion assay. Increased Notch-1, its ligand DLL-4 and Hrt-1 expression were demonstrated in lesional skin compared with non-lesional skin, with greatest expression observed in the dermal vasculature (P < 0.05). Dual-immunofluorescent staining demonstrated co-localization of Notch-1 to endothelial cell marker Factor VIII. A significant increase in A-SAA levels was demonstrated in psoriasis serum compared with healthy control serum (P < 0.05), and A-SAA expression was higher in lesional skin compared with non-lesional. In dHMVEC, A-SAA significantly induced Jagged-1, Hrt-1 and VEGF mRNA expression (P < 0.05) and activated Notch-1 IC indicative of transcriptional regulation. In contrast, A-SAA significantly inhibited DLL-4 mRNA expression (P < 0.05). Finally A-SAA-induced angiogenesis and invasion were inhibited by Notch-1 siRNA (P < 0.05). Notch receptor-ligand interactions mediate vascular dysfunction in psoriasis and may represent a potential therapeutic target.


Assuntos
Células Endoteliais/patologia , Neovascularização Patológica/patologia , Psoríase/patologia , Receptor Notch1/fisiologia , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Células Cultivadas , Fator VIII/análise , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Microvasos/patologia , Pessoa de Meia-Idade , Psoríase/metabolismo , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Proteínas Serrate-Jagged , Proteína Amiloide A Sérica/fisiologia , Transdução de Sinais , Adulto Jovem
13.
Vet Immunol Immunopathol ; 155(3): 190-6, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23942262

RESUMO

Serum amyloid A (SAA) is one of the major acute phase proteins and a biomarker of infection or inflammation in humans and cats. In humans, cytokine-like functions of SAA protein have been determined, and SAA is considered to be an important factor in immune responses. However, there are no reports about the functions of SAA protein in cats. In the present study, the functions of feline SAA protein on peripheral monocytes were investigated by using TNF-α production as an indicator. In feline peripheral blood monocytes, SAA protein stimulated the transcription of TNF-α within 2h and induced TNF-α secretion in time- and dose-dependent manners. The production of TNF-α by SAA stimulation in feline monocytes was found to be mediated by the activation of nuclear factor-kappa B (NF-κB). Moreover, SAA-stimulated TNF-α production was prevented by a Toll-like receptor 4 (TLR4) antagonist. On the basis of these results, feline SAA was demonstrated to be an endogenous agonist of TLR4 for the stimulation of TNF-α production and secretion by peripheral monocytes. These results suggest that feline SAA can play an important role in the regulation of inflammation and immune responses as it does in humans.


Assuntos
Gatos/imunologia , Proteína Amiloide A Sérica/fisiologia , Receptor 4 Toll-Like/agonistas , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
14.
J Immunol ; 191(4): 1856-64, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23858030

RESUMO

Serum amyloid A (SAA) 3 is a major component of the acute phase of inflammation. We previously reported that SAA3 served as an endogenous peptide ligand for TLR4 to facilitate lung metastasis. Because these experiments were performed with SAA3 recombinant proteins purified from Escherichia coli or mammalian cells, we could not rule out the possibility of LPS contamination. In this study, we used SAA3 synthetic peptides to eliminate the presence of LPS in SAA3. We found that the SAA3 synthetic peptide (aa 20-86) (20-86) stimulated cell migration and activated p38 in a manner dependent on TLR4, MD-2, and MyD88. SAA3 (20-86) also activated NF-κB and Rho small GTPase. Using surface plasmon resonance analysis, the binding constant KD values between SAA3 (20-86) or SAA3 (43-57) and TLR4/MD-2 protein highly purified by the baculovirus system were 2.2 and 30 µM, respectively. FLAG-tagged SAA3 tightly bound to protein A-tagged MD-2, but not to TLR4 in baculovirus coinfection experiments. Although SAA3 (20-86) caused a low, but appreciable level of endocytosis in TLR4, it induced the upregulation of both IL-6 and TNF-α, but not IFN-ß1. An i.v. injection of SAA3 (43-57) induced the lung recruitment of CD11b(+)Gr-1(+) cells at an estimated serum concentration around its KD value toward TLR4/MD-2. Taken together, these results suggest that SAA3 directly binds MD-2 and activates the MyD88-dependent TLR4/MD-2 pathway.


Assuntos
Antígeno 96 de Linfócito/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/metabolismo , Proteína Amiloide A Sérica/fisiologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Linhagem Celular , Movimento Celular , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/biossíntese , Interleucina-6/genética , Ligantes , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Antígeno 96 de Linfócito/deficiência , MAP Quinase Quinase 4/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/fisiologia , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Proteínas rho de Ligação ao GTP/metabolismo
15.
Atherosclerosis ; 227(1): 72-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340376

RESUMO

Serum amyloid A (SAA) is an acute phase protein whose expression increases markedly during bacterial infection, tissue damage, and inflammation. The potential beneficial roles of SAA include its involvement in the reverse cholesterol transport and possibly extracellular lipid deposition at sites of inflammation and tissue repair. It is an attractive therapeutic target for the treatment of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) plays a major regulatory role in adipogenesis, and the expression of genes involved in lipid metabolism. Activation of PPARγ leads to multiple changes in gene expression, some of which are believed to be atherogenic while others are antiatherogenic. In this study, we demonstrated that SAA upregulated COX-2 expression and induced PPARγ activity through NF-кB pathway. The effect of SAA on NF-кB activity is mediated by FPRL-1 and TLR4.


Assuntos
NF-kappa B/fisiologia , PPAR gama/metabolismo , Proteína Amiloide A Sérica/fisiologia , Ciclo-Oxigenase 2 , Flavonoides/farmacologia , Células Hep G2 , Humanos , Lipoproteínas HDL/fisiologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/fisiologia , Receptor 4 Toll-Like/fisiologia
16.
J Med Chem ; 55(24): 10823-43, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23075044

RESUMO

Protein misfolding is a process in which proteins are unable to attain or maintain their biologically active conformation. Factors contributing to protein misfolding include missense mutations and intracellular factors such as pH changes, oxidative stress, or metal ions. Protein misfolding is linked to a large number of diseases such as cystic fibrosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and less familiar diseases such as Gaucher's disease, nephrogenic diabetes insipidus, and Creutzfeldt-Jakob disease. In this Perspective, we report on small molecules that bind to and stabilize the aberrant protein, thereby helping it to attain a native or near-native conformation and restoring its function. The following targets will be specifically discussed: transthyretin, p53, superoxide dismutase 1, lysozyme, serum amyloid A, prions, vasopressin receptor 2, and α-1-antitrypsin.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Dobramento de Proteína , Proteínas/química , Proteínas/fisiologia , Deficiências na Proteostase/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Amiloide/metabolismo , Animais , Humanos , Modelos Moleculares , Muramidase/química , Muramidase/fisiologia , Mutação , Doenças Neurodegenerativas/metabolismo , Pré-Albumina/química , Pré-Albumina/fisiologia , Príons/química , Príons/fisiologia , Ligação Proteica , Conformação Proteica , Deficiências na Proteostase/metabolismo , Receptores de Vasopressinas/química , Receptores de Vasopressinas/fisiologia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Superóxido Dismutase/química , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1 , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/fisiologia , Resposta a Proteínas não Dobradas , alfa 1-Antitripsina/química , alfa 1-Antitripsina/fisiologia
18.
Amyloid ; 19(1): 5-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22320226

RESUMO

Serum amyloid A (SAA), a protein originally of interest primarily to investigators focusing on AA amyloidogenesis, has become a subject of interest to a very broad research community. SAA is still a major amyloid research topic because AA amyloid, for which SAA is the precursor, is the prototypic model of in vivo amyloidogenesis and much that has been learned with this model has been applicable to much more common clinical types of amyloid. However, SAA has also become a subject of considerable interest to those studying (i) the synthesis and regulation of acute phase proteins, of which SAA is a prime example, (ii) the role that SAA plays in tissue injury and inflammation, a situation in which the plasma concentration of SAA may increase a 1000-fold, (iii) the influence that SAA has on HDL structure and function, because during inflammation the majority of SAA is an apolipoprotein of HDL, (iv) the influence that SAA may have on HDL's role in reverse cholesterol transport, and therefore, (v) SAA's potential role in atherogenesis. However, no physiological role for SAA, among many proposed, has been widely accepted. None the less from an evolutionary perspective SAA must have a critical physiological function conferring survival-value because SAA genes have existed for at least 500 million years and SAA's amino acid sequence has been substantially conserved. An examination of the published literature over the last 40 years reveals a great deal of conflicting data and interpretation. Using SAA's conserved amino acid sequence and the physiological effects it has while in its native structure, namely an HDL apolipoprotein, we argue that much of the confounding data and interpretation relates to experimental pitfalls not appreciated when working with SAA, a failure to appreciate the value of physiologic studies done in the 1970-1990 and a current major focus on putative roles of SAA in atherogenesis and chronic disease. When viewed from an evolutionary perspective, published data suggest that acute-phase SAA is part of a systemic response to injury to recycle and reuse cholesterol from destroyed and damaged cells. This is accomplished through SAA's targeted delivery of HDL to macrophages, and its suppression of ACAT, the enhancement of neutral cholesterol esterase and ABC transporters in macrophages. The recycling of cholesterol during serious injury, when dietary intake is restricted and there is an immediate and critical requirement of cholesterol in the generation of myriads of cells involved in inflammation and repair responses, is likely SAA's important survival role. Data implicating SAA in atherogenesis are not relevant to its evolutionary role. Furthermore, in apoE(-/-) mice, domains near the N- and C- termini of SAA inhibit the initiation and progression of aortic lipid lesions illustrating the conflicting nature of these two sets of data.


Assuntos
Proteína Amiloide A Sérica/fisiologia , Sequência de Aminoácidos , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Sequência Conservada , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Proteína Amiloide A Sérica/metabolismo
19.
Arthritis Rheum ; 63(12): 3833-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22127701

RESUMO

OBJECTIVE: To identify novel genes associated with dysregulated proliferation of activated synovial fibroblasts, which are involved in arthritic joint destruction. METHODS: We performed transcriptome analysis to identify genes that were up-regulated in the foot joints of mice with collagen-induced arthritis (CIA). The effect of candidate genes on proliferation of synovial fibroblasts was screened using antisense oligodeoxynucleotides and small interfering RNAs (siRNAs). We characterized the expression and function of a novel gene, synoviocyte proliferation-associated in collagen-induced arthritis 1 (SPACIA1)/serum amyloid A-like 1 (SAAL1) using antibodies and siRNA and established transgenic mice to examine the effect of SPACIA1/SAAL1 overexpression in CIA. RESULTS: Human and mouse SPACIA1/SAAL1 encoded 474 amino acid proteins that shared 80% homology. SPACIA1/SAAL1 was primarily expressed in the nucleus of rheumatoid arthritis (RA) synovial fibroblasts and was highly expressed in the hyperplastic lining of inflamed synovium. In addition, its expression level in RA- or osteoarthritis (OA)-affected synovial tissue was positively correlated with the thickness of the synovial lining. Furthermore, SPACIA1/SAAL1 siRNA inhibited the proliferation of synovial fibroblasts, especially tumor necrosis factor α-induced synovial fibroblasts, by blocking entry into the S phase without inducing apoptosis. Finally, transgenic mice overexpressing SPACIA1/SAAL1 exhibited early onset and rapid progression of CIA. CONCLUSION: These results suggest that SPACIA1/SAAL1 is necessary for abnormal proliferation of synovial fibroblasts and its overexpression is associated with the progression of synovitis in mice and humans. Thus, therapy targeting SPACIA1/SAAL1 might have potential as an inhibitor of synovial proliferation in RA and/or OA.


Assuntos
Proliferação de Células , Progressão da Doença , Genes/fisiologia , Membrana Sinovial/patologia , Membrana Sinovial/fisiopatologia , Sinovite/patologia , Sinovite/fisiopatologia , Sequência de Aminoácidos , Animais , Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Dados de Sequência Molecular , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/fisiologia , Transcriptoma/fisiologia , Regulação para Cima/fisiologia
20.
Clin Exp Rheumatol ; 29(5): 850-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22011672

RESUMO

The introduction of biological therapies targeting specific inflammatory mediators revolutionised the treatment of rheumatoid arthritis (RA). Targeting key components of the immune system allows efficient suppression of the pathological inflammatory cascade that leads to RA symptoms and subsequent joint destruction. Reactive amyloid A (AA) amyloidosis, one of the most severe complications of RA, is a serious, potentially life-threatening disorder caused by deposition of AA amyloid fibrils in multiple organs. These AA amyloid fibrils derive from the circulatory acute-phase reactant serum amyloid A protein (SAA), and may be controlled by treatment. New biologics may permit AA amyloidosis secondary to RA to become a treatable, manageable disease. Rheumatologists, when diagnosing and treating patients with AA amyloidosis secondary to RA, must understand the pathophysiology and clinical factors related to development and progression of the disease, including genetic predisposition and biological versatility of SAA.


Assuntos
Amiloidose , Artrite Reumatoide , Proteína Amiloide A Sérica/fisiologia , Amiloidose/etiologia , Amiloidose/fisiopatologia , Amiloidose/terapia , Artrite Reumatoide/complicações , Artrite Reumatoide/fisiopatologia , Artrite Reumatoide/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA